2015; 19: 1241-1248

Paroxysmal atrial fibrillation in myotonic dystrophy type 1 patients: P wave duration and dispersion analysis

V. RUSSO, F. DI MEO, A. RAGO, A.A. PAPA, A. MOLINO¹, M. MOSELLA¹, L. POLITANO², M.G. RUSSO, G. NIGRO

Chair of Cardiology, Second University of Naples, Monaldi Hospital, Naples, Italy

¹Division of Pneumology, Department of Respiratory Diseases, University of Naples Federico II – Monaldi Hospital, Naples, Italy

²Cardiomyology and Medical Genetics, Department of Experimental Medicine of Second University of Naples, Italy

Abstract. – OBJECTIVE: Myotonic dystrophy type 1 (MD1) is characterized by cardiac involvement, in about 80% of case, that predominantly affects the conduction system. Aim of our study was to evaluate the P-wave duration and dispersion (PD) in MD1 patients underwent pacemaker implantation with conserved systolic and diastolic function.

PATIENTS AND METHODS: We enrolled 60 MD1 patients (age 51.3 ± 5 years; 11 females) underwent dual chamber pacemaker implantation for various grade of atrioventricular (AV) block. Sixty sex-and age matched non-MD1 subjects were recruited as controls. P-wave duration and dispersion were carefully measured using 12-lead electrocardiogram.

RESULTS: Compared with healthy control group, MD1 patients presented increased maximum P wave duration (106.4 \pm 20.9 vs 65.9 \pm 8.2 ms, p = 0.03) and PD values (40.1 \pm 11 vs 27.1 \pm 4.2 ms, p = 0.003). No statistically significant difference was found in minimum P wave duration (69.7 \pm 11.8 vs 65.4 \pm 8.1 ms, p = 0.4). The MD1 patients with paroxysmal atrial fibrillation, compared with MD1 patients without evidence of atrial fibrillation, presented increased maximum P wave duration (108.1 \pm 10.4 vs 78.1 \pm 7.9 ms, p = 0.001) and PD values (41.1 \pm 8.5 vs 33.2 \pm 4.2 ms, p = 0.003). Minimum P wave duration (68.4 \pm 8.2 vs 67.1 \pm 4.9 ms, p = 0.5) didn't differ between the two groups.

CONCLUSIONS: Our data showed a significantly increased P wave duration and dispersion in MD1 patients compared with age and sexmatched healthy controls. We showed a statistically significant increase in PD and P max in MD1 patients subgroup with AF compared to MD1 patients with no arrhythmias.

Kev Words:

Atrial fibrillation, Myotonic dystrophy, P wave dispersion, P wave duration, Electrocardiogram, Arrhythmias.

Introduction

Myotonic dystrophy type 1 (MD1), or Steinert disease, is a serious autosomal-dominant hereditary disease with an estimated incidence of 1 in 8000 births¹⁻². It is an autosomal dominant disorder caused by an abnormal expansion of an unstable trinucleotide repeat in the three-prime untranslated region of DMPK gene on chromosome 193. The cardiac involvement is noticed in about 80% of cases, and it often precedes the skeletal muscle one. Predominantly affects the conduction system, while myocardial contractile function is less commonly impaired in MD1 patients. Heart failure (HF) often occurs late in the course of the disease as consequence of cardiac myopathy due to progressive scar replacement⁴. Heart block is the first and most clinically significant cardiac disease in this group of patients and it is related to fibrosis of the conduction system and fatty infiltration of the His bundle⁵. To prevent cardiac sudden death, implantation of a pacemaker (PMK) is required in 3-22% of cases⁶. According to literature, paroxysmal atrial arrhythmias such as atrial fibrillation (AF), atrial flutter, atrial tachycardia, frequently occur in 25% of MD1 patients^{4,7.8}. P-wave dispersion (PD) is defined as the difference between the maximum (P max) and the minimum (P min) P wave duration on standard 12-lead electrocardiogram (ECG). PD is considered to reflect the discontinuous and inhomogeneous propagation of sinus impulses and the prolongation of atrial conduction time9. Previous studies¹⁰⁻¹¹ showed the role of PD as independent risk factor for AF development. To our knowledge, there are no data in literature about P wave dispersion in MD1 patients. The aim of our study was to evaluate P-wave duration and dispersion in MD1 patients with conserved systolic and diastolic function underwent pacemaker implantation.

