Genetic basis of type 2 diabetes – recommendations based on meta-analysis

J. LI, Y.-P. GONG, C.-L. LI, Y.-H. LU, Y. LIU, Y.-H. SHAO

Department of Geriatric Endocrinology, Chinese PLA General Hospital, Beijing, China *Jian Li* and *Yanping Gong* contributed equally to this work

Abstract. – OBJECTIVE: Despite intensive effort to understand the genetic basis of type 2 diabetes, only a few genes responsible for relatively rare monogenic and syndromic subsets of diabetes are known; however, gene(s) responsible for genetic predispositions to common type 2 diabetes are unknown. The current study was obtained a better understanding of the genetic architecture of type 2 diabetes.

MATERIALS AND METHODS: Comprehensive literature search was performed and the extracted data was analyzed. The proportion of variance explained by validated genetic factors for a range of metabolic quantitative traits was analyzed.

RESULTS: A fully elucidated landscape of type 2 diabetes genetics may well depict perhaps a hundred or more common variants individually with low impact on disease.

CONCLUSIONS: Every individual harbors a combination of different risk alleles and only special compilations of these variants in combination with other genetic and non-genetic components will likely lead to disease.

Kev Words.

Type 2 diabetes, Risk factors, Genetic variants, Meta-analysis.

Introduction

Type 2 diabetes mellitus, obesity and the inflicted complications are major global health problems due to markedly increasing prevalence in both the western world and in the developing countries¹. The total number of people worldwide with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030 corresponding to a predicted increase in prevalence from 6.0% in 2000 to 7.3% in 2030². Type 2 diabetes is primarily caused by obesity, insulin resistance in liver, skeletal muscle and adipose tissue and a relative deficient insulin secretion by the pancreatic b-cell^{3,4}. Moreover, type 2 diabetes clusters with dyslipidemia and hypertension; which together with insulin resistance, glucose intolerance and visceral obesity

are hallmarks of the metabolic syndrome⁵. Type 2 diabetes is often accompanied by severe complications of the cardiovascular system, eyes and kidneys leading to increased morbidity and mortality from cardiovascular disease (CVD) and end-stage renal failure.

The large increase in incidence and prevalence of type 2 diabetes and obesity seems to be largely due to lifestyle changes such as high-fat diet and physical inactivity, yet, several genetic epidemiological studies demonstrate that both obesity and type 2 diabetes are highly inherited traits⁶⁻⁹. However, despite much research, the dissection of the specific causes of these common disorders at the molecular level is still in its infancy. More detailed insights into the molecular mechanisms of the metabolic diseases are thought to improve the chances for a more targeted treatment and in some cases also for prevention of disease development.

For years it has been well-known that genetic factors are crucially important for the development of type 2 diabetes¹⁰. Despite a great effort in seeking to understand the molecular genetic basis, until a few years ago, only a handful of genes responsible for relatively rare monogenic and syndromic subsets of diabetes were detected and progress in finding genetic predispositions to common type 2 diabetes was lacking. However, the last couple of years have brought by a revolution in genetics of common, complex traits leading to renewed optimism for the validity of this research. Despite this great success major tasks are still undone to fully understand the genetic architecture of type 2 diabetes and related phenotypes.

Materials and Methods

Data Sources and Searches

Clinical literatures were identified via Ovid MEDLINE, Ovid EMBASE, SCOPUS, and

Cochrane Database (source, 1975 to 2012). Both database-specific controlled vocabulary and general free text terms were used to maximize retrieval. MeSH terms used were "type 2 diabetes", "genetic susceptibility", "obesity", "lipidemia", and "cardiovascular disease". Searches were limited to literatures available in full text and humans within a valid limit within the database. Hand searching of key article reference lists was used to locate additional relevant articles. Eligibility assessment and data abstraction were both performed independently in an unblended standardized manned by 2 independent reviewers.

Data Extraction and Analysis

Results from all searches were combined and duplicates were removed. Inclusive criteria were studies describing general data (study design), patients (number of included patients, mean age, gender), type of diagnostic criteria and/or intervention strategy used, timing of determination. The outcomes of the collected manuscripts were synthesized and formed the basis for further analysis and description, which was done following recommendations from the Cochrane Collaboration and the Quality of Reporting of Metaanalyses guidelines¹¹. Exclusion criteria were (1) initial diagnosis in reported patients was more than 12 months from entry date into the study, and (2) history of tumorigenesis in included patients that can severely confound conclusions. A meta-analysis of the present and published studies was performed using RGui version 2.2.1 (available at http://www.r-project.org). The quality of the evidence for a specific outcome was based on the study design, risk of bias, consistency of results, directness (generalizability), precision (sufficient data) and potential bias for the reporting of results across all studies that measured that particular outcome.

Results

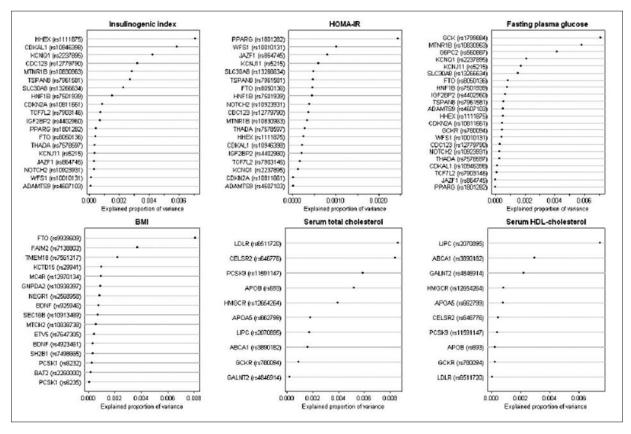
For several years progress in finding the molecular genetic predisposition to type 2 diabetes and other complex traits was sparse but the last couple of years this has changed dramatically. Yet despite the fact that at present 19 validated risk-loci for type 2 diabetes, 36 loci for fasting lipid levels and 18 loci influencing risk of obesity have been found (Table I and data not shown) the genetic background of these diseases and phenotypes remain mostly obscure.

First this is due to the lack of biological and functional knowledge of mechanisms behind these new loci and genes. Massive efforts are needed to find causal variants and elucidate biological pathways and pathogenic impact for this growing list of associated variants. Second, for all these metabolic traits the explained proportion of the variance of the trait or of the genetic contribution is rather low indicating the existence of a number of other genetic risk elements.

