Correlation of serum PCSK9 in CHD patients with the severity of coronary arterial lesions

S. WANG, Z.-Y. CHENG, Z.-N. ZHAO, X.-Q. QUAN, Y. WEI, D.-S. XIA, J.-Q. LI, J.-L. HU

Department of Cardiovascular Surgery, Henan Provincial People's Hospital, Zhengzhou, China

Abstract. – OBJECTIVE: The present study aims to investigate the correlation between serum level of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the severity of coronary arterial lesion in patients with coronary heart disease (CHD).

PATIENTS AND METHODS: Between August 2010 and January 2015, 126 CHD patients and 70 patients with coronary arterial stenosis < 50% (controls) were included in the present study. Serum PCSK9 level was determined using ELISA. Demographic characteristics, relevant clinical data and biochemical data were collected from all patients, and their relationship with PCSK9 was analyzed to evaluate the correlation of PCSK9 expression with the severity of coronary artery disease (CAD).

RESULTS: Concentrations of total cholesterol (TC) and fasting blood sugar (FBS) were significantly higher in CHD patients than in controls (p < 0.05). No significant differences were observed in gender, age, body mass index (BMI), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), family history, smoking history and history of hypertension between groups (p > 0.05). Serum PCSK9 levels in the CHD group were significantly higher than those in the control group [(96.4 \pm 33.2) ng/mL vs. (81.8 \pm 27.6) ng/mL, p < 0.05]. Compared with those of patients with single-vessel or double-vessel disease, PCSK9 levels were significantly elevated in patients with multi-vessel disease (p < 0.05). The Gensini score of the CHD group was significantly lower than that of the control group (11.4 ± 10.5 vs. 37.3 ± 10.3, p < 0.05). The Gensini score of patients with multi-vessel disease was significantly higher compared with patients of single-vessel or double-vessel disease (p < 0.05). Correlation analysis revealed that PCSK9 was positively correlated with many clinical parameters, including age, BMI, TC, TG, systolic blood pressure, FBS, Gensini score and LDL-C (p < 0.05). However, PCSK9 was not correlated with either gender ratio or diastolic blood pressure (p > 0.05).

CONCLUSIONS: Serum PCSK9 level is significantly elevated in CHD patients and its variation is correlated with the severity of CAD.

Key Words:

Coronary heart disease, Coronary artery disease, Proprotein convertase subtilisin/kexin type 9, Correlation.

Introduction

Coronary heart disease (CHD) has become the most common disorder in the elderly in China along with accelerated aging. CHD, also known as coronary artery disease (CAD), refers to the development of atherosclerotic plaque which is a leading cause of morbidity and mortality, resulting from lipid deposition in the intima of coronary arteries caused by dyslipidemia¹⁻³. The accumulation and deposition of low-density lipoprotein cholesterol (LDL-C) under vascular endothelium has been reported to be the primary pathogenesis of coronary atherosclerosis. However, reduction of plasma LDL cholesterol reduces adverse cardiovascular outcomes^{4,5}. Moreover, proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in the *in vivo* metabolism of LDL-C and has a certain relationship with the pathogenesis and development of CHD. Currently, most studies of PCSK9 are focused on its effect on LDL-C metabolism while few studies have been reported on the correlation between PCSK9 and the severity of the coronary arterial lesion. To this end in the present study serum PCSK9 levels in CHD patients were measured and its correlation with the severity of CAD investigated, in an effort to explore the significance of PCSK9 variation in CHD patients.

Patients and Methods

Patients

Between August 2010 and January 2015, 196 CHD patients admitted in our institution (Henan

Provincial People's Hospital, Zhengzhou, China) were included in the present study. Inclusion criteria are listed as follows: (1) Diagnoses of all patients satisfy the diagnostic criteria of CHD⁶. (2) At least one branch of epicardial stenosis $\geq 50\%$ was confirmed by coronary angiography. (3) Patients had neither received lipid-lowering therapy, nor history of thyroid dysfunction, autoimmune diseases and infectious diseases in recent three months. (4) Patients had no history of severe disorders of the liver, the kidney or the brain. As a result, 126 patients (male 58, female 68) with mean age of 63.4 ± 5.1 years were included in the CHD group. Of these patients, 45 were confirmed with single-vessel disease, 44 double-vessel disease and 37 multi-vessel disease. In addition, 70 patients (male 32, female 38, mean age 64.2 ± 6.1 years) with coronary artery stenosis < 50% during the same period were included in the control group. This study was approved by the medical Ethics Committee of our institution (Henan Provincial People's Hospital, Zhengzhou, China) and written informed consent was obtained from all patients.

