Long noncoding RNA HOXA-AS2 acts as an oncogene by targeting miR-145-3p in human non-small cell lung cancer

Y.-B. SHI¹, S.-L. LIU¹, X.-R. MOU¹, J. LIAO¹, J.-P. CHE¹, X.-Q. FE¹, X.-R. W.

Abstract. – OBJECTIVE: Recent studies have proved that long non-coding RNAs (IncRNAs) play important roles in many diseases, especially malignancies. The aim of this study was to investigate the exact role of IncRNA HOXA-AS2 (Hoxa cluster antisense RNA 2) in the development of non-small cell lung cancer (NSCLC).

PATIENTS AND METHODS: Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) was utilized to detect HOXA-AS2 expression in NSCLC patients. The Wound healing assay and transwell assay were conducted to explunction of HOXA-AS2 on NSCLC me Furthermore, the mechanism assays well to explore the interaction between HOX and microRNA-145-3p (miR-145-3p).

RESULTS: HOXA-AS2 expression level in **CLC** tissues was significantly han adi cent tissues. HOXA-AS2 ex as neg atively correlated with dig e-free vival of **NSCLC** patients. Moreo the fun bnal assays showed that the m ang NSCLC cells were s nific ore, the lu-HOXA-AS2 in vitro nce. Fu le assay als led that ciferase reporter AS2 in miR-145-3p was ct target of F NSCLC.

CONCLUSIONS: On pults indicated that HOXA-AS2 sould enhance migration and invasion alones of NSCLC by ting miR-145-3p. Furthermore, these finding suggested that HOXA 32 might be a potential therapeutic target and the second suggested that HOXA 32 might be a potential therapeutic target.

Key Wo.

HOXA-AS2, Non-small cell ncer (N. 4-145-3p.

Introduction

cancer is one of the most frequent cancers the world, both in terms of incidence and

mortalit Mean it remains a public threat to the society¹. Appl tely 234,030 cases are with lung can vorldwide in 2018². I cell lung cance (NSCLC) accounts about 85% of lung cancer cases. The surgical ection is the in intervention for NSCLC ents diagnose n early stages. Currently, treıs advand have been made in the theraof NSCLC. However, the 5-year survival rate of NSCLC patients is still lower than Therefore, it is crucial to understand the molecular mechanism of NSCLC and inc. at new biomarkers for NSCLC treatment.

90% of the mammalian genome is transcribed to non-coding ribonucleic acids (RNAs). Long non-coding RNAs (IncRNAs) are defined as non-coding RNAs with longer than 200 nucleotides in length. Recent studies have uncovered that lncRNAs are a new frontier field in the research of malignant diseases. For instance, lncRNA UCA1 accelerates the proliferation and cisplatin resistance in oral squamous cell carcinoma by modulating SF1 and suppressing miR-184³. In addition, activated by zinc finger E-box binding homeobox 1 (ZEB1), lncRNA HCCL5 accelerates the viability, migration, epithelial-mesenchymal transition (EMT), and malignancy of hepatocellular carcinoma⁴. Furthermore, lncRNA ATB promotes the migration and invasion of glioma cells by activating astrocytes by suppressing the expression of microRNA-204-3p⁵.

Scholars have revealed that microRNA (miR-NA) plays a crucial role in the regulation of various biological behaviors, including cell proliferation, apoptosis, and metastasis. Likewise, activated by K-Ras carcinogenic signal, miR-155 facilitates the proliferation of pancreatic cancer cells by regulating ROS stress⁶. By targeting FMNL2, miR-613 functions as a tumor suppres-

¹Department of Cardiothoracic Surgery, Yantai Mountain Hospital, Yantai hina

²Department of Respiratory Medicine, Yantai Mountain Hospital, Yantai

sor gene in the progression of colorectal cancer⁷. MiR-126 plays an important role in breast cancer by interacting with a variety of molecules. Meanwhile, it may help to interfere with the inhibition of breast cancer cell metastasis⁶. Through downregulation of transcription factor FOXO1, the over-expression of miRNA-370 promotes the proliferation of human prostate cancer⁸.