In Figure 1 is shown the proportion of variance explained by validated genetic factors for a range of metabolic quantitative traits in the population-based Inter99 cohort. Analyses of insulinogenic index and HOMA-IR included validated type 2 diabetes variants and for fasting plasma glucose, in addition, variants in GCK³⁹, G6PC2^{40,41} and GCKR⁴². Analyses of BMI and lipids included a range of validated variants for the specific traits, however not all validated variants were included. We saw that no single variant for any trait explained more than 1% of variance. Estimates of total variance explained by all variants for each trait ranged from ~1% for HOMA-IR to ~3.5% for serum total cholesterol (Figure 1). These rather low estimates of variation in quantitative metabolic traits explained by identified genetic variants are in agreement with findings in the literature.

The two most recent GWA studies found explained proportion of the variance of triglyceride, LDL- and HDL-cholesterol levels of 3-5%⁴³ or somewhat higher estimates of 7-9%⁴⁴ when combining nearly all risk loci. A combination of all BMI associated loci may explain as little as 1% of the variation in BMI⁴⁵.

Estimating the explained proportion of type 2 diabetes by 19 validated variants is somewhat different given the categorical outcome data. From family data it has been estimated that the sibling relative risk, l_s, attributable, to the initial nine gene variants was merely ~1.0715 compared to an estimated 1_s of 2-3 of type 2 diabetes⁴⁶. Generally, it has been stated that current genetics explain 5-10% of the genetic component in type 2 diabetes⁴⁷. This aspect is also reflected in the rather poor prediction potential of the common validated type 2 diabetes variants estimated by receiver-operating characteristics (ROC) curves. This procedure, when done in a longitudinal setting, evaluates the potential to predict incident type 2 diabetes cases from a glucose tolerant background population and the area under the curve (AUC) can range from 0.5 (as by random) to 1


Table I. Validated type 2 diabetes susceptibility loci.

Chr.	Regional gene(s)	SNP ID	RAF	Discovery method	Cellular function	Putative intermediary mechanism	OR	Ref.
1p13	NOTCH2	rs10923931	0.11	GWA	Regulator of cell differentiation	Unknown	1.13	(12)
2p21	THADA	rs7578597	0.11	GWA	Apoptosis	Unknown	1.15	(12)
3p14	ADAMTS9	rs4607103	0.76	GWA	Proteolytic enzyme	Unknown	1.09	(12)
3p25	PPARG	Rs1801282	0.85	Candidate	Adipocyte function and differentiation	Insulin resistance	1.14	(13-15)
3q27	IGF2BP2	rs4402960	0.35	GWA	Developmental growth and stimulation of insulin action	Insulin response	1.14	(15-18)
4p16	WFS1	rs10010131	0.60	Candidate	Endoplasmic reticulum stress and			
					β-cell apoptosis	Insulin response	1.11	(19-21)
6p22	CDKAL1	rs10946398	0.36	GWA	Cell cycle regulation	Insulin response	1.14	(15-17,
					in the β-cell			22, 23)
7p15	JAZF1	rs864745	0.50	GWA	Zinc-finger protein with unknown function	Insulin response	1.10	12, 24
8q24	SLC30A8	rs13266634	0.72	GWA	Zinc transporter in β-cell insulin granules	Insulin response	1.15	(25, 26)
9p21	CDKN2A,	rs10811661 CDKN2B	0.86	GWA	Cell cycle regulators	Insulin response	1.20	(15-17)
10p13	CDC123,	rs12779790 CAMK1D	0.18	GWA	CDC123: cell cycle regulation CAMK1D: Regulator of	Insulin response	1.09	12, 24
10q23	HHEX, IDE	rs5015480 rs1111875	0.63	GWA	granulocyte function HHEX: pancreatic development; IDE: cellular processing of insulin	Insulin response	1.15	(15-17), (23-26)
11p15	KCNQ1	rs2237895	0.41	GWA	Electrical depolarization of the cell membrane	Insulin response	1.25	27, 28
11p15	KCNJ11	rs5215	0.40	Candidate	Subunit of the β-cell K+ channel, involved in insulin secretion	Insulin response	1.14	(15-17), 29, 30
11q21 12q14	MTNR1B TSPAN8,	rs10830963 rs7961581	0.27 0.27	GWA (QT) GWA	Receptor for melatonin TSPAN8: Cell surface	Insulin response	1.15	(31-33)
		LGR5			glycoprotein LGR5: G protein-coupled receptor	Insulin response	1.09	12, 24
16q12	FTO	rs9939609	0.40	GWA	Possible hypothalamic effect	Obesity	1.17	(15-17, 34-36)
17q21	HNF1B	rs4430796 (TCF2)	0.47	Candidate	Transcription factor influencing pancreatic development	Unknown	1.10	37, 38

All loci have shown genome-wide statistical significance. Effect sizes are presented as odds ratio per allele and are based on the currently available data. OR, odds ratio; RAF, risk allele frequency.

(perfect discrimination). In such a study, Van Hoek et al⁴⁸ showed that 18 of the type 2 diabetes susceptibility variants generated an area under the ROC curve of 0.60. In a cohort study of ~19,000 subjects followed for ~23 years, Lyssenko et al⁴⁹ similarly showed an increase in AUC from 0.74 to 0.75 to predict incident type 2 diabetes when adding 16 genetic variants to conventional clinical risk factors. In 2,377 participants of the Framingham Offspring study 18 genetic variants, likewise,

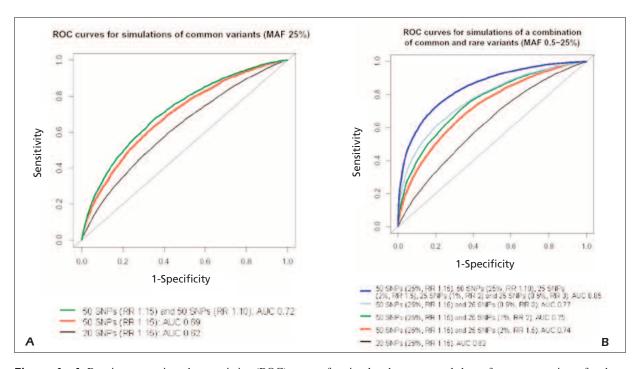
slightly improved the discriminative ability of basal phenotype characteristics⁵⁰. Corresponding findings have been found in a cross sectional study⁵¹. Together these findings indicate that the risk variants known at present have a weak potential for prediction with no clinical relevance at this time. This lack of predictive ability may be due both to incomplete understanding of genetic risk factors as well as environmental factors not accounted for in the analyses.

Figure 1. Explained proportion of variance for a range of diabetes-related quantitative phenotypes in the population-based Inter99 cohort including participants with normal glucose tolerance, IFG, IGT or screen-detected treatment-naive type 2 diabetes. For all traits a range of validated genome-wide significant variants is included. Analyses of insulinogenic index and HOMA-IR include validated type 2 diabetes variants and fasting plasma glucose in addition variants in GCK, G6PC2 and GCKR. Analyses of BMI and lipids included a range of validated variants for the specific trait, however not all validated variants were included (data not shown). Estimates of total variance explained by all included variants were: Insulinogenic index: 3%, HOMA-IR: 1%, fasting plasma glucose: 2.5%, BMI: 2%, serum total cholesterol: 3.5%, serum HDL-cholesterol: 1.5%. Analyses were performed using RGui.