Outcome Measures

Medical history of all patients was collected, and height as well as weight measured and documented. Coronary angiography was performed with standard Judkins technique⁶ for both left and right coronary arteries in multiple positions and results documented. Fasting venous blood samples of patients were collected in the morning and analyzed by using MICRQ semi-automatic biochemistry analyzer (Ahmedabad, The Netherlands) to determine the levels of total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), LDL-C and fasting blood sugar (FBS). In addition, anticoagulated fasting blood samples were collected from all patients for measuring plasma levels of PC-SK9 by using ELISA kit (Immundiagnostik, Benshein, Germany).

CAD Severity Evaluation

Based on the results of coronary angiography, the severity of arterial lesions were evaluated using Gensini score^{7,8}, which grades narrowing of the lumen as 1 for 1-25% stenosis, 2 for 26-50%, 4 for 51-75%, 8 for 76-90%, 16 for 91-99% and 32 for total occlusion. This score was multiplied by a factor that accounted for the importance of a lesion's position in the coronary arterial tree: 5 for the left main coronary artery; 2.5 for the

proximal left anterior descending coronary artery or proximal circumflex artery; 1.5 for the mid left anterior descending coronary artery; 1 for the proximal right coronary artery, distal left anterior descending coronary artery, obtuse marginal artery or posterior lateral artery; and 0.5 for other stenoses. The severity of disease was expressed as the sum of the scores for the individual lesions

Statistical Analysis

All statistical analyses were performed using SPSS version 15.0 (SPSS Inc., Chicago, IL, USA). Quantitative data were expressed as mean \pm Standard Deviation (\pm SD). Differences of data were analyzed using independent sample t-test. Logistic regression analysis was adopted to analyze the correlation between data. Categorical data were analyzed using chi-square test. p < 0.05 was considered statistically significant.

Results

Clinical Data

Concentrations of TC and FBS were significantly higher in CHD patients than in controls (p < 0.05). No significant differences were observed in gender, age, body mass index (BMI), TG, LDL-C, HDL-C, family history, smoking history and history of hypertension between groups (p > 0.05) (Table I).

PCSK9 Levels and Gensini Score

Plasma levels of PCSK9 in the CHD group were significantly higher than those in the control group [(96.4 \pm 33.2) ng/mL vs. (81.8 \pm 27.6) ng/mL, p < 0.05)]. Compared with those in patients with single-vessel or double-vessel disease, PCSK9 levels were significantly elevated in patients with multi-vessel disease (p < 0.05). The Gensini score of the CHD group was significantly lower than that of the control group (11.4 \pm 10.5 vs. 37.3 \pm 10.3, p < 0.05). The Gensini score of patients with multi-vessel disease was significantly higher compared with patients of single-vessel or double-vessel disease (p < 0.05) (Table II).

The Correlation of PCSK9 With Other Clinical Parameters

Correlation analysis revealed that PCSK9 was positively correlated with many clinical parame-

Table I. Clinical data of two groups $(\bar{x} \pm s)$.

Group	CHD group (n = 126)	Control group (n = 70)	t	р
Gender ratio (male/female)	58/68	32/38	0.002	0.966
Mean age	63.4 ± 5.1	64.2 ± 6.1	-0.980	0.164
BMI (kg/m ²)	23.9 ± 4.7	25.1 ± 3.5	-0.934	0.176
FBS (mmol/L)	7.11 ± 1.42	6.38 ± 1.28	3.570	0.000
TC (mmol/L)	4.65 ± 0.93	4.22 ± 1.02	2.995	0.002
TG (mmol/L)	1.62 ± 0.56	1.59 ± 0.98	0.273	0.393
LDL-C (mmol/L)	2.78 ± 0.74	2.51 ± 0.82	1.482	0.048
HDL-C (mmol/L)	1.07 ± 0.41	1.13 ± 0.35	-1.033	0.151
Family history	14	6	0.317	0.574
Smoking history	18	14	1.076	0.300
History of hypertension	59	41	2.484	0.115

Table II. Serum PCSK9 levels.