Patients and Methods

Study Population

From a large cohort of 150 MD1 patients, referred to Cardiomyology and Medical Genetics, Department of Experimental Medicine of Second University of Naples, we enrolled 60 MD1 patients (age 51.3 ± 5 years; 11 females) underwent dual chamber pacemaker implantation for various grade of atrioventricular (AV) block. Sixty sex-and age matched non-MD1 healthy subjects were also recruited as controls. MD1 patients with hypertension, diabetes mellitus or impaired glucose tolerance (IGT), obesity, electrolyte imbalance, valvular heart disease, heart failure, coronary artery disease, systolic and diastolic dysfunction, connective tissue disorders, left bundle branch block, hepatic, renal, thyroid diseases or sleep disorders, patent foramen ovale, atrial septal aneurysm, left atrial enlargement, persistent atrial fibrillation were excluded. 15 MD1 patients had history of paroxysmal AF detected by 12-lead surface ECG, 24-h ECG Holter monitoring or pacemaker stored electrogram (EGM). All patients were in sinus rhythm, and none of them was taking medications known to affect electrocardiographic intervals. The population study underwent medical history, physical examination, anthropometric evaluation, 12-lead surface ECG, Device interrogation and 2D color Doppler echocardiogram.

Electrocardiographic Measurements

All subjects underwent a routine standard 12-lead surface ECG recorded at a paper speed of 50 mm/s and gain of 10 mm/mV in the supine position and were breathing freely but not allowed to speak during the ECG recording. To avoid diurnal variations, we generally took the ECG recordings at the same time (9:00-10:00 A.M.). The analysis was performed by one investigator only without knowledge of subject's clinical status. ECGs were transferred to a personal computer by an optical scanner and then magnified 400 times by Adobe Photoshop software (Adobe Systems Inc., San Jose, CA, USA). P-wave duration measurement was manually performed with the use of computer software (Configurable Mea-

surement System). Intra-observer coefficients of variation for P-wave variables were found to be less than 5% and not significant. In each electrocardiogram lead, the analysis included three consecutive heart cycles wherever possible. ECG with measurable P-wave in less than ten leads were excluded from analysis. The onset of Pwave was defined as the junction between the isoelectric line and the start of P-wave deflection; the offset of the P-wave was defined as the junction between the end of the P-wave deflection and the isoelectric line9-12. If starting and endpoints were not clear, the derivations including these points were taken as excluding criteria from the study. Maximum and minimum P-wave durations were measured. Maximum P-wave duration was defined as the longest P-wave duration, and minimum P-wave duration was defined as the shortest P-wave duration. PD was defined as the difference between the maximum and minimum P-wave durations.

Echocardiographic Measurements

All echocardiographic examinations were performed using a standard ultrasound machine with a 3.5-MHz phased-array probe (M3S). All patients were examined in the left lateral and supine positions by precordial M-mode, 2-dimensional and Doppler echocardiography. One lead ECG was recorded continuously. Left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), interventricular septum thickness (IVST) and left ventricular posterior wall thickness (LVPWT) were measured from M-mode in the parasternal longaxis views according to the standards of the American Society of Echocardiography. Left ventricular mass (LVM) was calculated by using Devereux's formula, and was indexed for body surface area and height. Left atrium diameter (LAD) was measured during systole along the parasternal long-axis view from the 2-dimensional guided M-mode tracing; LA length was measured from the apical 4-chamber view during systole. The maximum LA volume (LAV) was calculated from apical 4- and 2-chamber zoomed views of the LA using the biplane method of disks. Ejection fraction was measured using a modified Simpson biplane method. Each representative value was obtained from the average of 3 measurements. Pulsed-wave Doppler examination was performed to obtain the following indices of LV diastolic function: peak mitral inflow velocities at early (E) and late (A) diastole and

Table I. Electrocardiographic characteristics of the study population. HR: heart rate.

Parameters	MD1 group	Control group	<i>p</i> value
HR (beats/min)	76.8 ± 5.4	75.7 ± 6.3	0.3
Max P wave duration (ms)	106.4 ± 20.9	65.9 ± 8.2	0.03
Min P wave duration (ms)	69.7 ± 11.8	65.4 ± 8.1	0.4
P wave dispersion (ms)	40.1 ± 11	27.1 ± 4.2	0.003

E/A ratio. Average values of these indices obtained from 5 consecutive cardiac cycles were used for analysis.

Device Interrogation

All MD1 patients underwent device interrogation and follow-up according to a standard protocol to evaluate sensing/pacing parameters, leads impedance and battery voltage. The devices were programmed to detect episodes of atrial tachycardia, and to record summary and detailed data, including atrial and ventricular electrogram (EGM). In all MD1 patients atrial preference pacing (APP) algorithm was disabled and minimal ventricular pacing algorithm was activated.

Statistical Analysis

Continuous variables are expressed as mean \pm standard deviation. Statistical analysis were performed using Student's t-test for unpaired data. p-values < 0.05 were considered to be statistically significant. Analysis were performed using the statistical package SPSS 11.0 software for Windows SPSS Inc. (Chicago, IL, USA).