LncRNA HOXA-AS2 (Hoxa cluster antisense RNA 2) plays an important role in tumor development and metastasis. In this study, we aimed to investigate the function of lncRNA HOXA-AS2 in NSCLC, as well as the interaction between HOXA-AS2 and miR-145-3p.

Patients and Methods

Tissue Samples

Totally, 62 patients who underwent surgical resection at Yantai Mountain Hospital were enrolled in this research. Human NSCLC tissues and adjacent non-tumor tissues were obtained from patients during surgery. After surgical res all collected tissue samples were snapliquid nitrogen immediately for use. No re herapy and chemotherapy treatment were med in any patient before the surgery. This s was approved by the Research Ethics Commit of Yantai Mountain Hospital informe consents were gathered from ents bethe fore the study.

Cell Culture

The human NSC cell lin 49. SPCA1, PC-9, and H1299) immortalize n bronchial epithelial bought (16HBE) w e Collection (ATCC: from Americ Type Manassas, VA, USA). Us were cultured in Rosw Park Memorial ute-1640 (RPmedium (Invitrogen, Carlsbad, CA, MI-164 USA ntainin 10% fetal bovine serum (FBS: Lif nolo Gaithersburg, MD, USA).

Cell Train ion

tivirus Ing short-hairpin RNA (sh.) target HOXA-AS2 (HOXA-AS2/shR) synthesized by GenePharma (Shanghai, Charles of Subsequently, HOXA-AS2/shR-was transfected into A549 NSCLC cells at the instructions of Lipofectamine 200c. Avitrogen, Carlsbad, CA, USA).

RNA Extraction and Quantitative Real-Time Polymerase Chain Real (qRT-PCR)

Total RNA in tissues and cell as extracted arlsbad, CA, using TRIzol reagent (Invitrog USA). Subsequently, the extracte RNA was reverse transcribed to co -lemen. oxyribonucleic acid (cDNA) ough reve otechnology Co. scription Kit (TaKaRa Dalian, China). The in this study mers v were as follows: In S imers f ward: 5'-CCCGTAGG \GA TGA-3' verse: 5'-TTTAGGC CGCA6 glyceralhate dehydro dehyde 3-p (GAPDH) 5'-CCAAAA AGATGGGprimers reverse 5'-TGATGGCA-**GCAAT** TGO TGGACTGTGGTC -3'. The thermal cycle lows: 30 s at 5 s for 40 cycles at 4 35 s at 60°C.

Yound Heak Assay

the cells were set transferred into 6-well plate raining, Country, NY, USA) and cultured in RPM cum overnight. After scratched with a plastic tip, the cells were cultured in segree RPMI-1640. Wound closure was viewed tach assay was independently repeated time atte.

Transwell Assay

For detecting the migration ability of tranfected cells, 5 ×10⁴ cells in 200 µL serum-free RPMI-1640 were transformed to the upper chamber of an 8 µm pore size insert (Millipore, Billerica, MA, USA). To detect the invasion ability of the transfected cells, 5×10^4 cells in 200 µL serum-free RPMI-1640 were transferred to the upper chamber of an 8 µm pore size insert (Millipore, Billerica, MA, USA) coated with 50 µg Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). Meanwhile, the lower chamber was added with RPMI-1640 and FBS. 48 h later, the top surface of the chambers was wiped by a cotton swab. Then, the chambers were immersed for 10 min with pre-cooled methanol and stained with crystal violet for 30 min. Three fields were randomly selected to count the data for invasion membrane.

Luciferase Reporter Gene Assay

The 3'-Untranslated Region (3'-UTR) of HOXA-AS2 was cloned into the pGL3 vector (Promega, Madison, WI, USA) as wild-type (WT) 3'-UTR. Quick-change site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA) was used for site-di-

rected mutagenesis of the miR-145-3p binding site in HOXA-AS2 3'-UTR as mutant (MUT) 3'-UTR. Subsequently, they were transfected into NSCLC cells. The luciferase assay was detected by the Dual-Luciferase Reporter Assay System (Promega, Madison, WI, USA).

