The MTHFR C677T polymorphism is associated with mitral valve rheumatic heart disease

S.J. CARLUS¹, A.M. ABDALLAH¹, L.V.K.S. BHASKAR², M.M. MORSY³, G.S. AL-HARBI¹, A.H. AL-MAZROEA⁴, K.M. AL-HARBI⁴

Abstract. – OBJECTIVE: Rheumatic heart disease (RHD) is a serious complication of rheumatic fever (RF). Plasma homocysteine (Hcy) levels are increased in RHD patients. MTH-FR catalyzes the irreversible conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate and plays a vital role in Hcy metabolism. We hypothesize that the *MTHFR* C677T polymorphism is associated with a risk of RHD.

PATIENTS AND METHODS: Eighty-six patients with RHD and 130 matched controls without a history of RHD were eligible for the study. The diagnosis of RHD was made according to modified Jones' criteria and echocardiography. Using echocardiography, RHD patients were further divided into mitral valve lesion (MVL) and combined valve lesion (CVL) groups. MTH-FR C677T polymorphisms were genotyped by DNA sequencing. The chi-squared test was used to evaluate differences in genotypes.

RESULTS: Control genotypes were in Hardy-Weinberg equilibrium. The C677T homozygous genotype (OR = 4.09; 95% Cls 1.16-14.44; p = 0.020) and recessive model (TT vs. CC+CT; OR = 4.05; 95% Cls 1.17-14.04; p = 0.019) were significantly associated with MVL RHD.

CONCLUSIONS: This is the first study to investigate the association between the *MTHFR* C677T polymorphism and risk of RHD. The *MTHFR* C677T polymorphism is associated with RHD in patients with MVLs, perhaps via an Hcymediated cytokine effect.

Key Words:

Rheumatic heart disease, Mitral valve lesion, MTH-FR, C677T polymorphism.

Introduction

Rheumatic heart disease (RHD) is a serious complication of rheumatic fever (RF) caused by

an autoimmune reaction to Group A β -hemolytic streptococci. RHD can result in serious sequelae such as valve stenosis, arrhythmias, atrial dilation, and ventricular dysfunction¹. Although the incidence and prevalence of RHD have decreased in developed nations since the early 1900s, RHD continues to be a major health hazard in many developing countries and in sub-Saharan Africa². The prevalence of RHD is 24 per 10,000 children aged between six and 15 years in the Western district of Saudi Arabia, with the highest rates in rural areas and in females³.

The mitral valve is affected in up to 50% of RHD cases^{4,5}, and mitral valve disease is a significant global public health concern². In young patients, mitral regurgitation predominates, but mitral stenosis becomes progressively more common with age⁶. The exact pathogenesis of RHD remains poorly understood but is likely to involve a combination of environmental, genetic, and immunological factors. Recent studies have demonstrated that plasma homocysteine levels are higher in RHD patients than in controls^{7,8}.

Methylenetetrahydrofolate reductase (MTH-FR; EC 1.5.1.20) is one of three main homocysteine (Hcy) regulatory enzymes. MTHFR catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate and regulates the intracellular flow of folate via the conversion of Hcy to methionine⁹. *MTHFR* maps to chromosome 1p36.3¹⁰, and two functional single nucleotide polymorphisms (SNPs) have been reported (C677T and A1298C) that alter MTHFR activity. C677T changes an alanine to valine at amino acid 222 (A222V; rs1801133) to produce thermolabile MTHFR^{11,12}. 677TT homozygotes have a 50-60 percent reduction in MTHFR activity and raised plasma Hcy levels¹³. The C677T

¹Centre for Genetics and Inherited Diseases (CGID), Taibah University, Al-Madinah, Kingdom of Saudi Arabia

²Sickle Cell Institute Chhattisgarh, JNM Medical College, Raipur (C.G.), India

³Department of Pediatrics and Pediatric Cardiology, Sohag Faculty of Medicine, Sohag University Hospital, Sohaq, Egypt

⁴Pediatrics Department, College of Medicine, Taibah University, Al-Madinah, Kingdom of Saudi Arabia

polymorphism has been associated with susceptibility to vascular disease¹¹, congenital heart disease¹⁴⁻¹⁶, coronary artery disease^{17,18}, type 2 diabetes mellitus with diabetic retinopathy¹⁹, common carotid atherosclerosis²⁰, Alzheimer's disease²¹, oral clefts²², and several cancers²³⁻²⁵.

