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Abstract. — OBJECTIVE: Despite intensive ef-
fort to understand the genetic basis of type 2 di-
abetes, only a few genes responsible for rela-
tively rare monogenic and syndromic subsets of
diabetes are known; however, gene(s) responsi-
ble for genetic predispositions to common type
2 diabetes are unknown. The current study was
obtained a better understanding of the genetic
architecture of type 2 diabetes.

MATERIALS AND METHODS: Comprehensive
literature search was performed and the extracted
data was analyzed. The proportion of variance ex-
plained by validated genetic factors for a range of
metabolic quantitative traits was analyzed.

RESULTS: A fully elucidated landscape of type
2 diabetes genetics may well depict perhaps a
hundred or more common variants individually
with low impact on disease.

CONCLUSIONS: Every individual harbors a
combination of different risk alleles and only
special compilations of these variants in combi-
nation with other genetic and non-genetic com-
ponents will likely lead to disease.
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Introduction

Type 2 diabetes mellitus, obesity and the inflict-
ed complications are major global health problems
due to markedly increasing prevalence in both the
western world and in the developing countries'.
The total number of people worldwide with dia-
betes is projected to rise from 171 million in 2000
to 366 million in 2030 corresponding to a predict-
ed increase in prevalence from 6.0% in 2000 to
7.3% in 2030°. Type 2 diabetes is primarily caused
by obesity, insulin resistance in liver, skeletal mus-
cle and adipose tissue and a relative deficient in-
sulin secretion by the pancreatic b-cell**. More-
over, type 2 diabetes clusters with dyslipidemia
and hypertension; which together with insulin re-
sistance, glucose intolerance and visceral obesity

are hallmarks of the metabolic syndrome’. Type 2
diabetes is often accompanied by severe complica-
tions of the cardiovascular system, eyes and kid-
neys leading to increased morbidity and mortality
from cardiovascular disease (CVD) and end-stage
renal failure.

The large increase in incidence and prevalence
of type 2 diabetes and obesity seems to be largely
due to lifestyle changes such as high-fat diet and
physical inactivity, yet, several genetic epidemio-
logical studies demonstrate that both obesity and
type 2 diabetes are highly inherited traits®®. How-
ever, despite much research, the dissection of the
specific causes of these common disorders at the
molecular level is still in its infancy. More de-
tailed insights into the molecular mechanisms of
the metabolic diseases are thought to improve the
chances for a more targeted treatment and in
some cases also for prevention of disease devel-
opment.

For years it has been well-known that genetic
factors are crucially important for the development
of type 2 diabetes!®. Despite a great effort in seek-
ing to understand the molecular genetic basis, un-
til a few years ago, only a handful of genes re-
sponsible for relatively rare monogenic and syn-
dromic subsets of diabetes were detected and
progress in finding genetic predispositions to com-
mon type 2 diabetes was lacking. However, the
last couple of years have brought by a revolution
in genetics of common, complex traits leading to
renewed optimism for the validity of this research.
Despite this great success major tasks are still un-
done to fully understand the genetic architecture
of type 2 diabetes and related phenotypes.

Materials and Methods

Data Sources and Searches
Clinical literatures were identified via Ovid
MEDLINE, Ovid EMBASE, SCOPUS, and
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Cochrane Database (source, 1975 to 2012). Both
database-specific controlled vocabulary and gen-
eral free text terms were used to maximize re-
trieval. MeSH terms used were “type 2 diabetes”,
“genetic susceptibility”, “obesity”, “lipidemia”,
and “cardiovascular disease”. Searches were lim-
ited to literatures available in full text and hu-
mans within a valid limit within the database.
Hand searching of key article reference lists was
used to locate additional relevant articles. Eligi-
bility assessment and data abstraction were both
performed independently in an unblended stan-
dardized manned by 2 independent reviewers.