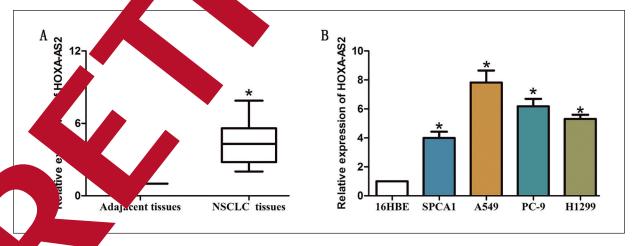
Xenograft Model

After HOXA-AS2 was silenced in A549 cells, the cells were replanted into NOD/SCID mice (6 weeks old). The tumor volume was calculated every 5 days as the formula (volume = length \times width2 \times 1/2). After 4 weeks, the tumors were extracted and calculated. This experiment was approved by the Animal Ethics Committee of Yantai Mountain Hospital.

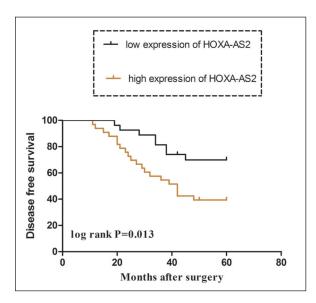
Statistical Analysis

The Statistical Product and Service Solutions (SPSS) 20.0 (IBM Corp., Armonk, NY, USA) was used for all statistical analysis. The data were expressed as mean \pm SD (Standard Deviation). The Student's *t*-test method and the Kaplan-Meier method were utilized when appropriately p < 0.05 was considered statistically significant.

Results


HOXA-AS2 Expression Lev NSCLC Tissues and Cell

We first detected HOY AS2 expression in 62 NSCLC patients' tis 2d 4


lines via qRT-PCR. The results showed that the HOXA-AS2 expression in NS samples was remarkably higher n adju non-tumor tissues (Figure 1A) milarly, the C cells was HOXA-AS2 expression in N significantly higher than that BE cells as well (Figure 1B). Sub tients ruently ps accord were divided into two OXA-AS2, inch median expression of high HOXA-AS2 ession oup and low HOXA-AS2 expre-The wlan-Meier analysis howe the div e-free LC patie HOXAsurvival of ntly worse AS2 expres group was s than that in low HOX, AS2 expression gro

gration and Invasion of NSCLC Cells

In this study A549 NSCLC cell line was en for the nce of HOXA-AS2 in vitro. nsfection fficiency of HOXA-AS2 was PCR (Figure 3A). The wound healing assay showed that the silence of HOXAsignificantly inhibited the migrated ability ells (Figure 3B). The transwell assay that the number of migrated cells remarkably decreased after the HOXA-AS2 silence in A549 cells (Figure 3C). Moreover, the transwell assay revealed that the number of invaded cells was significantly reduced after HOXA-AS2 was silenced in the A549 cells as well (Figure 3D).

Tre 1. HOXA-AS2 was highly expressed in NSCLC tissues and cell lines. **A,** HOXA-AS2 expression significantly and in NSCLC tissues compared with adjacent tissues. **B,** The expression levels of HOXA-AS2 relative to GAPDH we mined in human NSCLC cell lines and normal human bronchial epithelial cell 16HBE by qRT-PCR. The data were present as mean ± standard error of the mean. *p<0.05.

Figure 2. The association between HOXA-AS2 expression and NSCLC patients' prognosis. Higher expression of HOXA-AS2 was associated with worse disease-free survival of NSCLC patients.

Silence of HOXA-AS2 Suppressed Tu Formation In Vivo

To detect the ability of HOXA-AS2 in the tumor formation assay was conducted in SCID mice. The results showed that the to size in HOXA-AS2/shRNA group was sign cantly less than that of the co າ (Figur 4A). Four weeks later, the t ktracted from treated mice, and pression in tumor tissues was de a result, HOXA-AS HOXA-AS2/shRNA pared with oup wh the control group (ure 4B).

The Interact of Boston MiR-145-3p and HOXA-AS2 in No.

The b formation soft (DIANA LncBASE edicted v.2) was used to predict the s containing a complementary base with miR R-145-3n has been identified HC appress n tumor metastasis. as a Therefore vas selected from those he predicted binding area ted mi shown in Figure 5A. The of ent results demonstrated that miR-145subs Rpressed in HOXA-AS2/shRNA of control cells (Figure 5B). The ferase Reporter Gene Assay revealed that ansfection of HOXA-AS2-WT and miRsignificantly decreased the luciferase

activity (Figure 5C). Furthermore, the miR 145-3p expression level was negatively with HOXA-AS2 expression in N C tissu. (Figure 5D).

