# Long non-coding RNA ANCR promotes progression of NSCLC by inhibiting E-Ca expression

T. ZHOU¹, J.-J. FANG¹, Y.-X. ZHOU¹, Z.-P. Ll¹, L. JIANG¹, W.-W. N¹, Z.-N

**Abstract.** – OBJECTIVE: This study aimed to investigate whether long-chain non-coding AN-CR is involved in the progression of non-small cell LCa (NSCLC) and its possible molecular mechanisms.

**PATIENTS AND METHODS: Quantitative Re**al Time-Polymerase Chain Reaction (qRT-PCR) was applied to examine ANCR expression in 48 cases of NSCLC and adjacent normal tissues. In addition, ANCR level in patients of different tumor staging was analyzed. The Kaplan-Meier method was applied to analyze the interpla tween ANCR expression and the progra patients with NSCLC. Subsequently, was performed to detect ANCR level in ell lines. After knocking down ANCR in A549 ANCR and E-Ca mRNA expression were e ined by qRT-PCR, while the expression levels epithelial-mesenchymal transi MT)-rela ed proteins were detected blot. A the same time, cell viability d migr h ability were analyzed through of ounting 8 (CCK-8) and cell wound hear ay, RNA immunoprecipitation R to EZH2. formed to verify the nding us, E-Ca After knocking de EZH2 in A acid (mRNA) messenger ribo ession ly, Chromatin mmunowas detected. nIP) as as performed to deprecipitation tect the binding of EZHZ E-Ca promoter n E-Ca and AN re simultaneregion. V ked down in A549 c s, Western blot ously | tion was performed to examine the exinves related proteins, while CCK-8 ing ass were applied to figand I viability and cell miure out inges ir ion ca

high in NSC such that in normal tiss and that in T3 and T4 tumors was also high that in T1 and T2. Meanwhile, ANCR the metastasis was conspicuously higher than without metastasis. Survival analysis report that the overall survival of patients with NSC with high expression of ANCR was con-

low expresspicuous an patients w. I-PCR study verified that sion of ANCR was highly e ed in the LCa cell line A549 After knocking ANCR in A549 cells. E-Ca mRNA is were found conuously decreased, and so were the expresn levels of EMT-related proteins, as well as cell viabilit d migration ability. The RIP y result ind ted that ANCR can indeed EZH2. a mRNA expression was elknockdown of EZH2 in A549 eva , the result of CHIP test demoncells. strated that EZH2 could combine with E-Ca. Sineous down-regulation of ANCR and E-Ca ells could reverse the influence of down ANCR alone on cell viability and higration ability.

CONCLUSIONS: Long-chain non-coding RNA ANCR was highly expressed in NSCLC tissues and could enhance the viability and malignancy of NSCLC cells by inhibiting the expression of E-Ca, thereby promoting the progression of NSCLC.

*Key Words:*NSCLC, ANCR, EZH2, EMT.

#### Introduction

Lung cancer (LCa) is the main cause of cancer-related morbidity and mortality, accounting for more than a quarter of all cancer diagnoses<sup>1</sup>. Non-small cell lung cancer (NSCLC) is the most important pathological subtype, accounting for about 85% of LCa cases<sup>2,3</sup>. Despite advances in treatment techniques and strategies, the prognosis of this disease remains poor, with a 5-year survival rate of only 15% for NSCLC<sup>4-6</sup>.The development of drug resistance, metastasis, and recurrence is the main obstacle to the improvement of patients' survival<sup>7,8</sup>.Therefore, it is of

<sup>&</sup>lt;sup>1</sup>Department of Emergency, Ningbo Medical Center Eastern Hospital, Nation, Chiral

<sup>&</sup>lt;sup>2</sup>Department of Respiratory Medicine, Zhoushan Hospital of Zhejiang Charles Coushan China

great significance to further clarify the molecular mechanism of NSCLC progression and provide a scientific basis for new treatment strategies.

Long non-coding RNAs (lncRNAs) are defined as transcriptional classes of over 200 nucleotides lacking protein-coding potential<sup>9</sup>. LncRNAs have been demonstrated as fine tuners and regulators of key biological processes in various cancers, such as cell growth, apoptosis, differentiation, invasion, and metastasis<sup>10,11</sup>. There is evidence that lncRNA is involved in cancer development by altering DNA repair, membrane effusion, drug metabolism, apoptosis, and epithelial-mesenchymal transformation (EMT)12. LncRNA ANCR has been reported to inhibit the proliferation, migration, and invasion of osteosarcoma cells by interacting with EZH2 and regulating the expression of p21 and p2713. However, the role of LncRNA ANCR in the development of NSCLC is unclear.