Data Extraction and Analysis

Results from all searches were combined and
duplicates were removed. Inclusive criteria were
studies describing general data (study design),
patients (number of included patients, mean age,
gender), type of diagnostic criteria and/or inter-
vention strategy used, timing of determination.
The outcomes of the collected manuscripts were
synthesized and formed the basis for further
analysis and description, which was done follow-
ing recommendations from the Cochrane Collab-
oration and the Quality of Reporting of Meta-
analyses guidelines'!. Exclusion criteria were (1)
initial diagnosis in reported patients was more
than 12 months from entry date into the study,
and (2) history of tumorigenesis in included pa-
tients that can severely confound conclusions. A
meta-analysis of the present and published stud-
ies was performed using RGui version 2.2.1
(available at http://www.r-project.org). The quali-
ty of the evidence for a specific outcome was
based on the study design, risk of bias, consisten-
cy of results, directness (generalizability), preci-
sion (sufficient data) and potential bias for the re-
porting of results across all studies that measured
that particular outcome.

Results

For several years progress in finding the mole-
cular genetic predisposition to type 2 diabetes
and other complex traits was sparse but the last
couple of years this has changed dramatically.
Yet despite the fact that at present 19 validated
risk-loci for type 2 diabetes, 36 loci for fasting
lipid levels and 18 loci influencing risk of obesity
have been found (Table I and data not shown) the
genetic background of these diseases and pheno-
types remain mostly obscure.

First this is due to the lack of biological and
functional knowledge of mechanisms behind
these new loci and genes. Massive efforts are
needed to find causal variants and elucidate bio-
logical pathways and pathogenic impact for this
growing list of associated variants. Second, for
all these metabolic traits the explained proportion
of the variance of the trait or of the genetic con-
tribution is rather low indicating the existence of
a number of other genetic risk elements.

In Figure 1 is shown the proportion of vari-
ance explained by validated genetic factors for a
range of metabolic quantitative traits in the popu-
lation-based Inter99 cohort. Analyses of insulino-
genic index and HOMA-IR included validated
type 2 diabetes variants and for fasting plasma
glucose, in addition, variants in GCK?’,
GO6PC244! and GCKR*2. Analyses of BMI and
lipids included a range of validated variants for
the specific traits, however not all validated vari-
ants were included. We saw that no single variant
for any trait explained more than 1% of variance.
Estimates of total variance explained by all vari-
ants for each trait ranged from ~1% for HOMA-
IR to ~3.5% for serum total cholesterol (Figure
1). These rather low estimates of variation in
quantitative metabolic traits explained by identi-
fied genetic variants are in agreement with find-
ings in the literature.

The two most recent GWA studies found ex-
plained proportion of the variance of triglyceride,
LDL- and HDL-cholesterol levels of 3-5%* or
somewhat higher estimates of 7-9%* when com-
bining nearly all risk loci. A combination of all
BMI associated loci may explain as little as 1%
of the variation in BMI®.

Estimating the explained proportion of type 2
diabetes by 19 validated variants is somewhat dif-
ferent given the categorical outcome data. From
family data it has been estimated that the sibling
relative risk, L, attributable, to the initial nine gene
variants was merely ~1.07'> compared to an esti-
mated Ig of 2-3 of type 2 diabetes*. Generally, it
has been stated that current genetics explain 5-
10% of the genetic component in type 2
diabetes*’. This aspect is also reflected in the
rather poor prediction potential of the common
validated type 2 diabetes variants estimated by re-
ceiver-operating characteristics (ROC) curves.
This procedure, when done in a longitudinal set-
ting, evaluates the potential to predict incident
type 2 diabetes cases from a glucose tolerant back-
ground population and the area under the curve
(AUC) can range from 0.5 (as by random) to 1
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Table I. Validated type 2 diabetes susceptibility loci.