Group	n	PCSK9 (ng/mL)	Gensini score
CHD group	126	$94.4 \pm 33.2^{*.#}$	$37.3 \pm 10.3^{*,\#}$
Single-vessel disease	45	87.7 ± 26.3	15.7 ± 12.4
Double-vessel disease	44	$93.1 \pm 25.7*$	$23.6 \pm 10.7*$
Multi-vessel disease	37	$108.6 \pm 30.1^{*,\#,\&}$	$56.2 \pm 11.3^{*,\#,\&}$
Control group	70	$81.8 \pm 27.6^{\#}$	11.4 ± 10.5 #

^{*}vs. controls, p < 0.05; *vs. single-vessel disease, p < 0.05; &vs. double-vessel disease, p < 0.05.

ters, including age, BMI, TC, TG, systolic blood pressure, FBS, Gensini score and LDL-C (p < 0.05); however, PCSK9 was not correlated with either gender ratio or diastolic blood pressure (p > 0.05) (Table III).

Discussion

CHD is recognized as a multi-factorial disease generated by multiple genetic factors and environmental factors. Blood lipid level is one the most important risk factors for the pathogenesis of atherosclerosis and CHD^{9,10}. Dyslipidemia is caused by a complex pathogenic mechanism resulted from the interactions between multiple genes or between multiple genes and environmental factors^{11,12}. Along with the continuous advancing in the research on hypercholesterolemia and after the discovery of the genes of LDL receptor and apolipoproteins, the PCSK9 gene has been discovered. PCSK9 is able to degrade cell surface LDL receptor (LDLR) and affect the clearance of LDL, leading to the elevation of

Table III. Correlation of PCSK9 with other parameters.

Group	r	ρ	Significance
Gender ratio (male/female)	0.094	0.388	> 0.05
Mean age (years)	0.342	0.012	< 0.05
BMI (kg/m ²)	0.180	0.025	< 0.05
TC (mmol/L)	0.431	0.000	< 0.05
TG (mmol/L)	0.424	0.001	< 0.05
Systolic blood pressure (mmHg)	0.159	0.044	< 0.05
Diastolic blood pressure (mmHg)	0.066	0.685	> 0.05
FBS (mmol/L)	0.397	0.008	< 0.05
Gensini Score	0.441	0.000	< 0.05
LDL-C (mmol/L)	0.162	0.038	< 0.05

LDL level. PCSK9 may have a direct relationship with the development of atherosclerosis. PCSK9 plays an important role in the development of CHD through regulation of LDL level^{13,14}. Based on these findings, the present study was designed to measure PCSK9 levels in CHD patients and investigate its correlation with the severity of coronary artery lesion, in an effort to explore the significance of PCSK9 variation in CHD population.

PCSK9 is a type of proprotein convertase newly found in recent years. Loss-of-function mutation of its gene can induce familial hypercholesterolemia and increase the incidence of cardiovascular event. Some study has shown that the expression of PCSK9 is directly associated with and involved in atherosclerosis and regulation of cholesterol, in that the lack of PCSK9 can mitigate the development of atherosclerosis whereas its overexpression can aggravate the progression of atherosclerosis^{15,16}. Moreover, PC-SK9 expression can induce degradation of LDLR on the liver cell surface and, hence, increase circulating LDL-C level. In addition, PCSK9 is also involved in the development of atherosclerosis by inducing endothelial injury, cell apoptosis and several other pathways as well. More importantly, suppression of serum PCSK9 level can downregulate LDL-C level in both healthy population and patients with hypercholesterolemia, reducing the morbidity and mortality of cardiovascular diseases17,18.