Therefore, Hcy levels are raised in patients with RHD, Hcy can produce free oxygen radicals and enhance inflammation^{7,26}, and there is strong evidence to support a relationship between *MTH-FR* polymorphisms and Hcy expression. However, the role of *MTHFR* polymorphisms in RHD has not been evaluated to date. We therefore conducted a case-control study to test the hypothesis that *MTHFR* C677T polymorphisms are associated with the risk of developing RHD.

Patients and Methods

Patients

In total, 216 unrelated individuals of Saudi Arabian origin were recruited for this case-control study: 86 patients with RHD and 130 age, gender, and ethnicity-matched unrelated healthy volunteers without a history of rheumatic fever or autoimmune disease as controls. Subjects were recruited via The Centre for Genetics & Inherited Diseases (CGID), Taibah University and the Maternity & Children Hospital, Madina, Kingdom of Saudi Arabia. Institutional Ethics Committees of both institutions approved the study protocol. All adult study subjects gave informed consent and consent was provided by the parents or legal guardians of participants less than 18 years old.

Complete clinical and laboratory investigations were performed in all patients. The initial diagnosis of RHD was made based on modified Jones' criteria²⁷ and further confirmed by echocardiography. Based on the echocardiographic findings, the RHD was further divided into mitral valve lesion (MVL) or combined valve lesion (CVL) groups. Patients with suspected or definitive rheumatic fever but without valve involvement, heart complications, or other inflammatory conditions were excluded from the study.

Genotyping

Genomic DNA was extracted from 2 ml whole peripheral blood using the QIAamp DNA Mini Kit (Qiagen, Venlo, Netherlands). Extracted DNA was quantified by spectrophotometry (MaestroNano; MaestroGen, Las Vegas, NV,

USA) followed by dilution to 10 ng/µl (working concentration) in standard Tris-EDTA buffer. The C677T region of the MTHFR gene was amplified using the primers and protocol described in²⁸. Briefly, PCR reactions were carried out in a total reaction volume of 10 μ l in thin-walled tubes containing 1.0 μ l PCR buffer (10X), 1.0 μ l $MgCl_2$ (25 mM), 1.0 μ l dNTPs (10 mM), 2.0 pM each of the forward (5'-CAT CCC TAT TGG CAG GTT ACC C-3') and reverse (5'-GGG AAG AAC TCA GCG AAC TCA G-3') primers, 1.0 unit of Taq DNA polymerase (Applied Biosystems; Life Technologies, Carlsbad, CA, USA), and 40 ng genomic DNA. PCR amplifications were carried out using the ABI Veriti thermal cycler (Applied Biosystems). The amplified products were directly sequenced using BigDyeTM chain termination chemistry on the ABI 3500 DNA analyzer (Applied Biosystems) as previously described²⁹. Multiple alignment and sequence analyses were performed using Auto Assembler Software (Applied Biosystems).

Statistical Analysis

Allele frequencies were estimated using the gene count method. Genotype frequencies were assessed for Hardy-Weinberg equilibrium using the goodness-of-fit χ^2 test. Associations between genotypes and *MTHFR* C677T alleles and RHD were analyzed using the χ^2 and Fisher's exact tests. Two-sided p values of less than 0.05 (95% level of confidence) were considered significant for statistical inference, and odds ratios and 95% confidence intervals (CIs) were calculated. All statistical analyses were performed using SPSS software (IBM® SPSS® Statistics 17, Chicago, IL, USA).

Results

The distributions of *MTHFR* C677T SNP genotypes and alleles in RHD and control groups are presented in Table I. The genotype proportions were 70.3% CC, 23.1% CT, and 6.6% TT in cases and 70.8% CC, 25.4% CT, and 3.8% TT in controls. The T allele frequency was 18.1% in cases and 16.5% in controls. The genotype distribution in the control group was in HardyWeinberg equilibrium (p=0.359). There were no statistical differences in genotype or allele frequencies between RHD cases and controls (Table II).