Putative
Regional Discovery intermediary
Chr. gene(s) SNP ID RAF  method Cellular function mechanism OR Ref.
1p13  NOTCH2 rs10923931  0.11 GWA Regulator of cell differentiation Unknown .13 (12)
2p21 THADA 157578597 090 GWA Apoptosis Unknown 1.15  (12)
3pl4 ADAMTS9 154607103 0.76  GWA Proteolytic enzyme Unknown 1.09 (12)
3p25 PPARG Rs1801282  0.85 Candidate  Adipocyte function and Insulin resistance ~ 1.14  (13-15)
differentiation
3927 1GF2BP2 14402960 035 GWA Developmental growth and Insulin response 1.14  (15-18)
stimulation of insulin action
4p16  WESI rs10010131  0.60  Candidate  Endoplasmic reticulum
stress and
[3-cell apoptosis Insulin response (19-21)
6p22 CDKALI rs10946398 036 GWA Cell cycle regulation Insulin response (15-17,
in the p-cell 22, 23)
Tpl5 JAZF1 rs864745 050 GWA Zinc-finger protein with Insulin response 1.10 12,24
unknown function
8q24 SLC30A8 1513266634 0.72 GWA Zinc transporter in [3-cell Insulin response 1.15  (25,26)
insulin granules
9p21 CDKN2A, 1s10811661 0.86 GWA Cell cycle regulators Insulin response 1.20  (15-17)
CDKN2B
10p13 CDC123, rs12779790  0.18  GWA CDC123: cell cycle Insulin response 1.09 12,24
CAMKI1D regulation
CAMKI1D: Regulator of
granulocyte function
10923 HHEX, 1rs5015480 0.63 GWA HHEX: pancreatic Insulin response 1.15  (15-17),
IDE rs1111875 development; (23-26)
IDE: cellular processing
of insulin
11p15 KCNQI 1rs2237895 041 GWA Electrical depolarization Insulin response 1.25 27,28
of the cell membrane
11p15 KCNIJI11 rs5215 0.40  Candidate  Subunit of the f-cell Insulin response 1.14  (15-17),
K+ channel, involved 29, 30
in insulin secretion
11g21 MTNRIB rs10830963  0.27 GWA (QT) Receptor for melatonin Insulin response 1.15  (31-33)
12q14 TSPANS, rs7961581 027 GWA TSPANS: Cell surface
LGRS glycoprotein
LGRS: G protein-coupled Insulin response 1.09 12,24
receptor
16q12 FTO 1$9939609 040 GWA Possible hypothalamic effect Obesity 1.17  (15-17,
34-36)
17921 HNFIB rs4430796 0.47  Candidate  Transcription factor Unknown 1.10 37,38
(TCF2) influencing
pancreatic development

All loci have shown genome-wide statistical significance. Effect sizes are presented as odds ratio per allele and are based on
the currently available data. OR, odds ratio; RAF, risk allele frequency.

(perfect discrimination). In such a study, Van Hoek
et al*® showed that 18 of the type 2 diabetes sus-
ceptibility variants generated an area under the
ROC curve of 0.60. In a cohort study of ~19,000
subjects followed for ~23 years, Lyssenko et al*
similarly showed an increase in AUC from 0.74 to
0.75 to predict incident type 2 diabetes when
adding 16 genetic variants to conventional clinical
risk factors. In 2,377 participants of the Framing-
ham Offspring study 18 genetic variants, likewise,
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slightly improved the discriminative ability of
basal phenotype characteristics®. Corresponding
findings have been found in a cross sectional
study>'. Together these findings indicate that the
risk variants known at present have a weak poten-
tial for prediction with no clinical relevance at this
time. This lack of predictive ability may be due
both to incomplete understanding of genetic risk
factors as well as environmental factors not ac-
counted for in the analyses.
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Figure 1. Explained proportion of variance for a range of diabetes-related quantitative phenotypes in the population-based In-
ter99 cohort including participants with normal glucose tolerance, IFG, IGT or screen-detected treatment-naive type 2 diabetes.
For all traits a range of validated genome-wide significant variants is included. Analyses of insulinogenic index and HOMA-IR
include validated type 2 diabetes variants and fasting plasma glucose in addition variants in GCK, G6PC2 and GCKR. Analy-
ses of BMI and lipids included a range of validated variants for the specific trait, however not all validated variants were in-
cluded (data not shown). Estimates of total variance explained by all included variants were: Insulinogenic index: 3%, HOMA-
IR: 1%, fasting plasma glucose: 2.5%, BMI: 2%, serum total cholesterol: 3.5%, serum HDL-cholesterol: 1.5%. Analyses were

performed using RGui.

