Circular RNA hsa_circ_0011946 promotes cell growth, migration, and invasion of oral squamous cell carcinoma by upregulating PCNA

Y. MENG¹, E.-Y. ZHAO², Y. ZHOU³, D.-X. QIANG⁴, S. WANG⁴, L. SHI⁴, L.-Y. JIANG⁵, L.-J. BI¹

Abstract. – OBJECTIVE: The importance of circular RNAs in malignant tumors has been well concerned nowadays. Oral squamous carcinoma (OSCC) is diagnosed prevale the world. Our study aims to uncover the tial functions of hsa_circ_0011946 in OSC velopment.

PATIENTS AND METHODS: Real Time-qu RT-qPC titative Polymerase Chain Re was performed to determine of hsa circ_0011946 in OSCC ti es and II lines Hsa_circ_0011946 was R ed do in OSCC cells. Biological fung nns in OSCC were iden d by p ling ce. ay, wound liferation assay, ny formatic well assa healing assay, underlyrc_001194 ing mechanis of h n regulating OSCC rogression explored by RT-qPstern blot ass CR and

S: Hsa_circ_0011 RES was highly exin OSC tissues compared with adjacent pre so upregulated in OSCC cell lines. sam n of hsa tion, a The ki irc_0011946 inhibited cell invasion in OSCC. The exwth.` ion o s reduced via knockdown of irc_001 Furthermore, the expression of A in tumor assues was positively correlated to on of hsa_circ_0011946.

ote cell growth, migration, and invasion of Osby upregulating PCNA, which may offer a herapeutic intervention for OSCC patients.

Key Words:

Circular RNA, Hsa_circ_0011946, Oral squamous cell carcinoma, PCNA. Circular RNA Hsa_circ_0011946, Oral squamous cell carcinoma.

roduction

the sixth most common cancer orldwide, which is more prevalent in developuntries^{1,2}. Oral squamous cell carcinoma is the major subgroup of oral cancer, accounting for approximately 3% of all newly diagnosed clinical cancer cases3. Due to the invisible changes in the oral cavity, the early detection of OSCC is extremely important to improve the unsatisfied prognosis^{4,5}. Despite development has been made in the treatment and diagnosis for OSCC, the prognosis of OSCC remains poor, with the overall 5-year survival rate below 50%^{6,7}. Distant metastasis or local recurrences of OSCC contribute to the poor outcome. Thus, it is essential and urgent to find out important molecular markers involving in the development of OSCC and figure out new therapeutic treatments for OSCC patients.

As a novel class of noncoding RNAs, circular RNAs (circRNAs) are formed by the junction of the 3'end and 5'end. With the development of high-throughput sequencing technology, circRNAs are indicated to participate in the process of gene expressions. Moreover, increasing evidence has revealed that circRNAs function as important factors in tumorigenesis by sponging miRNAs. In particular, as a miR-1252 sponge, hsa_circ_0043256 inhibits cell proliferation and induces cell apoptosis in non-small cell lung cancer⁸. Circ-ABCB10 facilitates cell proliferation

¹Department of Stomatology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin ²Department of Oral Pathology, College of Stomatology, the First Affiliated Papital, Harbin Medical University, Harbin, China

³Department of Surgery College of Stomatology, the First Affiliated Hospital, Wedical University, Harbin, China

⁴Department of Stomatology, the Fourth Affiliated Hospital, Harbin dical University Harm, China Department of Stomatology, Heilongjiang Red Cross (Sen Gorgan) Hospital, Hospital, China

and tumorigenesis in breast cancer by sponging miR-12719. By regulating miR-1324/FZD5/Wnt/β-catenin signaling, circ_0067934 facilitates tumor growth and cell migration in hepatocellular carcinoma¹⁰. By competing with microR-NA-150-5p, circRNA ZNF609 enhances tumor growth and metastasis of nasopharyngeal carcinoma¹¹. However, the role of hsa_circ_0011946 in OSCC has not been studied.