Results

Clinical and Echocardiographic Parameters

Clinical and echocardiographic characteristics of the population study didn't significantly differ between MD1 patients (51 ± 4 years; BMI: 22 ± 4) and control group (50 ± 5 years; BMI: 23 ± 3). The left ventricular posterior wall end diastolic thick-

ness (LVPWEDT: $9.8 \pm 1.7 \ vs \ 9.7 \pm 1,3 \ mm; \ p = 0.9$), inter- ventricular septum end diastolic diameter thickness (IVSEDT: $9.5 \pm 1.2 \ vs \ 9.8 \pm 1.28 \ mm; \ p = 0.7$), left ventricular end diastolic diameter (LVEDD: $41.7 \pm 8 \ vs \ 45.22 \pm 4 \ mm; \ p = 0.09$) and ejection fraction (EF: $63.39 \pm 8.1\% \ vs \ 64.56 \pm 5.1\%; \ p = 0.1$) did not significantly differ between the two groups observed. Compared with controls, MD1 group did not show significantly E wave ($81.3 \pm 15.5 \ vs \ 91.4 \pm 9.8 \ cm/s; \ p = 0.2$), A wave ($56.9 \pm 10.5 \ vs \ 51.03 \pm 7.72 \ cm/s; \ p = 0.3$) and E/A ratio ($1.5 \pm 0.4 \ vs \ 1.8 \pm 0.38; \ p = 0.3$) variations. These data indicate conserved systolic and diastolic function in the MD1 group.

P-wave Duration and Dispersion

Electrocardiographic characteristics of the population study are shown in Table I. Compared to healthy control group, MD1 patients presented increased maximum P wave duration (106.4 \pm 20.9 vs 65.9 \pm 8.2 ms, p = 0.03) and P-wave dispersion values $(40.1 \pm 11 \text{ vs } 27.1 \pm 4.2 \text{ ms}, p = 0.003)$. No statistically significant difference was found in heart rate (76.8 \pm 5.4 bpm vs 75.7 \pm 6.3 bpm, p = 0.3) and minimum P wave duration (69.7 \pm 11.8 vs 65.4 ± 8.1 ms, p = 0.4). MD1 patients with paroxysmal atrial fibrillation, compared with MD1 patients without evidence of atrial fibrillation, presented increased maximum P wave duration (108.1 \pm 10.4 vs 78.1 \pm 7.9 ms, p = 0.001) and P-wave dispersion values (41.1 \pm 8.5 vs 33.2 \pm 4.2 ms, p =0.003). Minimun P wave duration (68.4 \pm 8.2 vs 67.1 ± 4.9 ms, p = 0.5) didn't differ between the two subgroups (Table II).

Table II. Electrocardiographic characteristics in the two subgroups of Steinert patients separated according to the device and the ECG Holter monitoring results.

Parameters	MD1 FA (+)	MD1 FA (-)	p value
Patients (n)	15	45	
Max P wave duration (ms)	108.1 ± 10.4	78.1 ± 7.9	0.001
Min P wave duration (ms)	68.4 ± 8.2	67.1 ± 4.9	0.5
P wave dispersion (ms)	41.1 ± 8.5	33.2 ± 4.2	0.003

Discussion

MD1 and Supraventricular Arrhythmias

The most frequent clinical event in MD1 patients is the development of a supraventricular arrhythmia, that is a common finding on 12 lead ECG or during 24 hour Holter monitoring and may be asymptomatic¹³. Most common supraventricular arrhythmias are atrial fibrillation, atrial flutter and atrial tachycardia, observed in up to 25% of patients both as unsustained and sustained forms¹³. Our previous studies showed that: AF episodes increase in MD1 patients with a high percentage of right ventricular pacing and a lower percentage of atrial stimulation¹⁴; right atrial septal stimulation in the Bachmann's bundle region is a safe and feasible procedure¹⁵⁻¹⁷, with less atrial pacing and sensing defects than the right atrial appendage stimulation, but it does not seem to provide significant benefit for prevention of paroxysmal atrial fibrillation^{18,19}. The atrial overdrive stimulation with APP algorithm prevents paroxysmal AF in MD1 patients who underwent dual-chamber PMK implantation for AV conduction disorder and reduces the AF burden over long term follow-up²⁰⁻²².

Electrocardiographic Findings in MD1

Previous studies documented several electrocardiographic abnormalities in MD1 patients^{4,23-26}. The most common electrocardiographic findings were long PR interval with a prevalence of 20-40% and wide ORS complex with a prevalence of 5-25% in different studies depending on patients selection criteria^{4,23}. Groh et al²⁴ in 406 MD1 patients showed severe ECG abnormalities characterized by no sinus rhythm, PR interval prolongation (> 200 ms), QRS prolongation (> 120 ms), second or third degree AV block. A diagnosis of atrial arrhythmias was commonly, especially in patients with severe ECG abnormalities. According to their results severe ECG abnormality and clinical diagnosis of atrial tachyarrhythmia are independent risk factor for sudden cardiac death (SCD) with a sensitivity of 81.5% for the prediction of sudden death, a specificity of 59.4%, a positive predictive value of 12.5%, and a negative predictive value of 97.8%. They also showed that SCD was more common in patients with advanced age and a higher muscle impairment score, indicating more severe disease. Melancini et al²⁵ hypothesized the relationship between risk of arrhythmias and genetic variables concluding that ECG abnormalities were directly proportional to the expanded triplet repeat seize; data not confirmed by Jaspert et al²⁶ in a small clinical study on 14 MD1 patients.