All these data imply that even by the most op-
timistic estimation only a fraction of the genetic
contribution to type 2 diabetes and related traits
has been explained by the current validated ge-
netic associations. This leaves a question as to
why this is the case. Hence, our subsequent aim
was to consider the different possibilities and
identify which factor or a combination of factors
can serve as explanation.

Discussion

More Low-Impact, High-Frequency Variants

As a clearer picture of the association of com-
mon nucleotide variants with common complex
traits emerges it is evident that with very few ex-
ceptions all loci infer only a modest increase in
risk of disease. A consequence of this is the no-

tion that all individual GWA studies for type 2
diabetes performed; thus, far have been statisti-
cally underpowered to detect the modest effect of
an individual locus3>33. Despite this fact, these
studies have been very successful in finding new
risk variants. This probably reflects the underly-
ing genetic background in the sense that what has
been identified is, besides maybe the three
strongest risk-alleles, a somewhat random subset
of a much larger panel of common susceptibility
variants with modest impact (OR below ~1.15)
on disease risk. This is underlined by the fact that
merging data from three samples of the initial
wave of GWA studies in the DIAGRAM consor-
tium disclosed six new genuine low-impact vari-
ants simply by increasing statistical power and
genomic coverage'2.

Despite the possibility that many more fre-
quent, low impact variants exist, they are not
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likely to neither greatly increase the explained
proportion of the genetic contribution neither to
type 2 diabetes nor to significantly improve the
area under the ROC curve for discrimination be-
tween type 2 diabetes cases and glucose-tolerant
individuals. In Figure 2A, ROC curves and corre-
sponding AUCs for three different scenarios of
common variants based on simulated data are
shown. These scenarios include common variants
(MAF 25%) with relative risk (RR) of 1.15 com-
bined with variants with a RR of 1.10. A RR of
1.15 and MAF of 25% is equivalent to the aver-
age type 2 diabetes variant identified thus far.
Simulations were done assuming an additive ge-
netic model since none of the validated variants
identified so far seem to substantially deviate
from this model**. Furthermore, these simula-
tions did not incorporate possible gene-gene in-

teraction. From the simulations it is evident that
increasing the number of common type 2 dia-
betes variants will also improve the discriminato-
ry ability; however, adding further variants with a
very modest effect size of ~10% risk-increase per
allele per SNP will not improve the AUC of the
ROC curve greatly (Figure 2A). Of course, the
predictive value of genetic testing, i.e. the AUC
of the ROC curve consisting of solely genetic da-
ta is limited by the heritability of the trait®.
These analyses indicated that a vast number of
genuine common risk alleles are needed in order
to explain type 2 diabetes and to achieve clinical
value in predictive testing. This point is also il-
lustrated using real data. In the Danish cross-sec-
tional case-control material, increasing the genet-
ic information from the three initially found
genes (PPARG, KCNJ11 and TCF7L2) to all cur-
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Figure 1. A, Receiver-operating characteristics (ROC) curves for simulated case-control data of common variants for three
different scenarios. Black line: 20 SNPs with a minor allele frequency (MAF) of 25% and relative risk (RR) of 1.15; AUC:
0.62. Red line: 50 SNPs with MAF 25% and RR 1.15; AUC: 0.69. Green line: 50 SNPs with MAF 25%, RR 1.15 and 50 SNPs
with MAF 25%, RR 1.10; AUC 0.72. Simulation of genotype data for 10,000 cases and 10,000 controls were done under the
assumption of a MAF of 25% in the population, an additive genetic model and a disease prevalence of 8%. ROC was per-
formed by logistic regression. Simulations and ROC were performed by RGui. B, Receiver-operating characteristics (ROC)
curves for simulated case-control data of a combination of common and rare variants for five different scenarios. Black line: 20
SNPs with a minor allele frequency (MAF) of 25% and relative risk (RR) of 1.15; AUC: 0.62. Red line: 50 SNPs with MAF
25%, RR 1.15 and 25 SNPs with MAF 2%, RR 1.5; AUC: 0.74. Green line: 50 SNPs with MAF 25%, RR 1.15 and 25 SNPs
with MAF 1%, RR 2; AUC: 0.75. Light blue line: 50 SNPs with MAF 25%, RR 1.15 and 25 SNPs with MAF 0.5%, RR 3;
AUC: 0.77. Blue line: 50 SNPs with MAF 25% RR 1.15, 50 SNPs with MAF 25%, RR 1.10, 25 SNPs with MAF 2%, RR 1.5,
25 SNPs with MAF 1%, RR 2 and 25 SNPs with MAF 0.5%, RR 3; AUC: 0.85. Simulations of genotype data for 10,000 cases
and 10,000 controls were done under the assumption of an additive genetic model and a disease prevalence of 8%. ROC was
performed by logistic regression. Simulations and ROC were performed by R Gui.
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rently validated 19 genes (Table I) only increased
the area under the ROC curve from 0.57 to 0.61
(data not shown). Similar observations are found
in British reports®!. Although the main limit for
future progress in finding susceptibility variants
with low effect is sample size, it may prove im-
practical to gather sufficiently large sample sets
to give a complete accounting.