EMT is the transformation of cell morphology and function from epithelium to mesenchymal phenotype, and is involved in the early malignant transformation of tumors<sup>14-16</sup>. During EMT, cells lose or redistribute epithelial proteins and a mesenchymal proteins, resulting in los thelial polarity and a high-motion fibroble henotype<sup>17-19</sup>. Several studies<sup>20-23</sup> have show EMT plays an important role in many can such as pancreatic cancer, gastric cancer, colorectal cancer. Also, EMT ssociate with cancer invasion and me is work. aSIS. LCa cells were used as res h object explore whether the long non-co NA promote the development of ing the expression ·Ca.

#### Pa nts Methods

#### Patient and Clinical Sal

y 2016 to December 1018, 48 patients Fron CLC additted to our hospital underwent with of tumor tissues and adjacent sur of adjacent normal tisles. A pr non-tu ed at st 3 cm from the tumor sues are ally removed tissue was uid nitrogen until analysis. rap frozen h 48 patients had no history of treatment All an other malignancies. This invesproved by the Ethics Committee of bo Medical Center Eastern Hospital. Signed nformed consents were obtained from all ants before the study.

#### Cell Culture

HBE, A549, NCI-H1650, and HG cells were purchased from the Shan Cell Ba of the Chinese Academy of Scient (Shanghai, Roswell Park China). The cells were culture Memorial Institute-1640 (RPM) Hyclone, South Logan, UT, USA) makium co x 10% yclone, Sou fetal bovine serum (FBS mycin and penic UT, USA) and 1% str 37°C, with 5% CO, cated hy dity. The colls in the exponential p were d ested, plated into appropriate hes, an Itured ies 60%. in an incubator til the cer

#### Cell Trar

LCa well and in a cell plate and the transfection of si-Ak well-EZH2, si-E-Ca, and their vive negative wells were performed to the si-Ezh2 transfectamine 2000 (invitrogen, Carlsbad, A, USA) transfection reagent when cell density ched 60%. A well-kells were collected for equent investions.

# RN. and Quantitative Real Time rolymerase Chain Reaction PT-PCR) Detection

d tissue total RNA were extracted usg in. RIzol (Invitrogen, Carlsbad, CA, USA) method. The RNA purity was measured by an ultraviolet spectrophotometer and was stored at -80°C until the use. The complementary deoxyriconucleic acids (cDNAs) was reverse transcribed, and the SYBR Green method was used for PCR detection. The primer sequences were shown in Table I.

#### Western Blot

The total protein was extracted from each group and subjected to dodecyl sulfate and sodium salt-polyacrylamide gel (SDS-PAGE) electrophoresis. After transferred to the polyvinylidene difluoride (PVDF) membranes, the immunoblots were blocked for 2 h at room temperature with a specific primary antibody overnight. Then, they were incubated with horseradish peroxidase (HRP)-labeled secondary antibody at room temperature for 2 h. Next, the protein bands were detected using enhanced chemiluminescence (ECL) detection.

#### Cell Counting Kit-8 (CCK-8) Assay

Differently treated cells were plated in 96-well plates with 5 replicates in each group and cultured for 6, 24, 48, 72, 96 h, respectively. 10  $\mu$ L of

**Table I.** Primers used for qRT-PCR.

| Gene  | Sequence                                                                 |
|-------|--------------------------------------------------------------------------|
| EZH2  | F: 5'-TGCACATCCTGACTTCTGTG-3' R: 5'-AAGGGCATTCACCAACTCC-3'               |
| E-ca  | F: 5'-AAAGGCCCATTTCCTAAAAACCT-3' R: 5'-TGCGTTCTCTATCCAGAGGCT-2           |
| ANCR  | F: 5'-GACATTTCCTGAGTCGTCTTC ACGGAC-3 R: 5'-TAGTGCGATTTAGAGCTGT AGTTTC-3' |
| GAPDH | F: 5'-CGGAGTCAACGGATTTG GT-3'<br>R: 5'-GGGAAGGATCTGTCTC 3-3'             |

CCK-8 reagent (Dojindo Laboratories, Kumamoto, Japan) was added to each well, and cells were further incubated at 37°C for 1 h. The OD values were measured at 450 nm.