Non invasive Electrocardiographic Predictors of Arrhythmic Risk in MD1

P wave dispersion is a non invasive indicator of intra-atrial conduction heterogeneity producing substrate for reentry, which is a pathophysiological mechanism of atrial fibrillation¹⁰⁻¹¹. PD has been studied in some clinical conditions such as obesity²⁷, dilated cardiomyopathy²⁸, myocardial infarction²⁹, Beta-thalassemia major³⁰⁻³¹ and Emery-Dreifuss muscular dystrophy³². Morner et al³³ showed that an absolute PR + QRS duration of more than 320 ms predicted mortality of MD1 patients with a specificity of 84%. To our knowledge, there are no data in literature about the P wave duration and dispersion in MD1 patients with conserved systolic and diastolic function. QTc dispersion (QTcD) and JTc dispersion (JTcD) have been proposed as noninvasive methods to measure the heterogeneity of ventricular repolarization³⁴⁻³⁵. Increased dispersion of ventricular repolarization is considered to provide an electrophysiological substrate for life-threatening ventricular arrhythmias in several clinical conditions such as dilated cardiomyopathy36-33, obesity38-39, congenital disease⁴⁰⁻⁴² and cardiomyopathies⁴³⁻⁴⁷. Park et al⁴⁸ suggested that the higher incidence of sudden cardiac death in MD1 population was associated with the observed prolonged OTc interval in those patients. Magrì et al⁴⁹ showed a significant difference in the QT variability index (QTVI) between MD1 patients and healthy controls. According to their results, the OTVI and age were independently associated with PR interval and CTG repeat. Heart Rate Variability (HRV) is a reliable index to asses sympathovagal balance and can be used to stratify arrhythmic risk in several clinical conditions⁵⁰⁻⁵³ and cardiomyopathies⁵⁴⁻⁵⁶. However previous studies on autonomic modulation of heart rate in MD1 patients have obtained conflicting results⁵⁷⁻⁶¹.

Main Findings

To our knowledge, the current study is the first report that investigated the P wave duration and dispersion in myotonic dystrophy patients with conserved systolic and diastolic function underwent dual chamber pacemaker implantation for various grade of AV block. Our data confirmed that the electrocardiographic parameters proposed to estimate the discontinuous and

inhomogeneous propagation of sinus impulses and the prolongation of atrial conduction time (P max and PD) were significantly increased in MD1 patients when compared with age and sexmatched healthy controls. We showed a statistically significant increased PD and P max in MD1 patients subgroup with AF compared to MD1 patients with no arrhythmias. We suggested the hypothesis that atrial fibrosis degeneration and fatty infiltration pattern may be responsible of intra-atrial conduction heterogeneity producing substrate for reentry which predispose to the onset and the perpetuation of atrial fibrillation in MD1 patients.

We would like to underline that PD reflects only the intra-atrial conduction heterogeneity but not provides the other atrial electrophysiological properties better reflected by atrial electromechanical delay (AEMD)⁶²⁻⁶³. The relatively small number of patients included is certainly a limitation, and a more extensive study is needed to confirm these data. PD measurement errors done with manual evaluation may be a potential bias for observed results although, according to Dilaveris et al¹⁰, scanning and digitizing ECG signals from paper records using an optical scanner is a feasible and accurate method for measuring P-wave duration.

Conclusions

Our study showed a significant increase of electrocardiographic parameters considered to reflect the discontinuous and inhomogeneous propagation of sinus impulses and the prolongation of atrial conduction time in MD1 patients with conserved systolic and diastolic function underwent dual chamber pacemaker implantation for various grade of AV block. We hypothesize that P max duration and P wave dispersion may be simple electrocardiographic parameters for identify high risk atrial fibrillation MD1 patients. For these patients, we suggest to perform a careful cardiac monitoring with seriate ECG Holter recordings or periodical evaluation of device stored electrograms to early detect atrial fibrillation onset and to evaluate the opportunity of prophylactic anticoagulation treatment or non pharmacologic approaches for stroke prevention⁶⁴⁻⁶⁶.