All these data imply that even by the most optimistic estimation only a fraction of the genetic contribution to type 2 diabetes and related traits has been explained by the current validated genetic associations. This leaves a question as to why this is the case. Hence, our subsequent aim was to consider the different possibilities and identify which factor or a combination of factors can serve as explanation.

Discussion

More Low-Impact, High-Frequency Variants


As a clearer picture of the association of common nucleotide variants with common complex traits emerges it is evident that with very few exceptions all loci infer only a modest increase in risk of disease. A consequence of this is the no-

tion that all individual GWA studies for type 2 diabetes performed; thus, far have been statistically underpowered to detect the modest effect of an individual locus^{52,53}. Despite this fact, these studies have been very successful in finding new risk variants. This probably reflects the underlying genetic background in the sense that what has been identified is, besides maybe the three strongest risk-alleles, a somewhat random subset of a much larger panel of common susceptibility variants with modest impact (OR below ~1.15) on disease risk. This is underlined by the fact that merging data from three samples of the initial wave of GWA studies in the DIAGRAM consortium disclosed six new genuine low-impact variants simply by increasing statistical power and genomic coverage¹².

Despite the possibility that many more frequent, low impact variants exist, they are not

likely to neither greatly increase the explained proportion of the genetic contribution neither to type 2 diabetes nor to significantly improve the area under the ROC curve for discrimination between type 2 diabetes cases and glucose-tolerant individuals. In Figure 2A, ROC curves and corresponding AUCs for three different scenarios of common variants based on simulated data are shown. These scenarios include common variants (MAF 25%) with relative risk (RR) of 1.15 combined with variants with a RR of 1.10. A RR of 1.15 and MAF of 25% is equivalent to the average type 2 diabetes variant identified thus far. Simulations were done assuming an additive genetic model since none of the validated variants identified so far seem to substantially deviate from this model⁵⁴. Furthermore, these simulations did not incorporate possible gene-gene interaction. From the simulations it is evident that increasing the number of common type 2 diabetes variants will also improve the discriminatory ability; however, adding further variants with a very modest effect size of ~10% risk-increase per allele per SNP will not improve the AUC of the ROC curve greatly (Figure 2A). Of course, the predictive value of genetic testing, i.e. the AUC of the ROC curve consisting of solely genetic data is limited by the heritability of the trait⁵⁵.

These analyses indicated that a vast number of genuine common risk alleles are needed in order to explain type 2 diabetes and to achieve clinical value in predictive testing. This point is also illustrated using real data. In the Danish cross-sectional case-control material, increasing the genetic information from the three initially found genes (PPARG, KCNJ11 and TCF7L2) to all cur-

Figure 1. *A,* Receiver-operating characteristics (ROC) curves for simulated case-control data of common variants for three different scenarios. Black line: 20 SNPs with a minor allele frequency (MAF) of 25% and relative risk (RR) of 1.15; AUC: 0.62. Red line: 50 SNPs with MAF 25% and RR 1.15; AUC: 0.69. Green line: 50 SNPs with MAF 25%, RR 1.15 and 50 SNPs with MAF 25%, RR 1.10; AUC 0.72. Simulation of genotype data for 10,000 cases and 10,000 controls were done under the assumption of a MAF of 25% in the population, an additive genetic model and a disease prevalence of 8%. ROC was performed by logistic regression. Simulations and ROC were performed by RGui. *B,* Receiver-operating characteristics (ROC) curves for simulated case-control data of a combination of common and rare variants for five different scenarios. Black line: 20 SNPs with a minor allele frequency (MAF) of 25% and relative risk (RR) of 1.15; AUC: 0.62. Red line: 50 SNPs with MAF 25%, RR 1.15 and 25 SNPs with MAF 1%, RR 2; AUC: 0.75. Light blue line: 50 SNPs with MAF 25%, RR 1.15 and 25 SNPs with MAF 25%, RR 1.15, 25 SNPs with MAF 25%, RR 1.15, SNPs with MAF 25%, RR 1.10, 25 SNPs with MAF 26, RR 1.5, 25 SNPs with MAF 1%, RR 2 and 25 SNPs with MAF 0.5%, RR 3; AUC: 0.85. Simulations of genotype data for 10,000 cases and 10,000 controls were done under the assumption of an additive genetic model and a disease prevalence of 8%. ROC was performed by logistic regression. Simulations and ROC were performed by R Gui.

rently validated 19 genes (Table I) only increased the area under the ROC curve from 0.57 to 0.61 (data not shown). Similar observations are found in British reports⁵¹. Although the main limit for future progress in finding susceptibility variants with low effect is sample size, it may prove impractical to gather sufficiently large sample sets to give a complete accounting.

Low-frequency and Structural Variants in Common Disease

Most of the studies of genetics of type 2 diabetes and related traits for the past several years have been based on the HapMap resource of sequence variation⁵⁶ forming the basis for selection of tag SNPs for candidate gene studies and for genome-wide array platforms. While HapMap offers good proxies for most common SNPs with a frequency above 5%, the coverage rapidly declines for alleles with lower frequency⁵⁷. Such low-frequency variants may be particularly important as deleterious variants are maintained at low frequency in the population by natural selection. Also analysis of HapMap data has illustrated that rare variants are more likely to be disease predisposing than are common variants⁵⁸.

Variation below 5% in frequency can be intermediate frequent with allele frequencies above ~0.5-1%. The panel of SNPs with such a frequency can probably be characterized in the population and studied in regular association studies with due respect to considerations of statistical power. However, because of the high number of intermediate frequent variants in the population, constructing such a catalogue is a major task and the abundance of SNPs poses further statistical challenges for GWA studies⁵⁸. Yet the relative risk of disease may be substantially larger than for common variants. It has been estimated that 30 variants with a frequency of 1% and an allelic OR of 3 could explain all the residual inherited risk of type 2 diabetes (314). In Figure 2B, are illustrations of ROC curves for a combination of common and low-frequency variations based on simulated case-control data. It is evident that the existence and identification of variants with MAF of 0.5-2% but higher allelic effect sizes (RR 1.5-3) will add significantly to enable genetic variants to predict type 2 diabetes and to explain residual risk. The simulations indicate that when combining 175 SNPs with RR between 1.10 and 3 and frequencies of 0.5-25% the AUC will increase to 0.85 making it potentially clinically useful. This ROC AUC is based solely on genetic variants and it will increase further when adding conventional clinical risk factors (e.g. BMI, fasting plasma glucose and insulin, age and family history of type 2 diabetes) to the prediction model. Also, it is possible that discoveries of specific genetic risk variants may pinpoint novel intermediate biomarkers which are stronger predictors of disease than the original genetic risk component itself ⁵⁹.