#### Cell Wound Healing Assay

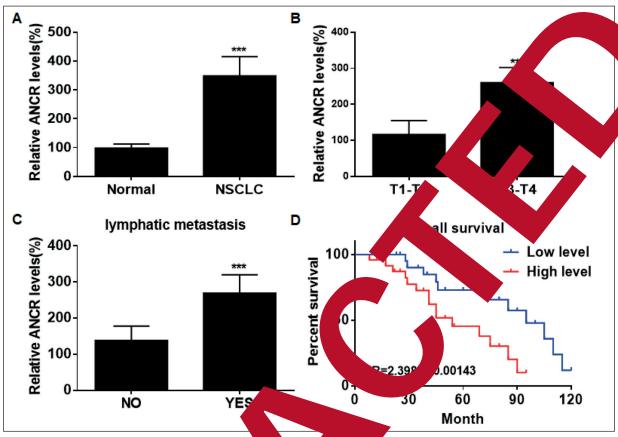
The cells in log phase were collected and seeded in 24-well plates at a density of approximately  $5 \times 10^5$  cells per well. Then, they were incubated overnight. The tip of the liquid pipe was drawn across the bottom of the well. Subsequently, the cells at the scratches were was much as possible with phosphate-buffer (PBS), cultured in a serum-free media and photographed under a microscope at 0 and respectively. The scratch distance in each g was measured, and the average cell mobility calculated by averaging. Cell = (initia scratch average distance tch disrage tance measured) / initial s ch avera distance  $\times$  100%.

### RNA Binding F ein Immunoprec (RIP) Assa,

riments according to 4 Rh We perform the manufacturer's instr of Magna RIP RNA Bi ng Protein Imn scipitation Kit mer, Waltham, MA, SA). After the (Perkin cell 1 te was obtained, the magnetic beads were and 1 My resuggended in Wash Buffer pre e. RNA ding protein immunoand pr rformed. RNA purificarecipitat. ther phenol, chloroform, Salt as can Ion II, Precipitate Enhancer, I, Salt So e ethanol (no RNAse), dissolved in 10-20 abso carbonate (DEPC) water (Beyo-, China), and stored at -80°C. The ssion of ANCR in co-precipitated EZH2 and IgG protein precipitate was detected PCR.

#### Chromatir munoprecip (ChIP)

Chrome a unoprecipitate was performed ang a call A/G One-Color Chromatin Immuno, call tation Kit (Millipore, Bill MA, USA) as ang to the manufactors a structions. Chromatin immunoprecipied DNA was eluted, reverse X-linked, purified, analyzed by T-PCR.


#### S tical Ang sis

A statistically analyzed by Statistical Product and Service Solutions (SPSS) 16.0 The Statistical Software She data of each group were expressed fine.  $\pm$  standard deviation ( $\bar{x} \pm s$ ). The independent sample t-test was used to compare the quantitative data of the two groups. The cumulative survival rate was assessed by the Kaplan-Meier nethod, and the difference was determined by the log-rank test. p<0.05 was considered significant (\*p<0.05, \*\*p<0.01, \*\*\*p<0.001).

#### Results

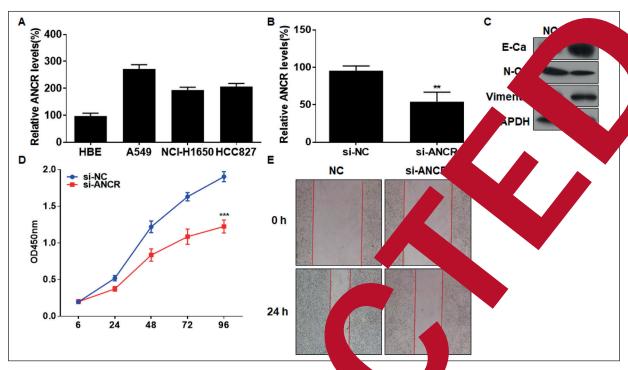
#### ANCR is Highly Expressed in NSCLC Tissues and Negatively Correlated with Prognosis