In the present study, plasma PCSK9 levels of 126 CHD patients were evaluated and analyzed. The results showed that serum PCSK9 levels were significantly higher in CHD patients than in controls. Therefore, high level of plasma PCSK9 may be associated with the development of CHD. In CHD group, plasma PCSK9 levels were significantly higher in patients with multi-vessel disease than in those with single-vessel and double-vessel diseases (p < 0.05). Serum PCSK9 levels in patients with severe coronary stenosis were significantly higher than those with mild stenosis (p < 0.05), indicating that the higher the PCSK9 expression, the more severe the severity of coronary atherosclerosis. Gensini score is an effective method to evaluate coronary arterial lesion. More severe is the atherosclerosis, higher is the Gensini score. The present study demonstrated that plasma PCSK9 expression was positively correlated with Gensini score and LDL-C level in CHD patients (p < 0.05), suggesting that PC-SK9 can reflect the severity of CHD.

Conclusions

The impact of plasma PCSK9 level on CHD is presented as follows: (1) PCSK9 can influence blood lipid level, particularly LDL-C level and promote the progression of coronary atherosclerosis. LDL-C is an important risk factor for coronary atherosclerosis. Oxidized LDL (ox-LDL) accumulates in the vascular endothelium, induce endothelial injury and promote the generation and rupture of the atherosclerotic plaque, leading to a severe injury of cerebrovascular system^{19,20}. In addition, 70% of LDL-C in vivo are metabolized through LDLR. Circulating LDL-C is reduced through degradation and absorption in lysosomes, thereby effectively stabilizing cholesterol level. PCSK9 has been shown to mediate the degradation LDLR in lysosomes. Dysregulation of LDL-C by LDLR can inhibit the clearance of circulating LDL-C²¹⁻²³. The results of the present study also revealed that PCSK9 was positively correlated with LDL-C level and Gensini score. (2) PC-SK9 is also involved in the inflammation of vascular wall and promotes the apoptosis of endothelial cells as well as monocytic macrophages.

In brief, plasma PCSK9 level is significantly elevated in CHD patients and the variation in plasma PCSK9 level is associated with the severity of the coronary arterial lesion. However, the underlying mechanism needs to be further studied.

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

- SONG Y, YANG Y, ZHANG J, WANG Y, HE W, ZHANG X, ZHU J, LU Z. The apoB100/apoAl ratio is independently associated with the severity of coronary heart disease: a cross sectional study in patients undergoing coronary angiography. Lipids Health Dis 2015; 14: 150.
- Mo YQ, Li WQ, ZHONG YR, ZHANG XM. Dongguan Han patients with coronary artery PCSK9 gene SNP and its prognosis. Int J Lab Med 2015; 12: 1725-1727.
- Anderson JL, Carlouist JF, Horne BD, Hopkins PN. Progress in unraveling the genetics of coronary artery disease and myocardial infarction. Curr Atheroscler Rep 2007; 9: 179-186.
- YU L, XU RY, YANG Y, YE P. Advance in the study on the inhibitor of proprotein convertase subtilisin/kexin 9. Chinese Journal of Geriatric Heart Brain and Vessel Diseases 2014; 16: 547-549.