All things considered, the frequency-spectrum of functional susceptibility variants in complex traits is probably wide, with ranges from rare to common even within the same susceptibility gene. Also, other types of genetic variation may contribute to common disease at the population level. Structural variants, as for instance copynumber variation (CNV), may contribute to the genetic component of type 2 diabetes. The discovery and validation of CNVs is proceeding rapidly^{60,61} and a study published in 2008 showed proof-of-concept by associating a 593 kb micro deletion and micro duplication with risk of autism⁶². Yet, the importance in inheritance of common metabolic diseases remains to be determined. A fully elucidated landscape of type 2 diabetes genetics may well depict perhaps a hundred or more common variants individually with low impact on disease. Every individual harbors a combination of different risk alleles and only special compilations of these variants in combination with other genetic and non-genetic components will likely lead to disease.

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

- ZIMMET P, ALBERTI KG, SHAW J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782-787.
- WILD S, ROGLIC G, GREEN A, SICREE R, KING H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047-1053.
- 3) DEFRONZO RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 2004; 88: 787-835.
- STUMVOLL M, GOLDSTEIN BJ, VAN HAEFTEN TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365: 1333-1346.
- REAVEN G. The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol Metab Clin North Am 2004; 33: 283-303.

- STUNKARD AJ, HARRIS JR, PEDERSEN NL, McCLEARN GE. The body-mass index of twins who have been reared apart. N Engl J Med 1990; 322: 1483-1487.
- KAPRIO J, TUOMILEHTO J, KOSKENVUO M, ROMANOV K, REUNANEN A, ERIKSSON J, STENGÅRD J, KESÄNIEMI YA. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a populationbased cohort of twins in Finland. Diabetologia 1992; 35: 1060-1067.
- ALLISON DB, KAPRIO J, KORKEILA M, KOSKENVUO M, NEALE MC, HAYAKAWA K. The heritability of body mass index among an international sample of monozygotic twins reared apart. Int J Obes Relat Metab Disord 1996; 20: 501-506.
- NEWMAN B, SELBY JV, KING MC, SLEMENDA C, FABSITZ R, FRIEDMAN GD. Concordance for type 2 (non-insulin dependent) diabetes mellitus in male twins. Diabetologia 1987; 30: 763-768.
- FLOREZ JC, HIRSCHHORN J, ALTSHULER D. The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet 2003; 4: 257-291.
- MOHER D, COOK DJ, EASTWOOD S, OLKIN I, RENNIE D, STROUP DF. Improving the quality of reports of meta-analyses of randomized controlled trials: the QUOROM statement: quality of reporting of metaanalyses. Lancet 1999; 354: 1896-1900.
- 12) ZEGGINI E, SCOTT LJ, SAXENA R, VOIGHT BF, MARCHINI JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, An-DERSEN G, ARDLIE K, BOSTRÖM KB, BERGMAN RN, BON-NYCASTLE LL, BORCH-JOHNSEN K, BURTT NP, CHEN H, CHINES PS, DALY MJ, DEODHAR P, DING CJ, DONEY AS, DUREN WL, ELLIOTT KS, ERDOS MR, FRAYLING TM, Freathy RM, Gianniny L, Grallert H, Grarup N, Groves CJ, Guiducci C, Hansen T, Herder C, Hitman GA, HUGHES TE, ISOMAA B, JACKSON AU, JØRGENSEN T, Kong A, Kubalanza K, Kuruvilla FG, Kuusisto J, LANGENBERG C, LANGO H, LAURITZEN T, LI Y, LINDGREN CM, Lyssenko V, Marvelle AF, Meisinger C, Midthjell K, Mohlke KL, Morken MA, Morris AD, Narisu N, NILSSON P, OWEN KR, PALMER CN, PAYNE F, PERRY JR, PETTERSEN E, PLATOU C, PROKOPENKO I, QI L, QIN L, RAYNER NW, REES M, ROIX JJ, SANDBAEK A, SHIELDS B, Sjögren M, Steinthorsdottir V, Stringham HM, Swift AJ, THORLEIFSSON G, THORSTEINSDOTTIR U, TIMPSON NJ, TUOMI T, TUOMILEHTO J, WALKER M, WATANABE RM, WEEDON MN, WILLER CJ; WELLCOME TRUST CASE CONtrol Consortium, Illig T, Hveem K, Hu FB, Laakso M, Stefansson K, Pedersen O, Wareham NJ, Bar-ROSO I, HATTERSLEY AT, COLLINS FS, GROOP L, MC-CARTHY MI, BOEHNKE M, ALTSHULER D. Metaanalysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40: 638-645.
- 13) DEEB SS, FAJAS L, NEMOTO M, PIHLAJAMÄKI J, MYKKÄ-NEN L, KUUSISTO J, LAAKSO M, FUJIMOTO W, AUWERX J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998; 20: 284-287.
- 14) Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner

- SF, BOLK S, BREWER C, TUOMI T, GAUDET D, HUDSON TJ, DALY M, GROOP L, LANDER ES. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26: 76-80.
- 15) ZEGGINI E, WEEDON MN, LINDGREN CM, FRAYLING TM, ELLIOTT KS, LANGO H, TIMPSON NJ, PERRY JR, RAYNER NW, FREATHY RM, BARRETT JC, SHIELDS B, MORRIS AP, ELLARD S, GROVES CJ, HARRIES LW, MARCHINI JL, OWEN KR, KNIGHT B, CARDON LR, WALKER M, HITMAN GA, MORRIS AD, DONEY AS; WELLCOME TRUST CASE CONTROL CONSORTIUM (WTCCC), MCCARTHY MI, HATTERSLEY AT. Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes. Science 2007; 316: 1336-1341.
- 16) SCOTT LJ, MOHLKE KL, BONNYCASTLE LL, WILLER CJ, LI Y, DUREN WL, ERDOS MR, STRINGHAM HM, CHINES PS, JACKSON AU, PROKUNINA-OLSSON L, DING CJ, SWIFT AJ, NARISU N, HU T, PRUIM R, XIAO R, LI XY, CONNEELY KN, RIEBOW NL, SPRAU AG, TONG M, WHITE PP, HETRICK KN, BARNHART MW, BARK CW, GOLDSTEIN JL, WATKINS L, XIANG F, SARAMIES J, BUCHANAN TA, WATANABE RM, VALLE TT, KINNUNEN L, ABECASIS GR, PUGH EW, DOHENY KF, BERGMAN RN, TUOMILEHTO J, COLLINS FS, BOEHNKE M. A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science 2007; 316: 1341-1345.
- 17) DIABETES GENETICS INITIATIVE OF BROAD INSTITUTE OF HARVARD AND MIT LUND UNIVERSITY AND NOVARTIS INSTITUTES OF BIOMEDICAL RESEARCH, SAXENA R, VOIGHT BF, LYSSENKO V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316: 1331-1336.
- 18) GRARUP N, ROSE CS, ANDERSSON EA, ANDERSEN G, NIELSEN AL, ALBRECHTSEN A, CLAUSEN JO, RASMUSSEN SS, JØRGENSEN T, SANDBAEK A, LAURITZEN T, SCHMITZ O, HANSEN T, PEDERSEN O. Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 2007; 56: 3105-3111.
- 19) SANDHU MS, WEEDON MN, FAWCETT KA, WASSON J, DEBENHAM SL, DALY A, LANGO H, FRAYLING TM, NEUMANN RJ, SHERVA R, BLECH I, PHAROAH PD, PALMER CN, KIMBER C, TAVENDALE R, MORRIS AD, MCCARTHY MI, WALKER M, HITMAN G, GLASER B, PERMUTT MA, HATTERSLEY AT, WAREHAM NJ, BARROSO I. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 2007;39: 951-953.
- 20) FRANKS PW, ROLANDSSON O, DEBENHAM SL, FAWCETT KA, PAYNE F, DINA C, FROGUEL P, MOHLKE KL, WILLER C, OLSSON T, WAREHAM NJ, HALLMANS G, BARROSO I, SANDHU MS. Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia 2008; 51: 458-463.
- 21) FLOREZ JC, JABLONSKI KA, McATEER J, SANDHU MS, WAREHAM NJ, BARROSO I, FRANKS PW, ALTSHULER D, KNOWLER WC. Diabetes Prevention Program Re-

- search Group: Testing of diabetes-associated WFS1 polymorphisms in the Diabetes Prevention Program. Diabetologia 2008; 51: 451-457.
- 22) STEINTHORSDOTTIR V, THORLEIFSSON G, REYNISDOTTIR I, BENEDIKTSSON R, JONSDOTTIR T, WALTERS GB, STYRKARSDOTTIR U, GRETARSDOTTIR S, EMILSSON V, GHOSH S, BAKER A, SNORRADOTTIR S, BJARNASON H, NG MC, HANSEN T, BAGGER Y, WILENSKY RL, REILLY MP, ADEYEMO A, CHEN Y, ZHOU J, GUDNASON V, CHEN G, HUANG H, LASHLEY K, DOUMATEY A, SO WY, MA RC, ANDERSEN G, BORCH-JOHNSEN K, JORGENSEN T, VAN VLIET-OSTAPTCHOUK JV, HOFKER MH, WIJMENGA C, CHRISTIANSEN C, RADER DJ, ROTIMI C, GURNEY M, CHAN JC, PEDERSEN O, SIGURDSSON G, GULCHER JR, THORSTEINSDOTTIR U, KONG A, STEFANSSON K. A VARIANT IN CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 2007; 39: 770-775.
- 23) PASCOE L, TURA A, PATEL SK, IBRAHIM IM, FERRANNINI E, ZEGGINI E, WEEDON MN, MARI A, HATTERSLEY AT, MC-CARTHY MI, FRAYLING TM, WALKER M. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes 2007; 56: 3101-3104.
- 24) GRARUP N, ANDERSEN G, KRARUP NT, ALBRECHTSEN A, SCHMITZ O, JØRGENSEN T, BORCH-JOHNSEN K, HANSEN T, PEDERSEN O. Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes. Diabetes 2008; 57: 2534- 2540.
- 25) STAIGER H, MACHICAO F, STEFAN N, TSCHRITTER O, THAMER C, KANTARTZIS K, SCHÄFER SA, KIRCHHOFF K, FRITSCHE A, HÄRING HU. Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function. PLoS ONE 2007; 2: e832.
- 26) SLADEK R, ROCHELEAU G, RUNG J, DINA C, SHEN L, SERRE D, BOUTIN P, VINCENT D, BELISLE A, HADJADJ S, BALKAU B, HEUDE B, CHARPENTIER G, HUDSON TJ, MONTPETIT A, PSHEZHETSKY AV, PRENTKI M, POSNER BI, BALDING DJ, MEYRE D, POLYCHRONAKOS C, FROGUEL P. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445: 881-885.
- 27) Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, Hirota Y, Mori H, Jonsson A, Sato Y, Yamagata K, Hinokio Y, Wang HY, Tanahashi T, Nakamura N, Oka Y, Iwasaki N, Iwamoto Y, Yamada Y, Seino Y, Maegawa H, Kashiwagi A, Takeda J, Maeda E, Shin HD, Cho YM, Park KS, Lee HK, Ng MC, Ma RC, So WY, Chan JC, Lyssenko V, Tuomi T, Nilsson P, Groop L, Kamatani N, Sekine A, Nakamura Y, Yamamoto K, Yoshida T, Tokunaga K, Itakura M, Makino H, Nanjo K, Kadowaki T, Kasuga M. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 2008; 40: 1092-1097.
- 28) Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, Ng DP, Holmkvist J, Borch-Johnsen K, Jørgensen T, Sandbaek A, Lauritzen T, Hansen T, Nurbaya S, Tsunoda T, Kubo M,