In our report, hsa_circ_0011946 was upregulated in OSCC samples and cell lines. Moreover, knockdown of hsa_circ_0011946 inhibited tumor proliferation, migration, and invasion of OSCC *in vitro*. PCNA has been reported to participate in the progression of many cancers including OSCC. Furthermore, hsa_circ_0011946 knockdown was able to downregulate PCNA *in vitro*.

Patients and Methods

Tissue Samples

A total of 58 OSCC tissues and para-cancer tissues were obtained at the Fourth Affiliated pital, Harbin Medical University. The process of OSCC patients was analyzed. None of transcolled OSCC patients had preoperative radio approached to the state of t

Cell Culture

Human OS lines Tcas TSCCA, rmal human oral ke-CAL-27, SCC-9, and urchased from the ratinocy NHOK) we Type Culture lection (ATCC, Amer VA USA). Cells were cultured in Ma Duh dified Eagle's Medium (DMEM; th Log UT, USA) supplement-Hyclon vine serum (FBS; Gibco, rith A) in an incubator containing ville, N O, at 37

en siection

After OSCC cells were cultured for 24 h in plates, the cells were transfected with lendvirus targeting specifically targeting hsa_circ_0011946 (shRNA) or control (GenePharma, Shanghai, China) using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA). GFP-positive cells were chosen for the following experiments.

RNA Extraction and Real Time-Quantitative Polymerase Chain Reaction (RT-qPCR)

TRIzol RNA isolation kit (Invitrogen, Carlsbad, CA, USA) was utilized to separate the total mRNA from tissues and cells. The synthesis of mentary deoxyribose nucleic acids (c) ption Kit conducted through the reverse Trans (TaKaRa Biotechnology Co., Ltd., n, China). The mRNA expression was normalized that of glyceraldehyde 3-phosphate ydrogen. AP-DH). QRT-PCR reaction ditions were or 30 s lows: 94°C for 30 s, 55 d72°C fo s, for a total of 40 cycles. pression of the -ΔΔĈt me target gene was ex ssed b 7. The primer sequen used for R e as fol-946, forwa GCTGGTlows: Hsa Hsa cir. 0011946, re-GTTCCTT ACT verse: 2' CACTGTAC ACCAGCATTTCT-5'; mers forward CCAAAATCAGAT-GA GCAATGCTGG-3', Veverse 5'-TGATGG-GGACTGT TCATTCA-3'.

Ce poliferat n Assay

2×1 Led cells were seeded in 96-well lates. The cell proliferation was assessed by Cell station Reagent Kit I (MTT; Roche, Basel, and) at 0 h, 24, 48, and 72 h following the manufacturer's protocol. Absorbance at 490 nm was assessed using an enzyme-linked immunosorbent assay (ELISA) reader system (Roche, Basel, Switzerland).

Colony Formation Assay

OSCC cells were inoculated in a 6-well plate for 10 days. Visible colonies were treated with 10% formaldehyde for 30 min and stained for 5 min with 0.5% crystal violet. The Image-Pro Plus 6.0 (Media Cybernetics, Silver Springs, MD, USA) was used for data analysis.

Wound Healing Assay

OSCC cells were seeded in 6-well plates and incubated in DMEM overnight. Cells were scratched with a plastic tip and cultured in serum-free DMEM. Each assay was repeated in triplicate independently. The relative distance of wound healing was viewed under a light microscope (Olympus, Tokyo, Japan) at 48 h.