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

- 1) PHILLIPS MF, HARPER PS. Cardiac disease in myotonic dystrophy. Cardiovasc Res 1997; 33: 13-22.
- WALTON JN. Clinical examination of the neuromuscular system. In: Sir JohnWalton (ed.). Disorders of Voluntary Muscle. London: Churchill Livingstone; 1981.
- HARLEY HG, BROOK JD, RUNDLE SA, CROW S, REARDON W, BUCKLER AJ, HARPER PS, HOUSMAN DE, SHAW DJ. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 1992; 355: 545-546.
- Nigro G, Papa AA, Politano L. The heart and cardiac pacing in Steinert disease. Acta Myol. 2012; 31:110-116.
- NGUYEN HH, WOLFE JT III, HOLMES DR JR, EDWARDS WD. Pathology of the cardiac conduction system in myotonic dystrophy: a study of 12 cases. J Am Coll Cardiol 1988; 11: 662-671.
- 6) GREGORATOS G, ABRAMS J, EPSTEIN AE, FREEDMAN RA, HAYES DL, HLATKY MA KERBER RE, NACCARELLI GV, SCHOENFELD MH, SILKA MJ, WINTERS SL, GIBBONS RJ, ANTMAN EM, ALPERT JS, GREGORATOS G, HIRATZKA LF, FAXON DP, JACOBS AK, FUSTER V, SMITH SC JR. ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: summary article: a report of the American college of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines). Circulation 2002; 106: 2145-2161.
- OLOFSSON BO, FORSBERG H, ANDERSSON S, BJERLE P, HENRIKSSON A, WEDIN I. Electrocardiographic findings in myotonic dystrophy. Br Heart J 1988; 59: 47-52.
- 8) PELARGONIO G, DELLO RUSSO A, SANNA T, DE MARTINO G, BELLOCCI F. Myotonic dystrophy and the heart. Heart 2002; 88: 665-670.
- 9) GIALAFOS JE, DILAVERIS PE, GIALAFOS EJ, ANDRIKOPOULOS GK, RICHTER DJ, TRIPOSKIADIS F. Pwave dispersion: a valuable electrocardiographic marker for the prediction of paroxysmal lone atrial fibrillation. Ann Noninvasive Electrocardiol 1999; 4: 39-45.
- 10) DILAVERIS P, GIALAFOS EJ, SIDERIS SK, THEOPISTOU AM, ANDRIKOPOULOS GK, KYRIAKIDIS M, GIALAFOS JE, TOUTOUZAS PK. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am Heart J 1998; 135: 733-738.
- PLATONOV PG, CARLSON J, INGEMANSSON MP, ROJER A, HANSSON A, CHIREIKIN LV, OLSSON SB. Detection of inter-atrial conduction defects with unfiltered signal-averaged P-wave ECG in patients with lone atrial fibrillation. Europace 2000; 2: 32-41.
- 12) DILAVERIS PE, ANDRIKOPOULOS GK, METAXAS G, RICHTER DJ, AVGEROPOULOU CK, ANDROULAKIS AM, GIALAFOS EJ, MICHAELIDES AP, TOUTOUZAS PK, GIALAFOS JE. Effects of ischemia on P wave dispersion and maxi-

- mum P wave duration during spontaneous anginal episodes. Pacing Clin Electrophysiol 1999; 22: 1640-1617.
- 13) BREMBILLA-PERROT B, SCHWARTZ J, HUTTIN O, FRIKHA Z, SELLAL JM, SADOUL N, BLANGY H, OLIVIER A, LOUIS S, KAMINSKY P. Atrial flutter or fibrillation is the most frequent and life-threatening arrhythmia in myotonic dystrophy. Pacing Clin Electrophysiol 2014; 37: 329-335.
- 14) Russo V, Rago A, Papa AA, Politano L, Golino P, Russo MG, Calabrò R, Nigro G. Does a high percentage of right ventricular pacing influence the incidence of paroxysmal atrial fibrillation in myotonic dystrophy type 1 patients? Kardiol Pol 2013; 71: 1147-1153.
- 15) NIGRO G, RUSSO V, VERGARA P, D'ANDREA A, DI GRE-GORIO G, POLITANO L, NIGRO G, CALABRÒ R. Optimal site for atrial lead implantation in myotonic dystrophy patients. the role of Bachmann's bundle stimulation. PACE 2008; 31: 1463-1466.
- 16) NIGRO G, RUSSO V, POLITANO L, DELLA CIOPPA N, RAGO A, ARENA G, PAPA AA, DELLI PAOLI L, DE CHIARA A, RUSSO MG, GOLINO P, CALABRÒ R. Does Bachmann's bundle pacing prevent atrial fibrillation in myotonic dystrophy type 1 patients? a 12 months follow-up study. Europace 2010; 12: 1219-1222.
- 17) Russo V, Nigro G, Antonio Papa A, Rago A, Di Meo F, Cristiano A, Molino A, Calabrò R, Giovanna Russo M, Politano L. Far field R-wave sensing in Myotonic Dystrophy type 1: right atrial appendage versus Bachmann's bundle region lead placement. Acta Myol 2014; 33: 94-99.
- 18) Russo V, Rago A, Politano L, Della Cioppa N, Russo MG, Golino P, Calabrò R, Nigro G. The effect of atrial preference pacing on paroxysmal atrial fibrillation incidence in myotonic dystrophy type 1 patients: a prospective, randomized, single-bind cross over study. Europace 2012; 14: 486-489
- 19) Nigro G, Russo V, Politano L, Della Cioppa N, Man-FREDI D, CHIANESE R, DE CHIARA A, RAGO A, ARENA G, PALLADINO A, CALABRÒ R. Right atrial appendage versus Bachmann's bundle stimulation: a two year comparative study of electrical parameters in myotonic dystrophy type 1 patients. PACE 2009; 32: 1192-1197.
- 20) NIGRO G, RUSSO V, RAGO A, PAPA AA, PALLADINO A, POLITAN L. Right atrial preference pacing algorithm in the prevention of paroxysmal atrial fibrillation in myotonic dystrophy type 1 patients: a long term follow-up study Acta Myol 2012; 31: 139-143.
- 21) Russo V, Rago A, Politano L, Della Cioppa N, Russo MG, Golino P, Calabrò R, Nigro G. The effect of atrial preference pacing on paroxysmal atrial fibrillation incidence in myotonic dystrophy type 1 patients: a prospective, randomized, single-bind cross-over study. Europace 2012; 14: 486-489.
- 22) RUSSO V, NIGRO G, RAGO A, ANTONIO PAPA A, PROIETTI R, DELLA CIOPPA N, CRISTIANO A, PALLADINO A, CAL-ABRÒ R, POLITANO L. Atrial fibrillation burden in my-