- BABAZONO T, HIROSE H, HAYASHI M, IWAMOTO Y, KASHI-WAGI A, KAKU K, KAWAMORI R, TAI ES, PEDERSEN O, KAMATANI N, KADOWAKI T, KIKKAWA R, NAKAMURA Y, MAEDA S. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 2008; 40: 1098-1102.
- 29) GLOYN AL, WEEDON MN, OWEN KR, TURNER MJ, KNIGHT BA, HITMAN G, WALKER M, LEVY JC, SAMPSON M, HALFORD S, McCARTHY MI, HATTERSLEY AT, FRAYLING TM. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003; 52: 568-572.
- 30) NIELSEN EM, HANSEN L, CARSTENSEN B, ECHWALD SM, DRIVSHOLM T, GLÜMER C, THORSTEINSSON B, BORCH-JOHNSEN K, HANSEN T, PEDERSEN O. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 2003; 52: 573-577.
- 31) LYSSENKO V, NAGORNY CL, ERDOS MR, WIERUP N, JONSSON A, SPÉGEL P, BUGLIANI M, SAXENA R, FEX M, PULIZZI N, ISOMAA B, TUOMI T, NILSSON P, KUUSISTO J, TUOMILEHTO J, BOEHNKE M, ALTSHULER D, SUNDLER F, ERIKSSON JG, JACKSON AU, LAAKSO M, MARCHETTI P, WATANABE RM, MULDER H, GROOP L. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet 2009; 41: 82-88.
- 32) BOUATIA-NAJI N, BONNEFOND A, CAVALCANTI-PROENÇA C, SPARSØ T, HOLMKVIST J, MARCHAND M, DELPLANQUE J, LOBBENS S, ROCHELEAU G, DURAND E, DE GRAEVE F, CHÈVRE JC, BORCH-JOHNSEN K, HARTIKAINEN AL, RUOKONEN A, TICHET J, MARRE M, WEILL J, HEUDE B, TAUBER M, LEMAIRE K, SCHUIT F, ELLIOTT P, JØRGENSEN T, CHARPENTIER G, HADJADJ S, CAUCHI S, VAXILLAIRE M, SLADEK R, VISVIKIS-SIEST S, BALKAU B, LÉVY-MARCHAL C, PATTOU F, MEYRE D, BLAKEMORE AI, JARVELIN MR, WALLEY AJ, HANSEN T, DINA C, PEDERSEN O, FROGUEL P. A VARIANT NEAR MINISTRA SASSOCIATED WITH INCREASED FASSING PLASMA GUICOSE IEVEIS AND TYPE 2 diabetes risk. Nat Genet 2009; 41: 89-94.
- 33) PROKOPENKO I, LANGENBERG C, FLOREZ JC, SAXENA R, Soranzo N, Thorleifsson G, Loos RJ, Manning AK, JACKSON AU, AULCHENKO Y, POTTER SC, ERDOS MR, Sanna S, Hottenga JJ, Wheeler E, Kaakinen M, LYSSENKO V, CHEN WM, AHMADI K, BECKMANN JS, BERGMAN RN, BOCHUD M, BONNYCASTLE LL, BUCHANAN TA, CAO A, CERVINO A, COIN L, COLLINS FS, CRISPONI L, DE GEUS EJ, DEHGHAN A, DELOUKAS P, DONEY AS, ELLIOTT P, FREIMER N, GATEVA V, HERDER C, HOFMAN A, HUGHES TE, HUNT S, ILLIG T, INOUYE M, ISOMAA B, Johnson T, Kong A, Krestyaninova M, Kuusisto J, LAAKSO M, LIM N, LINDBLAD U, LINDGREN CM, MC-Cann OT, Mohlke KL, Morris AD, Naitza S, Orrù M, Palmer CN, Pouta A, Randall J, Rathmann W, SARAMIES J, SCHEET P, SCOTT LJ, SCUTERI A, SHARP S, SI-JBRANDS E, SMIT JH, SONG K, STEINTHORSDOTTIR V, Stringham HM, Tuomi T, Tuomilehto J, Uitterlinden AG, VOIGHT BF, WATERWORTH D, WICHMANN HE, WILLEMSEN G, WITTEMAN JC, YUAN X, ZHAO JH, ZEGGI-

- NI E, SCHLESSINGER D, SANDHU M, BOOMSMA DI, UDA M, SPECTOR TD, PENNINX BW, ALTSHULER D, VOLLEN-WEIDER P, JARVELIN MR, LAKATTA E, WAEBER G, FOX CS, PELTONEN L, GROOP LC, MOOSER V, CUPPLES LA, THORSTEINSDOTTIR U, BOEHNKE M, BARROSO I, VAN DUJN C, DUPUIS J, WATANABE RM, STEFANSSON K, MCCARTHY MI, WAREHAM NJ, MEIGS JB, ABECASIS GR. VARIANTS IN MTNR1B influence fasting glucose levels. Nat Genet 2009: 41: 77-81.
- 34) FRAYLING TM, TIMPSON NJ, WEEDON MN, ZEGGINI E, FREATHY RM, LINDGREN CM, PERRY JR, ELLIOTT KS, LANGO H, RAYNER NW, SHIELDS B, HARRIES LW, BARRETT JC, ELLARD S, GROVES CJ, KNIGHT B, PATCH AM, NESS AR, EBRAHIM S, LAWLOR DA, RING SM, BEN-SHLOMO Y, JARVELIN MR, SOVIO U, BENNETT AJ, MELZER D, FERUCCI L, LOOS RJ, BARROSO I, WAREHAM NJ, KARPE F, OWEN KR, CARDON LR, WALKER M, HITMAN GA, PALMER CN, DONEY AS, MORRIS AD, SMITH GD, HATTERSLEY AT, MCCARTHY MI. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316: 889-894.
- 35) DINA C, MEYRE D, GALLINA S, DURAND E, KÖRNER A, JACOBSON P, CARLSSON LM, KIESS W, VATIN V, LECOEUR C, DELPLANQUE J, VAILLANT E, PATTOU F, RUIZ J, WEILL J, LEVY-MARCHAL C, HORBER F, POTOCZNA N, HERCBERG S, LE STUNFF C, BOUGNÈRES P, KOVACS P, MARRE M, BALKAU B, CAUCHI S, CHÈVRE JC, FROGUEL P. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 2007; 39: 724-726.
- 36) Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Naujar S, Nagaraja R, Orrú M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 2007; 3: e115.
- 37) WINCKLER W, WEEDON MN, GRAHAM RR, MCCARROLL SA, PURCELL S, ALMGREN P, TUOMI T, GAUDET D, BOSTRÖM KB, WALKER M, HITMAN G, HATTERSLEY AT, MCCARTHY MI, ARDLIE KG, HIRSCHHORN JN, DALY MJ, FRAYLING TM, GROOP L, ALTSHULER D. Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes 2007; 56: 685-693.
- 38) Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, Manolescu A, Rafnar T, Gudbjartsson D, Agnarsson BA, Baker A, Sigurdsson A, Benediktsdottir KR, Jakobsdottir M, Blondal T, Stacey SN, Helgason A, Gunnarsdottir S, Olafsdottir A, Kristinsson KT, Birgisdottir B, Ghosh S, Thorlacius S, Magnusdottir D, Stefansdottir G, Kristjansson K, Bagger Y, Wilensky RL, Reilly MP, Morris AD, Kimber CH, Adeyemo A, Chen Y, Zhou J, So WY, Tong PC, Ng MC, Hansen T, Andersen G, Borch-Johnsen K, Jorgensen T, Tres A, Fuertes F, Ruiz-Echarri M, Asin L, Saez B, van Boven E, Klaver S, Swinkels DW, Aben KK, Graif T, Cashy J, Suarez BK, van Vierssen Trip O, Frigge ML, Ober C,