ORs and 95% CIs were calculated to assess the impact of the MTHFR C677T SNP on RHD

Table I. Genotype distribution and allele frequencies of the MTHFR 677C>T SNP in rheumatic heart disease	Table I. Genotype	e distribution and allele t	requencies of th	e <i>MTHFR</i> 677C:	>T SNP in rheumatic heart disease.
---	--------------------------	-----------------------------	------------------	----------------------	------------------------------------

	Control (%)	Overall RHD (%)	CVL (%)	MVL (%)		
Genotype distribution						
CC CT TT	92 (70.8) 33 (25.4) 5 (3.8)	64 (70.3) 21 (23.1) 6 (6.6)	33 (76.7) 10 (23.3) 0 (0.0)	27 (62.8) 10 (23.3) 6 (14.0)		
Allele frequency						
C allele T allele	217 (83.5) 43 (16.5)	149 (81.9) 33 (18.1)	76 (88.4) 10 (11.6)	64 (74.4) 22 (25.6)		
Test for HWE						
Chi-square p-value	0.842 0.359	4.513 0.034	0.745 0.388	6.514 0.011		

risk (Table I). An increased risk of RHD was observed in patients with the homozygous genotype (OR=1.73; 95% CIs 0.51-5.59; p=0.379) and also in the recessive 677T variant model (TT vs. CC+CT) (OR=1.76; 95% CIs 0.52-5.97; p=0.355); however, these were not statistically significant. In a subgroup analysis, the mutant homozygous genotype (OR=4.09; 95% CIs 1.16-14.44; p=0.02) and the recessive model (TT vs. CC+CT; OR=4.05; 95% CIs 1.17-14.04; p=0.019) were significantly associated with the MVL group (Table II). MTHFR C677T variants were not associated with CVL risk (Table II), and the distributions of MTHFR genotypes in different phenotypes were not significantly different (Table II).

Discussion

In this study, 86 RHD patients and 130 unrelated controls were genotyped to identify any association between the *MTHFR* C677T polymorphism and RHD in a Saudi Arabian population. There were no statistically significant differences in genotype distribution between RHD patients and controls or between phenotypes. However, the *MTHFR* C677T polymorphism was significantly associated with an increased risk of MVLs, but not CVLs, in RHD patients.

A number of studies have demonstrated that *MTHFR* polymorphisms are associated with various heart disease, autoimmune diseases, and cancer. *MTHFR* C677T is associated with pulmonary valve stenosis and aortic valve

stenosis/subaortic stenosis in congenital heart disease³⁰, multiple sclerosis³¹, rheumatoid arthri-

Table II. Results of association tests with *MTHFR* 677C>T SNP in rheumatic heart disease.

MTHFR 677C>T	OR (95% CI)	<i>p</i> -value			
Overall RHD					
CC	Reference				
CT	0.92 (0.49-1.72)	0.783			
TT	1.73 (0.51-5.89)	0.379			
CT+TT vs. CC	1.02 (0.57-1.84)	0.944			
CC+CT vs. TT	1.76 (0.52-5.97)	0.355			
C allele	Reference				
A allele	1.12 (0.69-1.84)	0.662			
CLV					
CC	Reference				
CT	0.85 (0.38-1.90)	0.682			
TT	-	-			
CT+TT vs. CC	0.73 (0.33-1.64)	0.448			
CC+CT vs. TT	-	-			
C allele	Reference				
A allele	0.66 (0.32-1.39)	0.273			
MVL					
CC	Reference				
CT	1.03 (0.45-2.36)	0.940			
TT	4.09 (1.16-14.44)	0.020			
CT+TT vs. CC	1.44 (0.70-2.96)	0.328			
CC+CT vs. TT	4.05 (1.17-14.04)	0.019			
C allele	Reference				
A allele	1.73 (0.97-3.11)	0.063			

Table III. MTHFR 677C>T SNP G	enotype distribution	in	different phenotypes.
-------------------------------	----------------------	----	-----------------------