Discus

In the past several ades, the morbic lung cancer has inc ed work ide, especially s. How in industrially advan er, the C are ration main characteri ponsible and invasion oplasms, are tality rate. Pre for the high udies have demonstra ncRNAs are a portant regulators in ssion. Up-regulated FGF1 NA RAB1A-2 promoby overexpression of © developme. entually leading to nosis⁹. LncRNA RNCR1 promotes the gression of NSCLC by up-regulating HEY2 ough PRNCK iR-488-HEY2 network¹⁰.

OXA-AS2 xa cluster antisense RNA ted on mosome 6, plays vital roles es. Authors^{11,12} have found that HOXA-AS2 participates in the development of cers. Likewise, HOXA-AS2 facilitates breast I metastasis by targeting miR-520c-A-AS2 enhances cell growth ability by cargeting P21 and KLF2 in colorectal cancer¹⁴. In this study, we found that HOXA-AS2 was significantly up-regulated in NSCLC tissues. Besides, he silence of HOXA-AS2 remarkably repressed the migration and invasion of NSCLC cells. The tumor formation assay also revealed that the silence of HOXA-AS2 could remarkably suppress tumor formation in vivo. All these results suggested that HOXA-AS2 acted as an oncogene and promoted tumor metastasis of NSCLC.

In this study, we further explored the possible mechanism of HOXA-AS2 function in NSCLC metastasis. Recent studies have shown that lncRNAs interact with microRNAs in malignant tumors. LncRNAs participate in the regulation of tumorigenesis by binding to the related regions of microRNAs as well. Indeed, the knockdown of lncRNA TUG1 depresses cell proliferation and invasion in osteosarcoma via sponging miR-153¹⁵. By interacting with miR-21-5p, lncRNA XIST represses the proliferation and metastasis of the osteosarcoma cells through regulation of PDCD4 expression¹⁶. LncRNA PVT1 promotes glucose metabolism, cell motility, cell proliferation, and tumor progression in osteosarcoma by modulating miR-497/HK2

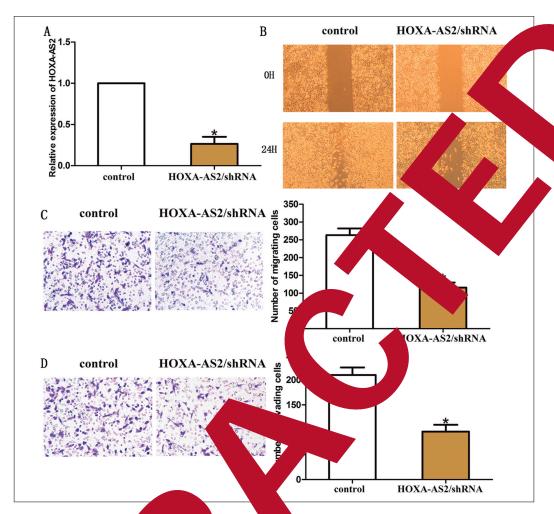
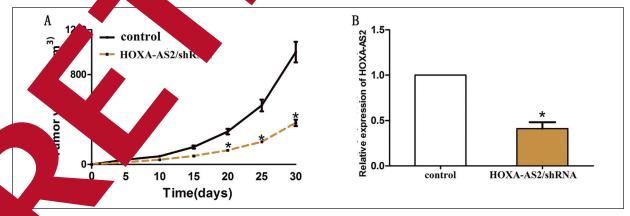
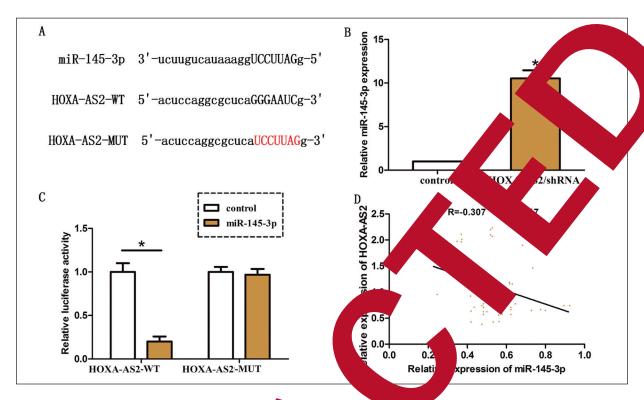