To explore the relation between the expression of ANCR and the development of NSCLC, we used qRT-PCR to detect the expression of ANCR in NSCLC tissues and adjacent normal lung tissues. The experimental results show that the expression level of ANCR in NSCLC tissues was conspicuously higher than normal lung tissues (Figure 1A). We, then, performed a paired analysis of the tissue samples and found that the expression levels of ANCR in T3 and T4 tumors were conspicuously higher than those in T1 and T2 (Figure 1B). At the same time, we found that ANCR was higher in metastasis group than in



**Figure 1.** ANCR was found highly expressed in no place of patients with NSCLC. **A,** ANCR was highly express of patients with NSCLC. **A,** ANCR was highly express on the T1 and T2 phases were higher than those in the was higher than that in the non-metar supp. **D,** ON was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than that of patients with high expression of ANCR was significantly lower than the patients with high expression of ANCR was significantly lower than the patients with high expression of ANCR was significantly lower than the patients with high expressio

NSCLC group (Figure plan ysis showed that the vera with NSCLC in hig of ANCR kpression was conspicuous atients ower than th rure 1D). The with low expre ove reg-chain non-coding sults indicate **.**nat RNA ANCR was highly essed in NSCLC tissues a egatively correct ith prognosis.


## Low Spression of ANCR blocks EMT and light sy in NSCLC

he role To incRN ANCR in the developm we used qRT-PCR to of ANCR in lung normal e the c cells A549, NCI-H1650, and E and D cer 7. QRT-PCR results showed that ANCR HC essed in LCa cells, and had the sion level in A549 cell line. Therewe chose A549 cells for subsequent inves-(Figure 2A). Subsequently, we knocked he expression of ANCR in A549 cells

(Figure 2B). The results of Western blots showed that the level of E-Ca protein in epithelial cells increased after knockdown of ANCR, and the expression of N-ca, and Vimentin proteins in mesenchymal cells decreased (Figure 2C). The results of the CCK-8 experiment evidenced that the cell viability of A549 LCa cells was conspicuously reduced after knocking down ANCR (Figure 2D). In addition, the results of the cell scratch test highlighted that the migration ability of A549 LCa cells was conspicuously reduced after interfering with ANCR (Figure 2E). The above results indicated that low expression of ANCR can inhibit the proliferation and malignancy of NSCLC.

### ANCR Binds to EZH2 to Regulate the Expression of E-Ca

To further explore the molecular mechanism of lncRNA ANCR in the development of NSCLC, qRT-PCR results showed that E-Ca mRNA expression was elevated after interference with AN-



**Figure 2.** Interfering with the expression of ANCR inhibited El lung cancer, and thus reduced its n-sma malignancy. A, Expression of ANCR in normal cell HBE and non-small cell lines including A549, NCI-H1650, and HCC827. B, Interference sequences were constr knock down the expression level of ANCR. C, Results of Western reased in A549 cells after interfering with ANCR, and blots showed that the level of E-ca protein in epi the expression levels of N-ca and Vimentin pr were decreased. D, CCK-8 results indicated in n that interference with ANCR significantly inhibite viabilit Ils. E, Cell wound healing assay revealed that interference with ANCR significantly inhibited the n of A>49 cells (magnification: 40×). on a

CR in A549 cells (Figure 3A) me time the RIP research results si **ANCR** stea (Figure can be combined with EZ Subsequently, we constructed fere of EZH2 and knocked down (Figure 3C), and qu CR res ected that E-Ca mRNA exp on levels inc (Figure 3D). The CHI owed that Ex could be combined fter interfering with th 🕒 ANCR, the combination ZH2 with E-Ca decrease nspicuously (Fig. E). The above cated that ANCR could bind to EZH2 results in L gulate the expression of E-Ca.

# ANC. tes the alignancy of NSCLC by ibiti the Expression

bserve is alle of ANCR and E-Ca in turn progression, we constructed an interfering section of the section of th

protein in epithelial cells in A549 cells caused by ANCR silencing. Besides, the expression levels of mesenchymal cell markers, N-ca and Vimentin proteins decreased (Figure 4B). CCK-8 investigations showed interference with E-Ca reversed the decrease in A549 cell viability caused by interference with ANCR (Figure 4C). Meanwhile, cell scratch test results revealed that interference with E-Ca reversed the inhibition effect of ANCR silencing on cell migration (Figure 4D). The above results indicated that ANCR promoted the proliferation and malignancy of NSCLC by inhibiting the expression of E-Ca.