Transwell Assay

After transfection, 1×10⁵ cells suspended in 200 μL of serum-free DMEM were applied in the top chamber (Corning, Corning, NY, USA)

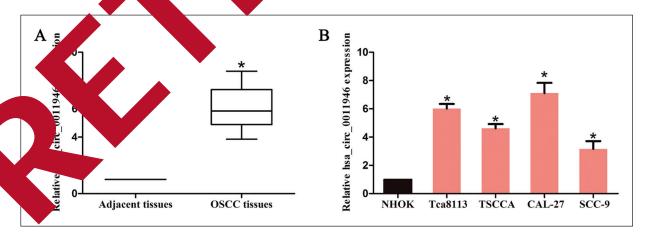
pre-coated with or without 50 µg Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). DMEM containing 10% FBS was added to the lower chamber. After overnight culture, the top surface of chambers was treated by methanol for 30 min after wiping off unpenetrated cells using a cotton swab. Then, they were stained in crystal violet for 20 min. Five fields per sample were randomly chosen and captured under a Leica DMI4000B microscope (Leica Microsystems, Heidelberg, Germany).

Western Blot Analysis

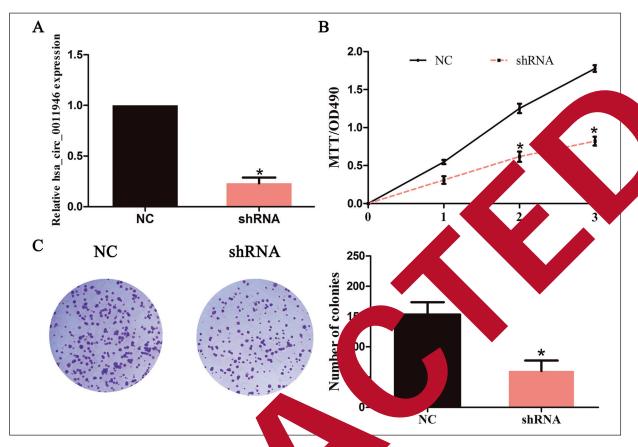
Protein was extracted from cells by the reagent radioimmunoprecipitation assay (RIPA; Yeasen, Shanghai, China). Dodecyl sulfate, sodium salt-polyacrylamide gel electrophoresis (SDS-PAGE) was utilized to extract the target proteins which were then transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, Billerica, MA, USA). These membranes were incubated with antibodies rabbit anti-GAPDH and rabbit anti-PCNA (Cell Signaling Technology, Danvers, MA, USA) at 4°C overnight, and goat anti-rabbit secondary antibody (Cell Signaling Techno Danvers, MA, USA) at room temperature h. Image J software (NIH, Bethesda, MD, was applied for the assessment of the pr expression.

Statistical Analysis

Product and Service Solution PS (1988) Inc., Chicago, IL, John Gra, 5.0 phPad Software, Inc., La Jolla, CA, USA) helped to present these consequences. The differences between the two groups were compared by the Student's t-test. The statistical significance was defined as p<0.05.


Results

The Expression of Hsa_circ_00. 6 in OSCC Tissues and Cells


RT-qPCR was used to ct hsa_circ_0 expression in 58 OSC sues s ples and jacent normal one n Figure 1A. hsa circ 0011944 xpress. as high n tumor tissue sar than that samples. Moreover, 011946 ex n was also ca8113, TSCCA, CAL-27, higher in OSCC ce SCC-9) than that in al human oral kerati-OK) (Figure suggesting that the rant expression of hs. circ 0011946 might ssociated will OSCC development.

Dogregulation of Hsa_circ_0011946 Inhib Proliferation in OSCC Cells

To explore the effect of hsa_circ_0011946 SCC proliferation, MTT assay, colony in assay, and cell cycle assay were conducted. CAL-27 cell line was selected for transfection of hsa_circ_0011946 lentivirus. RT-qPCR was used to measure the transection efficiency (Figure 2A). MTT assay showed that the cell growth ability of OSCC was significantly repressed after hsa_circ_0011946 was

Figure 1. Expression levels of hsa_circ_0011946 were upregulated in OSCC tissues and cell lines. A, Hsa_circ_0011946 expression was significantly upregulated in the OSCC tissues compared with adjacent tissues. B, Expression level of hsa_circ_0011946 relative to GAPDH was determined in the human OSCC cell lines and normal human oral keratinocyte (NHOK) by RT-qPCR. GAPDH was used as an internal control. Data are presented as the mean \pm standard error of the mean. *p<0.05.