Figure 3. The silence of HOXA nigration and invasion. A, HOXA-AS2 expression in A549 ne NSCLC inhit NSCLC cells transfected with vector were detected by qRT-PCR. GAPDH was used as an A-AS2/sh and contr internal control. B, The wound g assay s silence of HOXA-AS2 significantly repressed the migration of A549 NSCLC cells (magnification: 10 wed that the number of migrated cells significantly decreased after As (magnineation: 40×). D, The transwell assay showed that the number of invaded the silence of HOXA-AS2 549 after the s HOXA-AS2 in A549 NSCLC cells (magnification: 40×). The results represented cells significantly decre the average of three in \pm standard error of the mean). *p<0.05, as compared with control cells. endent experime

4. Silence of HOXA-AS2 inhibited tumor formation in vivo. A, After tumor extraction, tumor volume was calculated by in control or HOXA-AS2/shRNA group and made into a graph. B, The relative expression of HOXA-AS2 in tumor as examined by qRT-PCR. Data were presented as mean \pm SD of three independent experiments. *p< 0.05.

Figure 5. Reciprocal repression between HOXA-A \sim d miR-145-3p. A, ... anding sites of miR-145-3p on HOXA-AS2. B, MiR-145-3p expression was significantly up-represented the average of the mean. *p<0.05.

axis¹⁷. By sponging miR s, lncRl SNHG1 facilitates tumorigenesis gh the regulation of MQB1

The bioinforma softw utilized tial target h to predict the p NAs of HOXA-AS2. N n was found ormalmalignant tumors, ly expressed including NSCLC. M. 3p inhibits cell prolifera and induces apoptosis in ma by regulating A. AC4¹⁹. UHRF1 osteos R-145-3p is associated with regu f cell metastasis in bladder the 145-3p is identified cover, cance gene in NSCLC^{21,22}. In tum e firstly investigated the esent miR-145-3p and HOXAion betw ini he results demonstrated that miR-145-3p AS2 co bind to HOXA-AS2 via lucir gene assay. In addition, miRp expression was significantly suppressed pregulated HOXA-AS2. Furthermore, ression of miR-145-3p was negatively

correlated with HOXA-AS2 in NSCLC tissues. The above results indicated that HOXA-AS2 promoted tumor metastasis of NSCLC by targeting miR-145-3p.