Phenotypes	status	сс	СТ	т	Chi square p value
Carditis	Yes	47	19	5	
	No	17	2	1	0.457
Arthritis	Yes	42	16	4	
	No	22	5	2	0.788
Subcuteneous nodules	Yes	1	1	0	
	No	63	20	6	0.766
Chorea	Yes	5	1	1	
	No	59	20	5	0.722
Erythema Marginatum	Yes	2	1	0	
, c	No	62	20	6	0.855
Acute phase reaction	Yes	52	16	4	
•	No	12	5	2	0.744

tis³², alopecia areata³³, and thyroid cancer²⁵. We hypothesized that MTHFR would be a marker of susceptibility to RHD, since C677T allele carriers have been shown to have increased blood Hcy levels, Hcy levels are elevated in patients with acute rheumatic carditis and RHD7, and plasma Hcy levels are strongly associated with the severity of coronary heart disease³⁴. Hey can undergo auto-oxidation in plasma and produce free oxygen radicals, thereby enhancing endothelial tissue damage and inflammation^{12,26}; in this way, Hcy might contribute to the pathogenesis of RHD. Significantly higher Hcy levels have been detected in inflamed tissues or lesions than in the plasma itself, indicating that Hcy might be directly responsible for cellular and tissue damage and is pathogenetic in various immune disorders³⁵. Chronic exposure of tissues and circulating cells to Hcy may also compound immune dysfunction and pathology³⁶.

Since increased serum Hcy levels are associated with active inflammation, one plausible mechanism for valve damage in RF may be via Hcymediated cytokine production. IL-8 and IL-6 are well established risk factors for the development of mitral valve RHD, and production of these cytokines is associated with elevated levels of Hcv in various cardiovascular diseases: hyperhomocysteinemia can upregulate plasma MCP-1 and IL-8 levels and promote the initiation and progression of atherosclerosis and venous thrombosis³⁷, while inflammation may be enhanced in homocysteine-related cardiovascular disease, possibly via IL-6-related mechanisms³⁸. Angiotensinconverting enzyme (ACE) I/D polymorphisms are significantly associated with the development of valvular lesions in RHD patients³⁹, while patients with combined MTHFR TT+ACE ID alleles are three-times more susceptible to ischemic stroke than controls, suggesting that these two polymorphisms have epistatic effects⁴⁰. Together with our study, these data support our hypothesis that the *MTHFR* C677T polymorphism might raise plasma Hcy levels and contribute to the pathogenesis of mitral RHD via a cytokine-mediated mechanism. However, our study was limited by having a relatively small sample size and plasma Hcy levels were not measured. Further work is needed to establish the underlying immunological mechanisms and a direct link with homocysteine expression.

Conclusions

To our knowledge, this is the first study to investigate the association between the *MTHFR* C677T polymorphism and susceptibility to RHD and its clinical features. The presence of a T allele increases the risk of developing MVL-pattern RHD; we postulate that this was via an Hcy-mediated cytokine effect. Larger studies are required in different ethnic backgrounds and with Hcy measurements to confirm the link between *MTHFR* C677T gene polymorphisms and risk of RHD.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

 SHIOKAWA Y, YAMADA T. Epidemiology of rheumatic fever and rheumatic heart disease with surveillance of hemolytic streptococcus. Jpn Circ J 1977; 41: 167-173.

- SECKELER MD, HOKE TR. The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease. Clin Epidemiol 2011; 3: 67-84.
- AL-SEKAIT MA, AL-SWELIEM AA, TAHIR M. Rheumatic heart disease in schoolchildren in western district, Saudi Arabia. J R Soc Health 1990; 110: 15-16.
- FOLGER GM, HAJAR R, ROBIDA A, HAJAR HA. Occurrence of valvar heart disease in acute rheumatic fever without evident carditis: colour-flow Doppler identification. Br Heart J 1992; 67: 434-438.
- 5) VASAN RS, SHRIVASTAVA S, VIJAYAKUMAR M, NARANG R, LISTER BC, NARULA J. Echocardiographic evaluation of patients with acute rheumatic fever and rheumatic carditis. Circulation 1996; 94: 73-82.
- 6) CARAPETIS JR, McDonald M, Wilson NJ. Acute rheumatic fever. Lancet 2005; 366: 155-168.
- HABEEB NM, AL HADIDI IS. Ongoing inflammation in children with rheumatic heart disease. Cardiol Young 2011; 21: 334-339.
- 8) KURBAN S, MEHMETOGLU I, ORAN B, KIMICI A. Homocysteine levels and total antioxidant capacity in children with acute rheumatic fever. Clin Biochem 2008; 41: 26-29.
- BHASKAR LV, MURTHY J, VENKATESH BABU G. Polymorphisms in genes involved in folate metabolism and orofacial clefts. Arch Oral Biol 2011; 56: 723-737.
- 10) GOYETTE P, SUMNER JS, MILOS R, DUNCAN AM, ROSEN-BLATT DS, MATTHEWS RG, ROZEN R. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 1994; 7: 195-200.
- 11) FROSST P, BLOM HJ, MILOS R, GOYETTE P, SHEPPARD CA, MATTHEWS RG, BOERS GJ, DEN HEUER M, KLUUTMANS LA, VAN DEN HEUVEL LP, ROZEN R. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111-113.
- 12) KANG SS, WONG PW, SUSMANO A, SORA J, NORUSIS M, RUGGIE N. Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet 1991; 48: 536-545.
- 13) JACQUES PF, BOSTOM AG, WILLIAMS RR, ELLISON RC, ECKFELDT JH, ROSENBERG IH, SELHUB J, ROZEN R. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 1996; 93: 7-9.
- 14) Li Z, Jun Y, Zhong-Bao R, Jian-Ming L. Association between MTHFR C677T polymorphism and congenital heart disease: a family-based meta-analysis. Herz 2015; 40: 160-167.
- 15) ZIDAN HE, REZK NA, MOHAMMED D. MTHFR C677T and A1298C gene polymorphisms and their relation to homocysteine level in Egyptian children with congenital heart diseases. Gene 2013; 529: 119-124.
- 16) YIN M, DONG L, ZHENG J, ZHANG H, LIU J, XU Z. Meta analysis of the association between MTHFR