Figure 2. Downregulation of hsa_circ_0011946 inhib color cells transfected with hsa_circ_0011946 shPNA or NC and by RT-qPCR. **B,** MTT assay showed that downregulation of hsa_circ_0011946 significantly represent viability of colonies significantly decreased a down patient of colonies significantly decreased a

downregulated (regree 2B). Composition assay showed an ecolony ber was significantly reduced by the knockdown of hsa circ 11946 (Figure 2).

Doggregulation of Hsa_tirc_0011946 Inh. d Migration and Invasion in Os and Ils

exp. the gulatory effects of hsa_circ_101194. It is a migration and invasion of Of C cells, wand healing assay and transwell performed. As shown in Figure 3A, de mg_delegated er the knockdown of hsa_circ_0011946. As an in Figure 3B, the number of migratory ceas remarkably decreased after the silence of hsa_circ_0011946 in OSCC cells. As shown in Figure 3C, after hsa_circ_0011946 was downregulated, the number of invasive cells was remarkably reduced.

Downregulation of Hsa_circ_0011946 Repressed PCNA Expression in OSCC

Our previous study showed that hsa circ 0011946 could promote tumor proliferation and metastasis of OSCC. The downstream target of hsa circ 0011946 remained unknown. To explore the potential targets of hsa circ 0011946, Starbase v2.0 was utilized for the prediction. In our work, the interaction between PCNA and hsa circ 0011946 was firstly researched. RT-qP-CR was performed to detect PCNA expression in OSCC cells transfected with hsa circ 0011946 shRNA or negative control (NC). Results revealed that the downregulation of hsa circ 0011946 decreased the mRNA expression of PCNA (Figure 4A). Moreover, the protein level of PCNA was measured through the Western blot assay. Downregulation of hsa circ 0011946 overexpression reduced the protein level of PCNA as well (Figure 4B). Besides, the Pearson correlation analysis

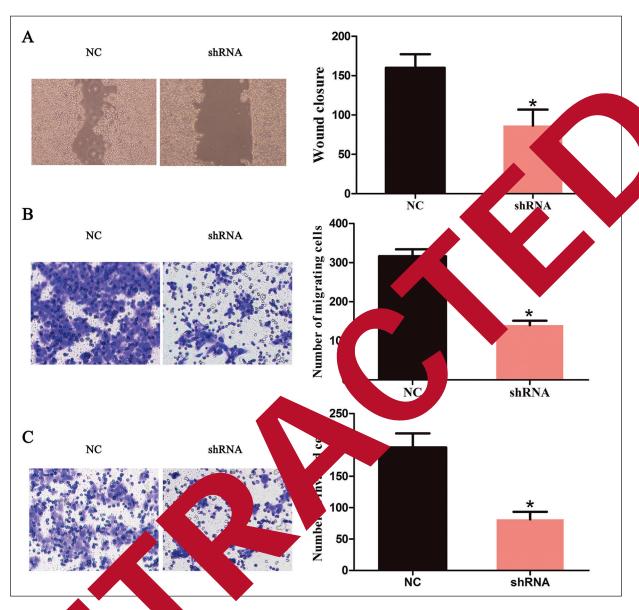


Figure 3 cownregulation of the recognition of the r

ostrive orrelated to hsa_circ_0011946 expresn in OSCC tissues (Figure 4C).

Discussion

Increasing evidence has indicated the critical functions of circRNAs in modulating tu-

mor development. Serving as a sponge to miR-196a5p, circDOCK1 inhibits cell apoptosis in OSCC by targeting BIRC3¹². Downregulation of hsa_circ_0109291 suppresses cell proliferation and migration in OSCC, which may be a novel therapeutic target for OSCC¹³. By regulating the AKT/mTOR signaling, the upregulation of hsa_circ_0007059 restrains tumorigenesis and facilitates cell apoptosis in OSCC¹⁴.