#### Discussion

NSCLC is the most common type of LCa and the leading cause of cancer death worldwide<sup>24</sup>. However, there has been relatively little research on the potential importance of long non-coding RNAs in determining their biology and outcomes. We found that ANCR was highly expressed in NSCLC tissues, and ANCR expression in T3 and

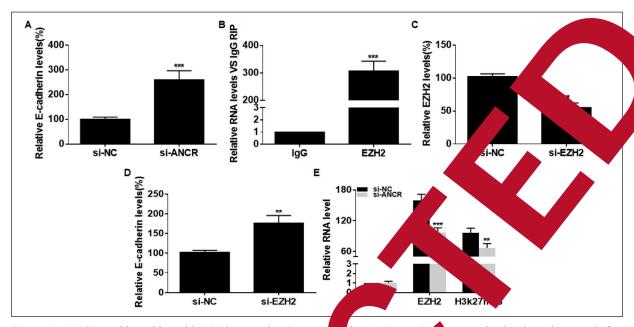



Figure 3. ANCR could combine with EZH2 to regulate E-ca expension. A, E-ca mB context expression level was increased after ANCR was inhibited in A549 cells. B, RIP experiment results should that ANCR can be sufficiently a specific property of EZH2. If the ANCR can be sufficiently a specific property of EZH2. If the third and the expression level of EZH2 in A549 cells, qRT-PCR results showed that the mRN. It is specified by the expression level of EZH2 could combine with E-ca; however, interfering with ANCR ability.

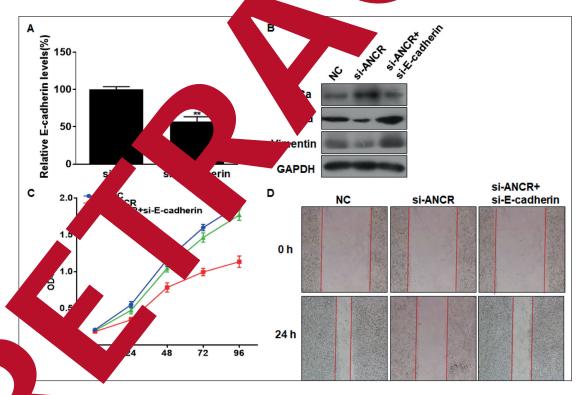



Fig. comoted the malignancy of non-small cell lung cancer by inhibiting the expression of E-ca. A, Interfering constructed in A549 cells to down-regulate the expression level of E-ca. B, Western blots showed that ference with E-ca could reverse the increased protein level of E-Ca and decreased protein levels of N-ca and Vimentin by downregulation of ANCR. C, CCK8 experiments showed that interference with E-ca reversed the decrease in A549 cells used by interference with ANCR. D, Results of cell wound healing assay showed that interference with E-ca reverse and weakened migration ability of A549 cells induced by interference of ANCR (magnification: 40×).

T4 LCa tissues was conspicuously higher than that in T1 and T2 LCa tissues. Survival analysis disclosed that the overall survival time of patients with high ANCR expression was conspicuously lower than that of patients with low ANCR expression, suggesting that ANCR plays an important role in the development of NSCLC.

LncRNAs have been reported to be associated with a survival rate of LCa patients, which may be a biomarker for prognosis of NSCLC patients<sup>25</sup>. LncRNA regulates gene expression by binding to transcription factors, RNA splicing, DNA, and histone modifications<sup>26-28</sup>. EZH2 (enhancer of zeste homolog 2), a 751-amino acid histone-lysine methyltransferase, is located on human chromosome 7q3529. EZH2 is an important component of PRC2's catalytic complex, which catalyzes trimethylation of lysine 27 of histone 3 and mediates target gene silencing<sup>30-32</sup>. Sun et al<sup>33</sup> have found that lncRNA hoxall-as can combine with PRC2 to promote the proliferation and invasion of gastric cancer. In this report, it was found that low ANCR expression in LCa cells could inhibit the EMT level and malignancy degree of LCa cells, and the combination of ANC EZH2 silenced the E-Ca gene.

