Update on oncoplastic breast surgery

G. FRANCESCHINI, D. TERRIBILE, S. MAGNO, C. FABBRI, C. ACCETTA, A. DI LEONE, F. MOSCHELLA, R. BARBARINO, A. SCALDAFERRI, S. D'ARCHI, M.E. CARVELLI, S. BOVE, R. MASETTI

Department of Surgery, Breast Unit, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy

Abstract. – Oncoplastic surgery of the breast (OPS) has generated great excitement over the past years and has become an integrated component of the surgical treatment of breast cancer.

Oncoplastic surgical procedures associate the best surgical oncologic principles to achieve wide tumor-free margins with the best principles of plastic surgery to optimize cosmetic outcomes. Thanks to oncoplastic techniques, the role of breast conserving surgery (BCS) has been extended to include a group of patients who would otherwise require mastectomy to achieve adequate tumor clearance.

As OPS continues to gain acceptance and diffusion, an optimal and systematic approach to these techniques is becoming increasingly necessary. This article has the aim to review the essential principles and techniques associated with oncoplastic surgery, based on the data acquired through an extensive search of the PUBMED and MEDLINE database for articles published using the key words "breast cancer oncoplastic surgery". This review analyzes possible the advantages", classifications, indications, and the criteria for a proper selection of oncoplastic techniques to facilitate one's ability to master these procedures and make OPS a safe and an effective procedure.

Key Words:

Breast cancer, Oncoplastic surgery.

Introduction

Breast conserving surgery (BCS) combined with postoperative radiotherapy has become the gold standard of locoregional treatment for the majority of patients with early-stage breast cancer, offering equivalent survival as compared to mastectomy and improved body image and lifestyle scores. The goals of BCS are to achieve a complete removal of the tumor with adequate surgical margins while preserving the natural shape and appearance of the breast. In some cases, achieving both goals may be quite challenging and the need to ensure an oncologically safe resection may generate unsatisfying cosmetic results.

In the effort to overcome this difficulty and expand the use and efficacy of BCS, oncoplastic surgery (OPS) techniques have been introduced in recent years gaining widespread attention both among surgeons and patients. These procedures associate the best principles of surgical oncology with the best plastic principles of reconstruction to optimize oncologic safety and cosmetic outcomes.

The diffusion of this procedures comes from reported data that seem to indicate an higher on-cological safety and better cosmetic efficacy. As these oncoplastic techniques become more sophisticated, questions about the various applications are becoming more common. There is a clear need for surgeons and patients to become familiar with the indications and the available techniques in order to make OPS a safe and effective procedure. The purpose of this article is to review many of the essential principles, concepts, and techniques associated with OPS and emphasize some of the landmark studies and important conclusions.

Methods

The data for this review was compiled by searching the PUBMED and MEDLINE database for articles published, between 1996 and 2011, using the key words "breast cancer oncoplastic surgery". A total of 111 articles were reviewed and prioritized according to content. We have reviewed all articles in the effort of evaluating the shared beliefs on open questions about OPS, such as the advantages, classifications, indications, and the criteria for a proper selection of oncoplastic techniques, oncological and cosmetic outcomes.

History and Definition

The history of OPS is relatively new and has not been well chronicled. The term "oncoplastic surgery" was coined by Audretsch¹ to describe

the blending of techniques from the fields of surgical oncology and plastic and reconstructive surgery²⁻⁷.

A handful of surgeons scattered over many countries began utilizing these techniques in the early 1990s. However, only in the past decade has this approach gained widespread acceptance and diffusion. Introduction of OPS into clinical practice has been slow, because OPS requires the simultaneous deployment of the skills of a general surgeon with experience in the oncological aspects of breast surgery and the skills of a plastic surgeon with experience of breast reconstruction. This slow process of adoption was also necessary in order to ensure that new techniques would not jeopardize oncological safety.

Nowadays, OPS includes a wide range of breast-conserving surgical techniques, applied to various clinical situations, that associate the best oncological principles of resection to achieve wide tumor-free margins with the best plastic principles of reconstruction to optimize cosmetic outcomes and minimize complications⁸.