Low-frequency and Structural Variants in
Common Disease

Most of the studies of genetics of type 2 dia-
betes and related traits for the past several years
have been based on the HapMap resource of se-
quence variation®® forming the basis for selection
of tag SNPs for candidate gene studies and for
genome-wide array platforms. While HapMap
offers good proxies for most common SNPs with
a frequency above 5%, the coverage rapidly de-
clines for alleles with lower frequency”’. Such
low-frequency variants may be particularly im-
portant as deleterious variants are maintained at
low frequency in the population by natural selec-
tion. Also analysis of HapMap data has illustrat-
ed that rare variants are more likely to be disease
predisposing than are common variants®®.

Variation below 5% in frequency can be inter-
mediate frequent with allele frequencies above
~0.5-1%. The panel of SNPs with such a fre-
quency can probably be characterized in the pop-
ulation and studied in regular association studies
with due respect to considerations of statistical
power. However, because of the high number of
intermediate frequent variants in the population,
constructing such a catalogue is a major task and
the abundance of SNPs poses further statistical
challenges for GWA studies®. Yet the relative
risk of disease may be substantially larger than
for common variants. It has been estimated that
30 variants with a frequency of 1% and an allelic
OR of 3 could explain all the residual inherited
risk of type 2 diabetes (314). In Figure 2B, are il-
lustrations of ROC curves for a combination of
common and low-frequency variations based on
simulated case-control data. It is evident that the
existence and identification of variants with
MATF of 0.5-2% but higher allelic effect sizes
(RR 1.5-3) will add significantly to enable genet-
ic variants to predict type 2 diabetes and to ex-
plain residual risk. The simulations indicate that
when combining 175 SNPs with RR between
1.10 and 3 and frequencies of 0.5-25% the AUC
will increase to 0.85 making it potentially clini-
cally useful. This ROC AUC is based solely on

genetic variants and it will increase further when
adding conventional clinical risk factors (e.g.
BMLI, fasting plasma glucose and insulin, age and
family history of type 2 diabetes) to the predic-
tion model. Also, it is possible that discoveries of
specific genetic risk variants may pinpoint novel
intermediate biomarkers which are stronger pre-
dictors of disease than the original genetic risk
component itself ¥,

All things considered, the frequency-spectrum
of functional susceptibility variants in complex
traits is probably wide, with ranges from rare to
common even within the same susceptibility
gene. Also, other types of genetic variation may
contribute to common disease at the population
level. Structural variants, as for instance copy-
number variation (CNV), may contribute to the
genetic component of type 2 diabetes. The dis-
covery and validation of CNVs is proceeding
rapidly®*®! and a study published in 2008 showed
proof-of-concept by associating a 593 kb micro
deletion and micro duplication with risk of
autism®?. Yet, the importance in inheritance of
common metabolic diseases remains to be deter-
mined. A fully elucidated landscape of type 2 di-
abetes genetics may well depict perhaps a hun-
dred or more common variants individually with
low impact on disease. Every individual harbors
a combination of different risk alleles and only
special compilations of these variants in combi-
nation with other genetic and non-genetic com-
ponents will likely lead to disease.
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