- otonic dystrophy type 1 patients implanted with dual chamber pacemaker: the efficacy of the overdrive atrial algorithm at 2 year follow-up. Acta Myol 2013; 32: 142-147.
- 23) Petri H, Witting N, Ersbøll MK, Sajadieh A, Dunø M, Helweg-Larsen S, Vissing J, Køber L, Bundgaard H. High prevalence of cardiac involvement in patients with myotonic dystrophy type 1: A cross-sectional study. Int J Cardiol 2014; 174: 31-36.
- 24) GROH VJ, GROH MR, SAHA C, KINCAID JC, SIMMONS Z, CIAFALONI E, POURMAND R, OTTEN RF, BHAKTA D, NAIR GV, MARASHDEH MM, ZIPES DP, PASCUZZI RM. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med 2008; 358: 2688-2697.
- 25) MELACINI P, VILLANOVA C, MENEGAZZO E, NOVELLI G, DANIELI G, RIZZOLI G, FASOLI G, ANGELINI C, BUJA G, MIORELLI M, DALLA PICCOLA B, DALLA VOLTA S. Correlation between cardiac involvement and CTG trinucleotide repeat length in myotonic dystrophy. J Am Coll Cardiol 1995; 25: 239-245.
- JASPERT A, FAHSOLD R, GREHL, CLAUS D. Myotonic dystrophy-correlation of clinical symptoms with the size of the CTG trinucleotide repeat. J Neurol 1995; 242: 99-104.
- 27) Russo V, Ammendola E, De Crescenzo I, Docimo L, Santangelo L, Calabrò R. Severe obesity and Pwave dispersion: the effect of surgically induced weight loss. Obes Surg 2008; 18: 90-96.
- 28) SENEN K, TURHAN H, RIZA ERBAY A, BASAR N, SAATCI YASAR A, SAHIN O, YETKIN E. P-wave duration and P-wave dispersion in patients with dilated cardiomy-opathy. Eur J Heart Fail. 2004; 6: 567-569.
- 29) BAYKAN M, CELIK S, ERDÖL C, DURMUS, I, OREM C, KUÇUKOSMANOGLU M, YILMAZ R. Effects of P-wave dispersion on atrial fibrillation in patients with acute anterior wall myocardial infarction. Ann Noninvasive Electrocardiol 2003; 8: 101-106.
- 30) Russo V, Rago A, Pannone B, Di Meo F, Papa AA, Mayer MC, Spasiano A, Russo MG, Golino P, Calabrò R, Nigro G. Early electrocardiographic evaluation of atrial fibrillation risk in beta-thalassemia major patients. Int J Hematol 2011; 93: 446-451.
- 31) Russo V, Rago A, Pannone B, Papa AA, Mayer MC, Spasiano A, Calabrò R, Russo MG, Nigro G. Atrial fibrillation and beta thalassemia major: the predictive role of the 12-lead electrocardiogram analysis. Indian Pacing Electrophysiol J 2014; 14: 121-132.
- 32) Russo V, Rago A, Palladino A, Papa AA, Di Meo F, Della Cioppa N, Golino P, Russo MG, Calabrò R, Politano L, Nigro G. P-wave duration and dispersion in patients with Emery-Dreifuss muscular dystrophy. J Investig Med 2011; 59: 1151-1154.
- 33) MÖRNER S, LINDOVIST P, MELLBERG C, OLOFSSON BO, BACKMAN C, HENEIN M, LUNDBLAD D, FORSBERG H. Profound cardiac conduction delay predicts mortality in myotonic dystrophy type 1. Journal of internal medicine J Intern Med 2010; 268: 59-65.