- C677T polymorphism and the risk of congenital heart defects. Ann Hum Genet 2012; 76: 9-16.
- 17) CHEN W, HUA K, GU H, ZHANG J, WANG L. Methylenetetrahydrofolate reductase C667T polymorphism is associated with increased risk of coronary artery disease in a Chinese population. Scand J Immunol 2014; 80: 346-353.
- 18) TRIPATHI R, TEWARI S, SINGH PK, AGARWAL S. Association of homocysteine and methylene tetrahydrofolate reductase (MTHFR C677T) gene polymorphism with coronary artery disease (CAD) in the population of North India. Genet Mol Biol 2010; 33: 224-228.
- 19) SUN J, XU Y, ZHU Y, LU H, DENG H, FAN Y, SUN S, ZHANG Y. [The relationship of methylenetetrahydrofolate reductase gene polymorphism and plasma homocysteine levels in type 2 diabetes mellitus patients with diabetic retinopathy]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2003; 20: 131-134.
- 20) KAWAMOTO R, KOHARA K, TABARA Y, MIKI T, DOI T, TOKUNAGA H, KONISHI I. An association of 5,10methylenetetrahydrofolate reductase (MTHFR) gene polymorphism and common carotid atherosclerosis. J Hum Genet 2001; 46: 506-510.
- 21) ELHAWARY NA, HEWEDI D, ARAB A, TEAMA S, SHAIBAH H, TAYEB MT, BOGARI N. The MTHFR 677T allele may influence the severity and biochemical risk factors of Alzheimer's disease in an Egyptian population. Dis Markers 2013; 35: 439-446.
- 22) MURTHY J, GURRAMKONDA VB, KARTHIK N, LAKKAKULA BV. MTHFR C677T and A1298C polymorphisms and risk of nonsyndromic orofacial clefts in a south Indian population. Int J Pediatr Otorhinolaryngol 2014; 78: 339-342.
- Yu L, Chang K, Han J, Deng S, Chen M. Association between Methylenetetrahydrofolate reductase C677T polymorphism and susceptibility to cervical cancer: a meta-analysis. PLoS One 2013; 8: e55835.
- 24) MACIS D, MAISONNEUVE P, JOHANSSON H, BONANNI B, BOTTERI E, IODICE S, SANTILLO B, PENCO S, GUCCIARDO G, D'AIUTO G, ROSSELLI DEL TURCO M, AMADORI M, COSTA A, DECENSI A. Methylenetetrahydrofolate reductase (MTHFR) and breast cancer risk: a nested-case-control study and a pooled meta-analysis. Breast Cancer Res Treat 2007; 106: 263-271.
- 25) YANG YM1, ZHANG TT, YUAN L, REN Y. The association between the C677T polymorphism in MTHFR gene and the risk of thyroid cancer: a meta-analysis. Eur Rev Med Pharmacol Sci 2014; 18: 2097-2101
- 26) KANTH VV, GOLLA JP, SASTRY BK, NAIK S, KABRA N, SUJATHA M. Genetic interactions between MTHFR (C677T), methionine synthase (A2756G, C2758G) variants with vitamin B12 and folic acid determine susceptibility to premature coronary artery disease in Indian population. J Cardiovasc Dis Res 2011; 2: 156-163.
- 27) GUIDELINES FOR THE DIAGNOSIS OF RHEUMATIC FEVER.
 JONES CRITERIA, 1992 UPDATE. Special Writing Group

