Comment on "A meta-analysis of influence of MSMB promoter rs10993994 polymorphisms on prostate cancer risk"

Y.-Y. FENG^{1,2}, H.-Y. PAN², Y.-Y. MI², L.-J. ZHU²

Dear Editors,

With strong interests, we had read a recent article, "A meta-analysis of influence of MSMB promoter rs10993994 polymorphisms on prostate cancer risk", which was published online in European Review for Medical and Pharmacological Sciences. However, we had a great conversation about several important issues about this meta-analysis.

First, all included case-control studies were published before December 2015, which was outdated, so this meta-analysis should be updated. In addition, several articles may be left out. Based on above two factors, we reidentified related articles about the MSMB rs10993994 polymorphism on prostate cancer (PCa) risk. We found other literature involving 8 cases-control studies (21808 PCas and 20326 controls). We listed the characteristics of the additional studies in Table I²⁻⁸.

Second, classical meta-analysis should include five genetic models, including allelic comparison, homozygous model, heterozygous model, dominant comparison, and recessive comparison. There were only four genetic models to analysis the associations between rs10993994 polymorphism and PCa risk. The heterozygous model (CT vs. CC) also should be included in the paper.

Third, it was necessary to assess the included research literature, the quality of observational studies usually was evaluated by the Newcastle-Ottawa Scale (NOS); moreover, PRISMA 2009 checklist also should be shown. To better understand the correlations of rs10993994 polymorphism and PCa susceptibility, other evaluation indicators should be looked out. We maybe pay more attention on whether the polymorphism has certain correlations with Gleason score and TNM stage, which may offer significant markers for the diagnosis and prognosis of PCa and contribute to explaining the heterogeneity.

Table I. Characteristics of the additional studies in the meta-analysis.

				Numbers		5.6	
Authors	Year	Population	Ethnic group	PCa	Control	P for HWE	Genotype methods
Mhatre et al ²	2015	Indian	Asian	50	30	0.171	PCR
Shui et al ³	2014	Americans	Caucasian	10487	11024	0.996	Taqman
Ho et al4	2012	Scotland	Caucasian	242	264	0.406	PCR
Chang et al5	2011	African	African-American	4040	3748	0.996	PCR
Eeles et al ⁶	2008	British	Caucasian	1854	1894	0.955	Hapman
Eeles et al ⁶	2008	British Australian	ns Caucasian	1960	2104	0.992	Hapman
				1308	1262		1
Wang et al7	2009	Chinese	Asian	200	200	0.0003	PCR
Cui et al ⁸	2012	Chinese	Asian	1667	1525	NA	PCR

Abbreviations: PCa, Prostate cancer; HWE, Hardy-Weinberg equilibrium; NA, not available.

¹Wuxi Medical College, Jiangnan University, Wuxi, China

²Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China

Conflict of Interest

The Authors declare that they have no conflict of interests.

Funding

This article was supported by National Natural Science Foundation (Number: 81802576, 81902565, 81372316), Jiangsu Provincial Central Administration Bureau (Number: YB201827), Wuxi Commission of Health and Family Planning (Number: T202024, J202012, Z202011, ZM001, J201802, J201810), the Science and Technology Development Fund of Wuxi (Number: WX18IIAN024, N20202021), Jiangnan University Wuxi School of Medicine (No. 1286010242190070), and Top Talent Support Program for Young and Middle-aged People of Wuxi Health Committee (Number: BJ2020061).

References

- Fu S, Huang YL, Luan T, Li N, Wang HF, Wang JS. A meta-analysis of influence of MSMB promoter rs10993994 polymorphisms on prostate cancer risk. Eur Rev Med Pharmacol Sci 2019; 23: 9295-9303.
- 2) Mhatre DR, Mahale SD, Khatkhatay MI, Achrekar SK, Desai SS, Jagtap DD, Dhabalia JV, Tongaonkar HB, Dandekar SP, Varadkar AM. The rs10993994 in the proximal MSMB promoter region is a functional polymorphism in Asian Indian subjects. Springerplus 2015; 4: 380.
- 3) Shui IM, Lindström S, Kibel AS, Berndt SI, Campa D, Gerke T, Penney KL, Albanes D, Berg C, Bueno-de-Mesquita HB, Chanock S, Crawford ED, Diver WR, Gapstur SM, Gaziano JM, Giles GG, Henderson B, Hoover R, Johansson M, Le Marchand L, Ma J, Navarro C, Overvad K, Schumacher FR, Severi G, Siddiq A, Stampfer M, Stevens VL, Travis RC, Trichopoulos D, Vineis P, Mucci LA, Yeager M, Giovannucci E, Kraft P. Prostate cancer (PCa) risk variants and risk of fatal PCa in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Eur Urol 2014; 65: 1069-1075.
- 4) Ho CK, Halley L, Wei J, Habib FK. Analysis of prostate cancer association with four single-nucleotide polymorphisms from genome-wide studies and serum phyto-estrogen concentrations. Prostate Cancer Prostatic Dis 2012; 15: 365-368.
- 5) Chang BL, Spangler E, Gallagher S, Haiman CA, Henderson B, Isaacs W, Benford ML, Kidd LR, Cooney K, Strom S, Ingles SA, Stern MC, Corral R, Joshi AD, Xu J, Giri VN, Rybicki B, Neslund-Dudas C, Kibel AS, Thompson IM, Leach RJ, Ostrander EA, Stanford JL, Witte J, Casey G, Eeles R, Hsing AW, Chanock S, Hu JJ, John EM, Park J, Stefflova K, Zeigler-Johnson C, Rebbeck TR. Validation of genome-wide prostate cancer associations in men of African descent. Cancer Epidemiol Biomarkers Prev 2011; 20: 23-32.
- 6) Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK, Mulholland S, Leongamornlert DA, Edwards SM, Morrison J, Field HI, Southey MC, Severi G, Donovan JL, Hamdy FC, Dearnaley DP, Muir KR, Smith C, Bagnato M, Ardern-Jones AT, Hall AL, O'Brien LT, Gehr-Swain BN, Wilkinson RA, Cox A, Lewis S, Brown PM, Jhavar SG, Tymrakiewicz M, Lophatananon A, Bryant SL; UK Genetic Prostate Cancer Study Collaborators; British Association of Urological Surgeons' Section of Oncology; UK Protect Study Collaborators, Horwich A, Huddart RA, Khoo VS, Parker CC, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Fisher C, Jamieson C, Cooper CS, English DR, Hopper JL, Neal DE, Easton DF. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 2008; 40: 316-321.
- 7) Wang JS, Wu DL, Hao MG, Fu FG, Wang WJ. LMTK2 and MSMB gene polymorphisms and genetic susceptibility to prostate cancer in the Han population in Shanghai. Journal of Clinical Rehabilitative Tissue Engineering Research 2009;13: 8170-8173.
- 8) Cui Y, Shi YC, Shen H, Fan YZ, Cao WZ, Xie JJ, Su HQ, Shao Q. [Susceptibility to prostate cancer in Han Chinese: single nucleotide polymorphism analysis of 1 667 cases]. Zhonghua Nan Ke Xue 2012; 18: 1069-74.
- 9) Zhang LF, Xu K, Tang BW, Zhang W, Yuan W, Yue C, Shi L, Mi YY, Zuo L, Zhu LJ. Association between SOD2 V16A variant and urological cancer risk. Aging (Albany NY) 2020; 12: 825-843.