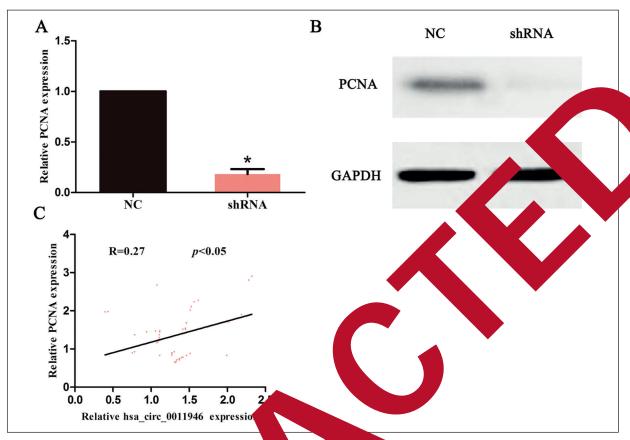


Figure 4. Downregulation of hsa_circ_0011946 inhib. PCN as μ , RT-qPCR results showed that PCNA expression was downregulated in hsa_circ_0011946 shRNA group and hsa correlation between the expression was downregulated in h correlation between the expression was downregulated in his correlation between the expression was downregulated in h correlation between the expression was downregulated in his correlation between the expression was downregulated in his correlation between the expression was downregulated in his correlation between the expression was downregulated in h correlation between the expression was downregulated in his correlation between the expression was downregulated in his correlation

Through the EC pathway, or pression of hsa_circ_0005 bits cell has ion and proliferation in OSC

Hsa_ci__0011946 is a rel circRNA, which has be reported to be do gulated in many cap. In addition, low expression of hsa_circ__946 mibits cell migration and invasion in brea.

Then, the downstream proteins of hsa circ 0011946 were further explored. Proliferating cell nuclear antigen (PCNA), initially discovered in cancer cells and proliferating cells, was predicted as the target of hsa circ 0011946 through bio-informative analysis. Numerous reports have proved that PCNA is directly correlated to tumor differentiation, tumor staging, and prognosis. The expression level of PCNA is significantly higher in colorectal cancer, especially in those with liver metastases, which may help to assess organ metastatic condition in patients with colorectal cancer¹⁷. The positive expression rate of PCNA was 73% in breast cancer tissues, indicating the important clinical significance of PCNA in evaluating the prognosis of breast cancer¹⁸. Besides, the upregulation of PCNA is closely related to poor prognosis of patients with osteosarcoma, which may be a potential biomarker¹⁹.

The potential interaction between PCNA and hsa_circ_0011946 was first researched in our study. Results showed that hsa_circ_0011946 knockdown decreased PCNA expression *in vitro* and was positively correlated with PCNA expression in OSCC tissues. Above results indicated that hsa_circ_0011946 might promote tumor development of OSCC by upregulating PCNA.

Conclusions

The above results provided evidence that hsa_circ_0011946 was remarkably upregulated in OS-CC tissues, which promotes cell proliferation and metastasis of OSCC by upregulating PCNA. Our findings uncovered that hsa_circ_0011946 may contribute to therapy for OSCC as a prospective target.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- 1) ROSEBUSH MS, RAO SK, SAMANT SW, HAND CR, PFEFFER LM, NOSRAT CA. Control enduring characteristics and emerging frends the enn Del Assoc 2011; 91: 24-27, 19.
- 2) Wu Y, ZHANG L, ZHANG L, Y, F, YU W, LIU T, WY, ZHOS TUMOR COIL IN TUM
- 3) Broggingst PR, Baker S, GHT PM. Oral cancer set uning: what have we and what is there to achieve? Future Onco. 2010; 6: 299-304.
- 4) J. XIE W. SUN Q, WANG H, QIAO B. Ln-cl. A1 promus proliferation and cisplatin receptor at squamous cell carcinoma y sup. A-184 expression. Cancer Med 017; 6: 2008.
- YRODIMOS È, CHRYSOVERGIS A, TSIAMBAS E, PAPANIKOancer stem cells in oral squamous cell cara ma. J BUON 2018; 23: 1558-1559.
- ZHANG CZ. Long non-coding RNA FTH1P3 facilities oral squamous cell carcinoma progression by acting as a molecular sponge of miR-224-5p to modulate fizzled 5 expression. Gene 2017; 607: 47-55.
- Li X, Ma C, Zhang L, Li N, Zhang X, He J, He R, Shao M, Wang J, Kang L, Han C. LncRNAAC132217.4, a KLF8-regulated long non-coding RNA, facilitates