- of the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young of the American Heart Association. JAMA 1992; 268: 2069-2073.
- 28) GUPTA N, SARKAR S, DAVID A, GANGWAR PK, GUPTA R, KHANNA G, SANKHWAR SN, KHANNA A, RAJENDER S. Significant impact of the MTHFR polymorphisms and haplotypes on male infertility risk. PLoS One 2013; 8: e69180.
- 29) THANGARAJ K, SINGH L, REDDY AG, RAO VR, SEHGAL SC, UNDERHILL PA, PIERSON M, FRAME IG, HAGELBERG E. Genetic affinities of the Andaman Islanders, a vanishing human population. Curr Biol 2003; 13: 86-93
- JUNKER R, KOTTHOFF S, VIELHABER H, HALIMEH S, KOSCH A, KOCH HG, KASSENBÖHMER R, HEINEKING B, NOWAK-GÖTTL U. Infant methylenetetrahydrofolate reductase 677TT genotype is a risk factor for congenital heart disease. Cardiovasc Res 2001; 51: 251-254.
- 31) CEVIK B, YIGIT S, KARAKUS N, AKSOY D, KURT S, ATES O. Association of methylenetetrahydrofolate reductase gene C677T polymorphism with multiple sclerosis in Turkish patients. J Investig Med 2014; 62: 980-984.
- 32) INANIR A, YIGIT S, TEKCAN A, TURAL S, KISMALI G. IL-4 and MTHFR gene polymorphism in rheumatoid arthritis and their effects. Immunol Lett 2013; 152: 104-108
- 33) KALKAN G, YIGIT S, KARAKU N, ET AL. Methylenete-trahydrofolate reductase C677T mutation in patients with alopecia areata in Turkish population. Gene 2013; 530: 109-112.

- 34) GARIGLIO L, RIVIERE S, MORALES A, ATE O, BOZKURT N, OZDEMIR A, PANCAR G. Comparison of homocysteinemia and MTHFR 677CT polymorphism with Framingham Coronary Heart Risk Score. Arch Cardiol Mex 2014; 84: 71-78.
- 35) DAWSON H, COLLINS G, PYLE R, DEEP-DIXIT V, TAUB DD. The immunoregulatory effects of homocysteine and its intermediates on T-lymphocyte function. Mech Ageing Dev 2004; 125: 107-110.
- 36) PRONTERA C, MARTELLI N, EVANGELISTA V, D'URBANO E, MANARINI S, RECCHIUTI A, DRAGANI A, PASSERI C, DAVÌ G, ROMANO M. Homocysteine modulates the CD40/CD40L system. J Am Coll Cardiol 2007; 49: 2182-2190.
- 37) ZENG XK, GUAN YF, REMICK DG, WANG X. Signal pathways underlying homocysteine-induced production of MCP-1 and IL-8 in cultured human whole blood. Acta Pharmacol Sin 2005; 26: 85-91.
- 38) HOLVEN KB, AUKRUST P, RETTERSTOL K, HAGVE TA, MØRKRID L, OSE L, NENSETER MS. Increased levels of C-reactive protein and interleukin-6 in hyperhomocysteinemic subjects. Scand J Clin Lab Invest 2006; 66: 45-54.
- 39) GUPTA U, MISHRA A, RATHORE SS, AGARWAL SK, PANDE S, GARG N, MITTAL B. Association of angiotensin Iconverting enzyme gene insertion/deletion polymorphism with rheumatic heart disease in Indian population and meta-analysis. Mol Cell Biochem 2013; 382: 75-82.
- 40) Li C, ZHANG C, QIU S, LU X, ZENG Y, WU H, CHEN W, LUO W, LIU J. [Polymorphisms of ACE-1 and MTHFR genes and genetic susceptibility of ischemic stroke]. Zhonghua Yi Xue Za Zhi 2002; 82: 1046-1049.