Conclusions

These results showed that HOXA-AS2 was remarkably upregulated in NSCLC tissues and cells. HOXA-AS2 could facilitate the migration and invasion of NSCLC cells by targeting miR-145-3p. Meanwhile, our study first discovered the HOXA-AS2/miR-145-3p axis in NSCLC. Our findings might provide a candidate target for NSCLC treatment.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- 1) SIEGEL RL, MILLER KD, JEMAL A. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67: 7-30.
- HIRSCH FR, SCAGLIOTTI GV, MULSHINE JL, KWON R, CURRAN WJ, WU YL, PAZ-ARES L. Lung cancer: current therapies and new targeted treatments. Lancet 2017; 389: 299-311.
- FANG Z, ZHAO J, XIE W, SUN Q, WANG H, QIAO B. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression. Cancer Med 2017; 6: 2897-2908.
- 4) PENG L, JIANG B, YUAN X, QIU Y, PENG J, HUANG Y, ZHANG C, ZHANG Y, LIN Z, LI J, YAO W, DENG W, ZHANG Y, MENG M, PAN X, LI C, YIN D, BI X, LI G, LIN DC. Super-enhancer-associated long noncoding RNA HCCL5 is activated by ZEB1 and promotes the malignancy of hepatocellular carcinoma. Cancer Res 2019; 79: 572-584.
- BIAN EB, CHEN EF, XU YD, YANG ZH, TANG F, MA CC, WANG HL, ZHAO B. Exosomal IncRNAATB activates astrocytes that promote glioma cell invasion. Int J Oncol 2019; 54: 713-721.
- 6) Wang P, Zhu CF, Ma MZ, Chen G, Song M, Zeng ZL, Lu WH, Yang J, Wen S, Chiao PJ, Hu Y, Huang P. Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreationancer. Oncotarget 2015; 6: 21148-21158.
- Li B, Xie Z, Li Z, Chen S, Li B. MicroRNA-6 gets FMNL2 and suppresses progression of current cancer. Am J Transl Res 2016; 8: 5475-548
- Wu Z, Sun H, Zeng W, He J, MAO X. Uprestion of mircoRNA-370 induces proliferation in man prostate cancer cells by transcription factor FOXO 200 2012; 7. e45825.
- 9) Wu D, YANG B, CHEN J, H, LI Y, CHEN J, LI T, ZHOU S, LING
 F, YANG L, LU J. Ur gulation of non-county
 RNA RAB1A-2 ir es FGF1 ion worsening lung cance gnosis. Cance. 118; 438: 116-125.
- 10) CHENG D, TO C, ZHOUND LIN X, HUANG H, ZHAO L. LncRNA PLNCR1 into with HEY2 to abolish miR-4 mediated grown stition in non-small cell g cancer. Biomed macother 2018; 10 40-1547.
- 11) Y, Yu H, Y, Liu X, Zheng J, Ma J, Gong W, Z, Tian Y, Xue Y. Long non-coding have a Secure of military formation via the military axis. Cell Physiol Biochem 18; 45: 10

- 12) XIE M, SUN M, ZHU YN, XIA R, LIU YW, DING L MA HW, HE XZ, ZHANG ZH, LIU ZJ, LIU XH noncoding RNA HOXA-AS2 processor cancer proliferation by epigens only silencing P21/PLK3/DDIT3 expression. Cotarget 2015; 6: 33587-33601.
- 13) FANG Y, WANG J, WU F, SONG Y, ZHANG Q. Long non-coding RNA H YA-AS2 as proliferation and invasion are reast cancer as a miR-520c-3p stage. Oncotarget 46090-46103.
- 14) DING J, XIE M, LIA WUY, F P, WANG J, WANG L, WANG K. Long II. A NA HOX S2 represses P21 od KL. Assion to scription by binding EZH2, L. Solo all cancer. Oncoger 2017; 6: e288.
- 16' R, XIA T. Long no. Joding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis. Oncol 2017; 51: 1460-1470.
 - Song J, Wu X, F, Li M, Sun Y, Wang Y, Wang C, K, Jia X, Y G, B, Ma X. Long non-coding RNA glycolysis and tumor progression by miR-497/HK2 axis in osteosarcoma. Biochem Biophys Res Commun 2017; 490: 217-224
 - Ing NA SNHG1 regulates NOB1 expression by sponging miR-326 and promotes tumorigenesis in osteosarcoma. Int J Oncol 2018; 52: 77-88.
- 19) Wu G, Yu W, ZHANG M, YIN R, Wu Y, LIU Q. MicroRNA-145-3p suppresses proliferation and promotes apotosis and autophagy of osteosarcoma cell by targeting HDAC4. Artif Cells Nanomed Biotechnol 2018; 46(Suppl 2): 579-586.
- 20) Matsushita R, Yoshino H, Enokida H, Goto Y, Miyamoto K, Yonemori M, Inoguchi S, Nakagawa M, Seki N. Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): Inhibition of bladder cancer cell aggressiveness. Oncotarget 2016; 7: 28460-28487.
- 21) Mo D, Yang D, Xiao X, Sun R, Huang L, Xu J. MiR-NA-145 suppresses lung adenocarcinoma cell invasion and migration by targeting N-cadherin. Biotechnol Lett 2017; 39: 701-710.
- 22) CHANG Y, YAN W, SUN C, LIU O, WANG J, WANG M. MiR-145-5p inhibits epithelial-mesenchymal transition via the JNK signaling pathway by targeting MAP3K1 in non-small cell lung cancer cells. Oncol Lett 2017; 14: 6923-6928.