- GENSINI GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol 1983; 51: 606.
- CHEN HAOZHU. Cardiology, 5th edition. Beijing People's Medical Publishing House, 2000; pp. 227-229
- 7) BAYDAR O, OKTAY V, SINAN ÜY, COSKUN U, CANBOLAT IP, YILDIZ A, ABACI O, KOÇA C, GURMEN T, FIRATLI I. Heart rate turbulence in patients with stable coronary artery disease and its relationship with the severity of the disease. National Turkish Cardiology Congress. J Am Coll Cardiol 2013; 62: 139-140.
- GENSINI GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol 1983; 51: 606.
- DAKA B, OLAUSSON J, LARSSON CA, HELLGREN MI, RASTAM L, JANSSON PA, LINDBLAD U. Circulating concentrations of endothelin-1 predict coronary heart disease in women but not in men: a longitudinal observational study in the Vara-Skövde Cohort. BMC Cardiovasc Disord 2015; 15: 146.
- 10) ZHANG H, LIU M, REN T, WANG X, LIU D, XU M, HAN L, WU Z, LI H, ZHU Y, WEN Y, SUN W. Associations between carotid artery plaque score, carotid hemodynamics and coronary heart disease. Int J Environ Res Public Health 2015; 12: 14275-14284
- 11) KASTELEIN JJ, NISSEN SE, RADER DJ, HOVINGH GK, WANG MD, SHEN T, KRUEGER KA. Safety and efficacy of LY3015014, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9): a randomized, placebo-controlled Phase 2 study. Eur Heart J 2016 Jan 12. pii: ehv707. [Epub ahead of print].
- TICE JA, KAZI DS, PEARSON SD. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors for treatment of high cholesterol levels: effectiveness and value. JAMA Intern Med 2016; 176: 107-108.
- ROBINSON JG, HEISTAD DD, FOX KA. Atherosclerosis stabilization with PCSK-9 inhibition: An evolving concept for cardiovascular prevention. Atherosclerosis 2015; 243: 593-597.
- 14) GONG HQ, Wu Q, WEN HY, SHAN ALL. Clinical advance of PCSK9 polymorphism. Zhong Guo Dong Mai Ying Hua Za Zhi 2012; 20: 380-384.

- 15) WANG X, BERRY E, HERNANDEZ-ANZALDO S, SUN D, ADUJANG A, LI L, ZHANG D, FERNANDEZ-PATRON C. MMP-2 inhibits PCSK9-induced degradation of the LDL receptor in Hepa1-c1c7 cells. FEBS Lett 2015; 589: 490-496.
- MARAIS AD, FIRTH JC. The diagnosis and management of familial hypercholesterolaemia. Eur Rev Med Pharmacol Sci 2005; 9: 141-149
- 17) ZÁRATE A, MANUEL-APOLINAR L, BASURTO L, DE LA CHES-NAYE E, SALDÍVAR I. Cholesterol and atherosclerosis. Historical considerations and treatment. Arch Cardiol Mex 2016 Jan 7. pii: S1405-9940(15)00132-9. doi: 10.1016/j.acmx.2015.12.002. [Epub ahead of print].
- WU NO, Li JJ. PCSK9 gene mutations and lowdensity lipoprotein cholesterol. Clin Chim Acta 2014; 431: 148-153.
- ZIMMERMAN MP. How Do PCSK9 inhibitors stack up to statins for low-density lipoprotein cholesterol control? Am Health Drug Benefits 2015; 8: 436-442.
- 20) CHEN SN, BALLANTYNE CM, GOTTO AM JR, TAN Y, WILLERSON JT, MARIAN AJ. A common PCSK9 haplotype, encompassing the E670G coding single nucleotide polymorphism, is a novel genetic marker for plasma low-density lipoprotein cholesterol levels and severity of coronary atherosclerosis. J Am Coll Cardiol 2005; 45: 1611-1619.
- KONARZEWSKI M, SZOLKIEWICZ M, SUCAJTYS-SZULC E, BLASZAK J, LIZAKOWSKI S, SWIERCZYNSKI J, RUTKOWSKI B. Elevated circulating PCSK-9 concentration in renal failure patients is corrected by renal replacement therapy. Am J Nephrol 2014; 40: 157-163.
- 22) HSU LA, TENG MS, KO YL, CHANG CJ, WU S, WANG CL, Hu CF. The PCSK9 gene E670G polymorphism affects low-density lipoprotein cholesterol levels but is not a risk factor for coronary artery disease in ethnic Chinese in Taiwan. Clin Chem Lab Med 2009; 47: 154-158.
- 23) AKIYAMA I, YOSHINO O, OSUGA Y, SHI J, HIROTA Y, HIRATA T, HARADA M, KOGA K, FUJIMOTO A, YANO T, TAKETANI Y. The localization and regulation of proprotein convertase subtilisin/kexin (PCSK) 6 in human ovary. Am J Reprod Immunol 2012; 68: 491-498.