- HOFKER MH, WIJMENGA C, CHRISTIANSEN C, RADER DJ, PALMER CN, ROTIMI C, CHAN JC, PEDERSEN O, SIGURDSSON G, BENEDIKTSSON R, JONSSON E, EINARSSON GV, MAYORDOMO JI, CATALONA WJ, KIEMENEY LA, BARKARDOTTIR RB, GULCHER JR, THORSTEINSDOTTIR U, KONG A, STEFANSSON K. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007; 39: 977-983.
- 39) WEEDON MN, CLARK VJ, QIAN Y, BEN-SHLOMO Y, TIMPSON N, EBRAHIM S, LAWLOR DA, PEMBREY ME, RING S, WILKIN TJ, VOSS LD, JEFFERY AN, METCALF B, FERRUCCI L, CORSI AM, MURRAY A, MELZER D, KNIGHT B, SHIELDS B, SMITH GD, HATTERSLEY AT, DI RIENZO A, FRAYLING TM. A common haplotype of the glucokinase gene alters fasting glucose and birth weight: association in six studies and population-genetics analyses. Am J Hum Genet 2006; 79: 991-1001.
- 40) CHEN WM, ERDOS MR, JACKSON AU, SAXENA R, SANNA S, SILVER KD, TIMPSON NJ, HANSEN T, ORRÙ M, GRAZIA PIRAS M, BONNYCASTLE LL, WILLER CJ, LYSSENKO V, SHEN H, KUUSISTO J, EBRAHIM S, SESTU N, DUREN WL, SPADA MC, STRINGHAM HM, SCOTT LJ, OLLA N, SWIFT AJ, NAJJAR S, MITCHELL BD, LAWLOR DA, SMITH GD, BEN-SHLOMO Y, ANDERSEN G, BORCH-JOHNSEN K, JØRGENSEN T, SARAMIES J, VALLE TT, BUCHANAN TA, SHULDINER AR, LAKATTA E, BERGMAN RN, UDA M, TUOMILEHTO J, PEDERSEN O, CAO A, GROOP L, MOHLKE KL, LAAKSO M, SCHLESSINGER D, COLLINS FS, ALTSHULER D, ABECASIS GR, BOEHNKE M, SCUTERI A, WATANABE RM. Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest 2008; 118: 2620-2628.
- 41) BOUATIA-NAJI N, ROCHELEAU G, VAN LOMMEL L, LEMAIRE K, SCHUIT F, CAVALCANTI-PROENÇA C, MARCHAND M, HARTIKAINEN AL, SOVIO U, DE GRAEVE F, RUNG J, VAXILLAIRE M, TICHET J, MARRE M, BALKAU B, WEILL J, ELLIOTT P, JARVELIN MR, MEYRE D, POLYCHRONAKOS C, DINA C, SLADEK R, FROGUEL P. A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 2008; 320: 1085-1088.
- 42) DIABETES GENETICS INITIATIVE OF BROAD INSTITUTE OF HARVARD AND MIT LUND UNIVERSITY AND NOVARTIS IN-STITUTES OF BIOMEDICAL RESEARCH, SAXENA R, VOIGHT BF, LYSSENKO V, ET AL. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science 2007; 316: 1331-1336.
- 43) AULCHENKO YS, RIPATTI S, LINDOVIST I, BOOMSMA D, HEID IM, PRAMSTALLER PP, PENNINX BW, JANSSENS AC, WILSON JF, SPECTOR T, MARTIN NG, PEDERSEN NL, KYVIK KO, KAPRIO J, HOFMAN A, FREIMER NB, JARVELIN MR, GYLLENSTEN U, CAMPBELL H, RUDAN I, JOHANSSON A, MARRONI F, HAYWARD C, VITART V, JONASSON I, PATTARO C, WRIGHT A, HASTIE N, PICHLER I, HICKS AA, FALCHI M, WILLEMSEN G, HOTTENGA JJ, DE GEUS EJ, MONTGOMERY GW, WHITFIELD J, MAGNUSSON P, SAHARINEN J, PEROLA M, SILANDER K, ISAACS A, SUBRANDS EJ, UITTERLINDEN AG, WITTEMAN JC, OOSTRA BA, ELLIOTT P, RUOKONEN A, SABATTI C, GIEGER C, MEITINGER T, KRONENBERG F, DÖRING A, WICHMANN HE, SMIT JH, MC-

- CARTHY MI, VAN DUIJN CM, PELTONEN L. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 2009; 41: 47-55.
- 44) KATHIRESAN S, WILLER CJ, PELOSO GM, DEMISSIE S, MUSUNURU K, SCHADT EE, KAPLAN L, BENNETT D, LI Y, TANAKA T, VOIGHT BF, BONNYCASTLE LL, JACKSON AU, CRAWFORD G, SURTI A, GUIDUCCI C, BURTT NP, PARISH S, CLARKE R, ZELENIKA D, KUBALANZA KA, MORKEN MA, SCOTT LJ, STRINGHAM HM, GALAN P, SWIFT AJ, KUUSISTO J, Bergman RN, Sundvall J, Laakso M, Ferrucci L, Scheet P, Sanna S, Uda M, Yang Q, Lunetta KL, DUPUIS J, DE BAKKER PI, O'DONNELL CJ, CHAMBERS JC, KOONER JS, HERCBERG S, MENETON P, LAKATTA EG, SCU-TERI A, SCHLESSINGER D, TUOMILEHTO J, COLLINS FS, GROOP L, ALTSHULER D, COLLINS R, LATHROP GM, ME-LANDER O, SALOMAA V, PELTONEN L, ORHO-MELANDER M, Ordovas JM, Boehnke M, Abecasis GR, Mohlke KL, CUPPLES LA. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2009; 41: 56-65.
- HOFKER M, WIJMENGA C. A supersized list of obesity genes. Nat Genet 2009; 41: 139-140.
- 46) LYSSENKO V, A MGREN P, ANEVSKI D, PERFEKT R, LAHTI K, NISSÉN M, ISOMAA B, FORSEN B, HOMSTRÖM N, SALO-RANTA C, TASKINEN MR, GROOP L, TUOMI T. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes 2005; 54: 166-174.
- 47) McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genomewide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008; 9: 356-369.
- 48) VAN HOEK M, DEHGHAN A, WITTEMAN JC, VAN DUIN CM, UITTERLINDEN AG, OOSTRA BA, HOFMAN A, SI-JBRANDS EJ, JANSSENS AC. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 2008; 57: 3122-3128.
- 49) LYSSENKO V, JONSSON A, ALMGREN P, PULIZZI N, ISOMAA B, TUOMI T, BERGLUND G, ALTSHULER D, NILSSON P, GROOP L. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008; 359: 2220-2232.
- 50) MEIGS JB, SHRADER P, SULLIVAN LM, MCATEER JB, FOX CS, DUPUIS J, MANNING AK, FLOREZ JC, WILSON PW, D'AGOSTINO RB SR, CUPPLES LA. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 2008; 359: 2208-2219.
- 51) LANGO H, DGC, PALMER CN, MORRIS AD, ZEGGINI E, HATTERSLEY AT, McCARTHY MI, FRAYLING TM, WEEDON MN. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 2008; 57: 3129-3135.
- 52) EBERLE MA, NG PC, KUHN K, ZHOU L, PEIFFER DA, GALVER L, VIAUD-MARTINEZ KA, LAWLEY CT, GUNDERSON KL, SHEN R, MURRAY SS. Power to detect risk alleles using genome wide tag SNP panels. PLoS Genet 2007; 3: 1827-1837.