Calcium-adhesive proteins (cagps) are tocell adhesion molecules that are essential tight connections between cells<sup>34,35</sup>. E-Cad is the most important one in epithelial cells. C herin forms complexes with cy protein and these molecular company er with rcellular other cytoskeletal compo s form i adhesion junctions<sup>22,36</sup>. char the loss of E-Cadher cells<sup>37</sup>. In this rese that after ı, it wa the knockdown ANCR, epit. ells in A549 showed levels of Peu rt E-Ca on levels of mesenprotein, decr ed e chymal markers n-ca, and entin protein. Furthermore nockdown of reversed the EMT<sub>1</sub> ess of cancer cells and conspicuously decr d cell bility and migration ability of work showed that ANCR in-**A5** d prome the proliferation and ducea y inhibiting the expresmalignan E-Ca.

#### Conclusions

demonstrated that long non-coding RNA could promote the development of NS-cle binding to EZH2 and downregulating the

expression of E-Ca. In addition, ANCR could be used as a potential prognostic marker therapeutic target for patients with

#### **Conflict of Interest**

The Authors declare that they have no conflict rests

#### Ryce

- 1) Wu K, Li J Y, Zhan Du D, D, Zhao S. SNHG confers gefith the ce in nonsmall control cancer by up the ding ABCB1 via specific 2-206-3p. Biome Pharmacother 2016 6: 10
- 2) LIU Z, JIANG L, ZHAR LINE S, JIANG X. MiR-24 propuls a migration and proposition of non-small cell ancer by targeting MF367. J BUON 2018; 23: 1413-1419.
- CHEN B, LING C Long noncoding RNA AK027294 acts as an order in non-small cell lung caning STAT3. Eur Rev Med Pharcol Sci 20 23: 1102-1107.
- 4) ... AHEN B, Wu S, LI R, XU X, YANG Y, GUAN H, ZHANG L, YUAN J, WU J, LI M. Aberrantly expressed miR-582-3p maintains lung cancer cell-like traits by activating Wnt/beta-catenalling. Nat Commun 2015; 6: 8640.
- OH CM, Won YJ, Jung KW, Kong HJ, Cho H, Lee JK, Lee DH, Lee KH. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2013. Cancer Res Treat 2016; 48: 436-450.
- 6) DAI FQ, LI CR, FAN XQ, TAN L, WANG RT, JIN H. MiR-150-5p inhibits non-small-cell lung cancer metastasis and recurrence by targeting HMGA2 and β-catenin signaling. Mol Ther Nucleic Acids 2019; 16: 675-685.
- CHANG A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer 2011; 71: 3-10.
- 8) LOPEZ GUERRA J, GOMEZ DR, LIN SH, LEVY LB, ZHUANG Y, KOMAKI R, JAEN J, VAPORCIYAN AA, SWISHER SG, COX JD, LIAO Z, RICE DC. Risk factors for local and regional recurrence in patients with resected N0-N1 non-small-cell lung cancer, with implications for patient selection for adjuvant radiation therapy. Ann Oncol 2013; 24: 67-74.
- 9) YANG L, LIN C, JIN C, YANG JC, TANASA B, LI W, MERKUR-JEV D, OHGI KA, MENG D, ZHANG J, EVANS CP, ROSEN-FELD MG. LncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 2013; 500: 598-602.
- BARTONICEK N, MAAG JL, DINGER ME. Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Mol Cancer 2016; 15: 43.
- SCHMITT AM, CHANG HY. Long noncoding RNAs in cancer pathways. Cancer Cell 2016; 29: 452-463.