- 34) Merx W, Yoon MS, Han J. The role of local disparity in conduction and recovery time on ventricular vulnerability to fibrillation. Am Heart J 1977; 94: 603-610.
- 35) Kuo CS, Munakata K, Reddy CP, Surawicz B. Characteristics and possible mechanisms of ventricular arrhythmia dependent on the dispersion of action potential durations. Circulation 1983; 67: 1356-1357.
- 36) SANTANGELO L, AMMENDOLA E, RUSSO V, CAVALLARO C, VECCHIONE F, GAROFALO S, D'ONOFRIO A, CALABRÒ R. Influence of biventricular pacing on myocardial dispersion of repolarization in dilated cardiomyopathy patients. Europace 2006; 8: 502-505.
- 37) SANTANGELO L, AMMENDOLA E, RUSSO V, CAVALLARO C, SECCHIONE F, GAROFANO S, D'ONOFRIO A, CALABRO R. Relationship between transmural dispersion of repolarization, Tpeak-Tend interval and ventricular arrhythmias: Reply. Europace 2007; 9: 61.
- 38) Russo V, Ammendola E, De Crescenzo I, Ricciardi D, Capuano P, Topatino A, Docimo L, Santangelo L, Calabrò R. Effect of weight loss following bariatric surgery on myocardial dispersion of repolarization in morbidly obese patients. Obes Surg 2007; 17: 857-865.
- 39) NIGRO G, RUSSO V, DI SALVO G, DE CRESCENZO I, RA-GO A, PERRONE L, GOLINO P, RUSSO MG, CALABRÒ R. Increased heterogenity of ventricular repolarization in obese nonhypertensive children. Pacing Clin Electrophysiol 2010; 33: 1533-1539.
- 40) Russo V, Rago A, Pannone B, Papa AA, Di Meo F, Mayer MC, Spasiano A, Russo MG, Golino P, Cal-ABRÒ R, Nigro G. Dispersion of repolarization and beta-thalassemia major: the prognostic role of QT and JT dispersion for identifying the high-risk patients for sudden death. Eur J Haematol 2011; 86: 324-331.
- 41) NIGRO G, RUSSO V, RAGO A, PAPA AA, CIOPPA ND, DI MEO F, CORCIONE A, CAIANIELLO G, RUSSO MG, CAL-ABRÒ R. Heterogeneity of ventricular repolarization in newborns with severe aortic coarctation. Pediatr Cardiol 2012; 33: 302-306.
- 42) NIGRO G, RUSSO V, RAGO A, PAPA AA, DELLA CIOPPA N, SCARPATI C, PALLADINO T, CORCIONE A, CAIANIELLO G, RUSSO MG. The effect of aortic coarctation surgical repair on QTc and JTc dispersion in severe aortic coarctation newborns: a short-term followup study. Physiol Res 2014: 63: 27-33.
- 43) Russo V, Rago A, Politano L, Papa AA, Di Meo F, Russo MG, Golino P, Calabrò R, Nigro G. Increased dispersion of ventricular repolarization in Emery Dreifuss muscular dystrophy patients. Med Sci Monit 2012; 18: CR643-647.
- 44) Russo V, Rago A, D'Andrea A, Politano L, Nigro G. Early onset "electrical" heart failure in myotonic dystrophy type 1 patient: the role of ICD biventricular pacing. Anadolu Kardiyol Derg 2012; 12: 517-519.

- 45) NIGRO G, RUSSO V, RAGO A, PAPA AA, CARBONE N, MARCHEL M, PALLADINO A, HAUSMANOWA PETRUSEWICZ I, RUSSO MG, POLITANO L. Regional and transmural dispersion of repolarisation in patients with Emery-Dreifuss muscular dystrophy. Kardiol Pol 2012; 70: 1154-1159.
- 46) NIGRO G, RUSSO V, VENTRIGLIA VM, DELLA CIOPPA N, PALLADINO A, NIGRO V, CALABRÒ R, NIGRO G, POLITANO L. Early onset of cardiomyopathy and primary prevention of sudden death in X-linked Emery Dreifuss muscular dystrophy. Neuromuscular Dis 2010; 20: 174-177.
- 47) Russo V, Rago A, Antonio Papa A, Nigro G. Cardiac resynchronization improves heart failure in one patient with Myotonic Dystrophy type 1. A case report. Acta Myol 2012; 31: 154-155.
- 48) PARK KM, SHIN KJ, KIM SE, PARK J, HA SY, KIM BJ. Prolonged corrected QT interval in patients with myotonic dystrophy type 1. J Clin Neurol 2013; 9: 186-191.
- 49) Magrì D, Piccirillo G, Bucci E, Pignatelli G, Cauti FM, Morino S, Latino P, Santini D, Marrara F, Volpe M, Antonini G, Testa M. Increased temporal dispersion of myocardial repolarization in myotonic dystrophy type 1: beyond the cardiac conduction system. Int J Cardiol 2012; 156: 259-264.
- 50) NIGRO G, RUSSO V, DE CHIARA A, RAGO A, DELLA CIOP-PA N, ARENA G, CHIANESE R, MANFREDI D, CALABRÒ R. AUTONOMIC NERVOUS SYSTEM MODULATION before the onset of sustained atrioventricular nodal reentry tachycardia. Ann Noninvasive Electrocardiol 2010; 15: 49-55.
- 51) Russo V, De Crescenzo I, Ammendola E, Santange-Lo L, Calabrò R. Sympathovagal balance analysis in idiopathic postural orthostatic tachycardia syndrome. Acta Biomed 2007; 78: 133-138.
- 52) Russo V, Nigro G, Calabrò R. Heart rate variability, obesity and bariatric induced weight loss: the importance of selection criteria. Metab Clin Exp 2008; 57: 1622-1624.
- 53) Russo V, Nigro G, DE Chiara A, Rago A, Calabrò R. The impact of selection criteria of obese patients on evaluation of heart rate variability following bariatric surgery weight loss. Letter to Editor. Obesity Surgery 2009; 19: 397-398.
- 54) Ammendola E, Russo V, Politano L, Santangelo L, Calabrò R. Is heart rate variability (HRV) a valid parameter to predict sudden death in Becker muscular dystrophy patients? Heart 2006; 92: 1686-1687.
- 55) DUCCESCHI V, NIGRO GE, SARUBBI B, COMI LI, POLITANO L, PETRETTA VR, NARDI S, BRIGLIA N, SANTANGELO L, NI-GRO G, IACONO A. Autonomic nervous system imbalance and left ventricular systolic dysfunction as potential candidates for arrhythmogenesis in Becker muscular dystrophy. Intern J Cardiol 1997; 59: 275-279.
- 56) POLITANO L, PALLADINO A, NIGRO G, SCUTIFERO M, Cozza V. Usefulness of heart rate variability