- 53) ANDERSON CA, PETTERSSON FH, BARRETT JC, ZHUANG JJ, RAGOUSSIS J, CARDON LR, MORRIS AP. Evaluating the effects of imputation on the power, coverage, and cost efficiency of genome-wide SNP platforms. Am J Hum Genet 2008; 83: 112-119.
- 54) WATERLAND RA, MICHELS KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 2007; 27: 363- 388.
- 55) Janssens AC, Aulchenko YS, Elefante S, Borsboom GJ, Steyerberg EW, van Dujin CM. Predictive testing for complex diseases using multiple genes: fact or fiction? Genet Med 2006; 8: 395-400.
- 56) International HapMap Consortium, Frazer KA, BALLINGER DG, COX DR, HINDS DA, STUVE LL, GIBBS RA, BELMONT JW, BOUDREAU A, HARDENBOL P, LEAL SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, ZENG C, GAO Y, Hu H, Hu W, Li C, Lin W, Liu S, PAN H, TANG X, WANG J, WANG W, YU J, ZHANG B, ZHANG Q, ZHAO H, ZHAO H, ZHOU J, GABRIEL SB, BARRY R, BLUMENSTIEL B, CAMARGO A, DEFELICE M, FAGGART M, GOYETTE M, GUPTA S, MOORE J, NGUYEN H, ONOFRIO RC, PARKIN M, ROY J, STAHL E, WINCHES-TER E, ZIAUGRA L, ALTSHULER D, SHEN Y, YAO Z, HUANG W, CHU X, HE Y, JIN L, LIU Y, SHEN Y, SUN W, WANG H, WANG Y, WANG Y, XIONG X, XU L, WAYE MM, TSUI SK. XUE H. WONG JT. GALVER LM. FAN JB. GUNDER-SON K, MURRAY SS, OLIPHANT AR, CHEE MS, MONTPETIT A, CHAGNON F, FERRETTI V, LEBOEUF M, OLIVIER JF, PHILLIPS MS, ROUMY S, SALLÉE C, VERNER A, HUDSON TJ, KWOK PY, CAI D, KOBOLDT DC, MILLER RD, PAW-LIKOWSKA L, TAILLON-MILLER P, XIAO M, TSUI LC, MAK W, Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, DELGADO M, DERMITZAKIS ET, GWILLIAM R, HUNT S, Morrison J, Powell D, Stranger BE, Whittaker P, BENTLEY DR, DALY MJ, DE BAKKER PI, BARRETT J, CHRE-TIEN YR, MALLER J, McCarroll S, Patterson N, Pe'er I, PRICE A, PURCELL S, RICHTER DJ, SABETI P, SAXENA R, SCHAFFNER SF, SHAM PC, VARILLY P, ALTSHULER D, STEIN LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA, CHAKRAVARTI A, CHEN PE, CUTLER DJ, KASHUK CS, LIN S, ABECASIS GR, GUAN W, LI Y, MUNRO HM, QIN ZS, THOMAS DJ, McVean G, Auton A, Bottolo L, CARDIN N, EYHERAMENDY S, FREEMAN C, MARCHINI J, Myers S, Spencer C, Stephens M, Donnelly P, Car-DON LR, CLARKE G, EVANS DM, MORRIS AP, WEIR BS, TSUNODA T, MULLIKIN JC, SHERRY ST, FEOLO M, SKOL A, ZHANG H, ZENG C, ZHAO H, MATSUDA I, FUKUSHIMA Y, MACER DR, SUDA E, ROTIMI CN, ADEBAMOWO CA, AJAYI I, ANIAGWU T, MARSHALL PA, NKWODIMMAH C, ROYAL CD, LEPPERT MF, DIXON M, PEIFFER A, QIU R, KENT A, KATO K, NIIKAWA N, ADEWOLE IF, KNOPPERS BM, Foster MW, Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth L, Sodergren E, WEINSTOCK GM, WHEELER DA, YAKUB I, GABRIEL SB, Onofrio RC, Richter DJ, Ziaugra L, Birren BW, Daly MJ, ALTSHULER D, WILSON RK, FULTON LL, ROGERS J, BURTON J, CARTER NP, CLEE CM, GRIFFITHS M, JONES MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, CHEN Z, HAN H, KANG L, GODBOUT M, WALLEN-BURG JC, L'ARCHEVÊQUE P, BELLEMARE G, SAEKI K,

- WANG H, AN D, Fu H, Li Q, WANG Z, WANG R, HOLDEN AL, BROOKS LD, MCEWEN JE, GUYER MS, WANG VO, PETERSON JL, SHI M, SPIEGEL J, SUNG LM, ZACHARIA LF, COLLINS FS, KENNEDY K, JAMIESON R, STEWART J. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449: 851-861.
- 57) THE INTERNATIONAL HAPMAP CONSORTIUM. A haplotype map of the human genome. Nature 2005; 437: 1299-1320.
- 58) GORLOV IP, GORLOVA OY, SUNYAEV SR, SPITZ MR, AMOS CI. Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 2008; 82: 100-112.
- 59) Janssens AC, van-Duijn CM. Genome-based prediction of common diseases: advances and prospects. Hum Mol Genet 2008; 17: R166-173.

- 60) ITSARA A, COOPER GM, BAKER C, GIRIRAJAN S, LI J, ABSHER D, KRAUSS RM, MYERS RM, RIDKER PM, CHASMAN DI, MEFFORD H, YING P, NICKERSON DA, EICHLER EE. Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet 2009; 84: 148-161.
- 61) McCarroll SA. Extending genome-wide association studies to copy-number variation. Hum Mol Genet 2008; 17: R135-142.
- 62) WEISS LA, SHEN Y, KORN JM, ARKING DE, MILLER DT, FOSSDAL R, SAEMUNDSEN E, STEFANSSON H, FERREIRA MA, GREEN T, PLATT OS, RUDERFER DM, WALSH CA, ALTSHULER D, CHAKRAVARTI A, TANZI RE, STEFANSSON K, SANTANGELO SL, GUSELLA JF, SKLAR P, WU BL, DALY MJ. Autism Consortium: Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667-675.