- MAJIDINIA M, YOUSEFI B. Long non-coding RNAs in cancer drug resistance development. DNA Repair (Amst) 2016; 45: 25-33.
- 13) ZHANG F, PENG H. LncRNA-ANCR regulates the cell growth of osteosarcoma by interacting with EZH2 and affecting the expression of p21 and p27. J Orthop Surg Res 2017; 12: 103.
- KANG Y, MASSAGUE J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 2004; 118: 277-279.
- 15) IWANO M, PLIETH D, DANOFF TM, XUE C, OKADA H, NEILSON EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002; 110: 341-350.
- 16) CHEN N, SATO D, SAIKI Y, SUNAMURA M, FUKUSHIGE S, HORII A. S100A4 is frequently overexpressed in lung cancer cells and promotes cell growth and cell motility. Biochem Biophys Res Commun 2014; 447: 459-464.
- LEE JM, DEDHAR S, KALLURI R, THOMPSON EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006; 172: 973-981.
- GUPTA GP, MASSAGUE J. Cancer metastasis: building a framework. Cell 2006; 127: 679-695.
- 19) JECHLINGER M, GRUNERT S, TAMIR IH, JANDA E, LUDE-MANN S, WAERNER T, SEITHER P, WEITH A, BEUG H, KRAUT N. Expression profiling of epithelial plast tumor progression. Oncogene 2003; 27169.
- 20) Pusseux A. [Role of epithelial-mesenchymosition in tumor progression]. Bull Acad Nati 2009; 193: 2017-2032, 2032-2034.
- 21) KANG H, MIN BS, LEE KY, KIM MONTH SN, CHON KIM H. Loss of E-cadherin are corressions correlated with poor survival a patie with stages II and III colorectal cardioma. And arg Oncol 2011; 18: 711-719.
- 22) BUKHOLM IK, NESLAND IM, Bression of E-caterin, alphanin and beta-catenin, but of gamma-static tissue from past cancer pair ecomments]. J Proposition 190: 15-19.
- 23) NISHIOKA IA, OH S, CAN SAI Z, OIKAWA K, KAWAI M, TAN M, YAMAUE H, IN SAI Z, SNAIL induces epith to to-mesenchymal continuous continuous and invasiveness in vivo. Exp Pathol 2003; 89: 149-157.
- 24) Z, Liu P yi Y. Clinical efficacy of beyond b combined with gemcitabine and cisplant chemotherapy in the treatent of a consensual cell lung cancer. J DN 2018, 402-1406.

- 25) LIU X, HUANG Z, QIAN W, ZHANG Q, SUN J. Silence of IncRNA UCA1 rescues drug resistance tin to non-small-cell lung cancer control chem 2019; 120: 9243-9249.
- 26) Wu X, Yan T, Wang Z, Wu X, Cong Z, Zhang C. Ln-cRNA ZEB2-AS1 promotes black an occur cell proliferation and inhibits apoptosis and acting miR-27b. Biomed Pharmacoth 2017; 98, 24.
- 27) GAO H, GONG N, MA MIAO X, CHEN ZHANG G. LncRNA Z' AS1 promotes paic cancer cell groy and invarian through its ulating the miR-20 AB1 a first J Biol Macromol 2018; 116: 545
- 28) Lan T, Chan Wu L, Down relation of ZEB2-AS1 creased tune with ad metastasis in tocellular carcine of Med Rep 2016; 1612.
- 29) Su Mardao Y, Wu J, Ma J, Tian B, Zhou Y, Wang H, Yang D, Wang W. Role of IncRNA and EZH2 interaction latery network in lung f. J Cancer 2018; 4156-4165.
  - YAMAĞUCHI H, HUNG MC. Regulation and role of EZH2 in cancer. Capar Res Treat 2014; 46: 209-222.
  - Xu M, Chen X III K, Zeng K, Liu X, Xu X, Pan B, Yu T, Sun L, H Pan Y, Sun H, Wang S. LncRNA S EZH2 expression by sponging miR-214 in colorectal cancer. J Henry 2010 12019; 12: 3.
- ZHONG J, MIN L, HUANG H, LI L, LI D, LI J, MA Z, DAI TH2 regulates the expression of p16 in the native ryngeal cancer cells. Technol Cancer Res Treat 2013; 12: 269-274.
- 33) Sun M, Nie F, Wang Y, Zhang Z, Hou J, He D, Xie M, Xu L, De W, Wang Z, Wang J. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Res 2016; 76: 6299-6310.
- 34) TAKEICHI M. Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol 1977; 75: 464-474.
- TAKEICHI M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991; 251: 1451-1455.
- 36) HIRANO S, NOSE A, HATTA K, KAWAKAMI A, TAKEICHI M. Calcium-dependent cell-cell adhesion molecules (cadherins): subclass specificities and possible involvement of actin bundles. J Cell Biol 1987; 105: 2501-2510.
- 37) GOULET CR, CHAMPAGNE A, BERNARD G, VANDAL D, CHABAUD S, POULIOT F, BOLDUC S. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer 2019; 19: 137.