- as a predictor of sudden cardiac death in muscular dystrophies. Acta Myol 2008; 27: 114-22.
- 57) INOUE K, OGATA H, MATSUI M, HAYANO J, MIYAKE S, KUMASHIRO M, KUNO M, TOKONAMI F, AII H, AKATSU J, ET AL. Assessment of autonomic function in myotonic dystrophy by spectral analysis of heart-rate variability. J Auton Nerv Syst 1995; 55: 131-134.
- 58) HARDIN BA, LOWE MR, BHAKTA D, GROH WJ. Heart rate variability declines with increasing age and CTG repeat length in patients with myotonic dystrophy type 1. Ann Noninvasive Electrocardiol. 2003; 8: 227-232.
- 59) Russo V, Nigro G, Papa AA, Rago A, Della Cioppa N, Cristiano A, Russo MG. Adenosine-induced sinus tachycardia in a patient with Myotonic Dystrophy type 1. Acta Myol 2014; 33: 104-106.
- 60) RAKOCEVI STOJANOVI V, MILOVANOVI B, IVI N, ILLE T, MARJANOVIC I, STEVI Z, PAVLOVI S, LAVRNI D. Cardiac autonomic nervous system in patients with myotonic dystrophy type 1. Acta Myol 2007; 26: 112-114.
- 61) FREGONEZI G, ARAÚJO T, DOURADO JUNIOR ME, FEREZI-NI J, SILVA E, RESQUETI V. Heart rate variability in myotonic dystrophy type 1 patients. Arq Bras Cardiol 2012; 98: 353-360.
- 62) Karapinar H, Acar G, Kirma C, Kaya Z, Karavelioglu Y, Kucukdurmaz Z, Esen O, Alizade E, Dasli T, Sirma

- D, ESEN AM. Delayed right atrial lateral electromechanical coupling relative to the septal one can be associated with paroxysmal atrial fibrillation. Eur Rev Med Pharmacol Sci 2013; 17: 2172-2178.
- 63) Russo V, Rago A, Di Meo F, Papa AA, Ciardiello C, Cristiano A, Calabrò R, Russo MG, Nigro G. Atrial Septal Aneurysms and Supraventricular Arrhythmias: The Role of Atrial Electromechanical Delay. Echocardiography. 2015 Mar 3. doi: 10.1111/echo.12908.
- 64) TANG B, ZHANG H, JIANG L. The correlation betweenn the mouth diameter of left atrial appendage and stroke risk score in patients with atrial fibrillation. Eur Rev Med Pharmacol Sci. 2015 Mar;19(5):790-4.
- 65) PROIETTI R, JOZA J, ARENSI A, LEVI M, RUSSO V, TZIKAS A, DANNA P, SAGONE A, VIECCA M, ESSEBAG V. Novel nonpharmacologic approaches for stroke prevention in atrial fibrillation: results from clinical trials. Med Devices (Auckl) 2015; 8: 103-114. doi: 10.2147/MDER.S70672. eCollection 2015. Review.
- 66) DANNA P, PROIETTI R, SAGONE A, ARENSI A, VIECCA M, RAGO A, RUSSO V. Does left atrial appendage closure with a cardiac plug system reduce the stroke risk in nonvalvular atrial fibrillation patients? A single-center case series. Pacing Clin Electrophysiol 2013; 36: 347-353.