- oral squamous cell carcinoma metastasis by upregulating IGF2 expression. Cancer Lett 2017; 407: 45-56.
- TIAN F, YU CT, YE WD, WANG Q. Cinnamaldehyde induces cell apoptosis mediated by a novel circular RNA hsa_circ_0043256 in non-small cell lung cancer. Biochem Biophys Res Commu493: 1260-1266.
- LIANG HF, ZHANG XZ, LIU BG, JIA GT LL. Circular RNA circ-ABCB10 promotes bread acre proliferation and progression through a range miR-1271. Am J Cancer Res 20 7: 1560.
- 10) Zhu Q, Lu G, Luo Z, Gul T, J J, Zhang D, cRNA circ_0067934 motes tumor grown metastasis in hepatral lar common through regulation of p R-13 motes tumor with which against axis. Biochem ophys momentum 2 motes, 497: 626-632.
- 2NF60s promo rowth and in astasis of nasopharyngeal calculated by competing with mi-150-5p. Ed. v. Med Pharmacol Sci 319, 3: 2817-2826.
- Wang L, Wei Y, Yan Y, Wang H, Yang J, Zheng Z, Zha J, Bo P, Tang T, Guo X, Chen W, Zhu X, Ge L. Circ-OCK1 supply sees cell apoptosis via inhibition y targeting BIRC3 in OSCC. On-39: 951-966.
- OUYANG SB, WANG J, ZHAO SY, ZHANG XH, LIAO L. CIR-RNA_0109291 regulates cell growth and migraoral squamous cell carcinoma and its clinsignificance. Iran J Basic Med Sci 2018; 21: 1186-1191.
- 14) Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y, Yang H. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol 2019 Jan 24. doi: 10.1002/jcp.28156. [Epub ahead of print]
- 15) Su W, Wang Y, Wang F, Sun S, Li M, Shen Y, Yang H. Hsa_circ_0005379 regulates malignant behavior of oral squamous cell carcinoma through the EG-FR pathway. BMC Cancer 2019; 19: 400.
- 16) ZHOU J, ZHANG WW, PENG F, SUN JY, HE ZY, WU SG. Downregulation of hsa_circ_0011946 suppresses the migration and invasion of the breast cancer cell line MCF-7 by targeting RFC3. Cancer Manag Res 2018; 10: 535-544.
- 17) YUE SQ, YANG YL, DOU KF, LI KZ. Expression of PC-NA and CD44mRNA in colorectal cancer with venous invasion and its relationship to liver metastasis. World J Gastroenterol 2003; 9: 2863-2865.
- Guo JL, Gu SQ, Li Y, Zhang XY. Evaluation of clinical significance of endoglin expression during breast cancer and its correlation with ER and PCNA. Eur Rev Med Pharmacol Sci 2017; 21: 5402-5407.
- 19) WANG X, WANG D, YUAN N, LIU F, WANG F, WANG B, ZHOU D. The prognostic value of PCNA expression in patients with osteosarcoma: a meta-analysis of 16 studies. Medicine (Baltimore) 2017; 96: e8254.