Advantages

Early reports indicate that there are a range of possible benefits associated with the use of oncoplastic techniques (Table I):

- **1.** OPS may allows wider excision of the tumor with safer margins and reduced cosmetic penalties^{6,8}.
- **2.** OPS may avoid the need for mastectomy in a number of patients, without compromising local control. The patient avoids more extensive surgery and the higher complication rate and greater morbidity associated with total mastectomy and immediate reconstruction. Moreover, sensory loss and disability are minimized, and, finally, the need for implant surveillance is avoided^{8,9-12}.
- **3.** OPS permits to achieve good to excellent cosmetic results in an higher number of cases, avoiding the need for secondary operations to correct breast deformities. Immediate oncoplastic procedures eliminate the need for complex delayed reconstruction of deformities after BCS, often severe and difficult to manage^{8,13-16}.
- **4.** Oncoplastic mammoplasty reduces the breast size thus providing the radiation oncologist with a medium-size breast, which makes radiotherapy less problematic in patients with macromastia¹⁶⁻¹⁸.

Table I. Advantages of OPS.

Allows to perfom very wide excision

Allows to avoid the need for mastectomy in many cases Allows to achieve good to excellent cosmetic results and to prevent breast asymmetries

Allows to go to the operating room one time to perform the definitive procedure

Allows to limit some of the skin toxicity and potential inhomogeneous dosing of adjuvant radiotherapy associated with large, ptotic breasts.

Allows to check the contralateral breast and, occasionally, the discovery of an occult contralateral neoplasia in bilateral oncoplastic surgery

5. Bilateral OPS prevents breast asymmetries, let to check the contralateral breast and, occasionally, permits the discovery of an occult contralateral neoplasia⁸.

Classifications

Volume Displacement and Replacement Techniques

The OPS may be classified in two fundamentally different approaches according to the reconstruction techniques following BCS that have been established (Table II).

Firstly, *volume displacement techniques*, when the resection defect is reconstructed using one of a range of local glandular or dermoglandular flaps within the breast, which are mobilised and advanced into the defect. This approach leads to a loss in breast volume, and contralateral surgery is usually required to restore symmetry. The options include adjacent tissue rearrangement and mammoplasty techniques¹⁸⁻²³.

Adjacent tissue rearrangement: is perhaps the most common method by which the partial mastectomy defect is reconstructed. This is because these techniques rarely require a two-team approach as the ablative surgeon will apply the principles and techniques to close these defects.

Table II. Classification of OPS.

The techniques that are currently used for the reconstruction of the BCS defect are based on two different concepts:

- Volume displacement procedures: local tissue rearrangement and reduction mammaplasty.
- **Volume replacement procedures:** autologous tissue from an extramammary site (usually latissimus dorsi).

Although several surgeons have described various procedures, it is generally accepted that adjacent tissue rearrangement techniques includes accurate decision of skin incision, skin undermining, NAC undermining, glandular reapproximation and deepithelialization and NAC repositioning^{10,24-25}.

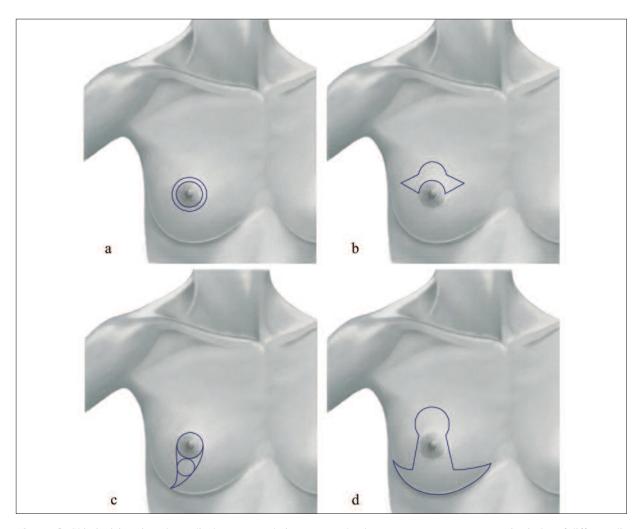
An indirect incision along the areola border is preferable; if a direct incision over the tumor is chosen the general principle is to follow Kraissl's lines of tension to limit visible scaring. An extensive subcutaneous undermining is one of the key factors in adjacent tissue rearrangement techniques; it follows the mastectomy plane and extends anywhere from one-fourth to two-thirds of the surface area of the breast envelope; skin undermining facilitates both tumor resection and glandular redistribution after removal of the tumor; NAC undermining avoid NAC deviation towards the excision area; glandular mobilization and redistribution allow creation of glandular flaps that are used to close the defect without creating a contour abnormality²⁴⁻²⁵.

A number of conventional *mammoplasty techniques* have been adapted to allow reconstruction of resection defects with parenchymal flaps using a variety of different approaches²⁶⁻⁴². Typically, one of two approaches can be used: the superior pedicle approach or the inferior pedicle approach. The superior pedicle approach enables wide resection of tumors located in the lower quadrants of the breast, where extensive volume loss will often lead to the very unsightly 'bird's beak' deformity. The inferior pedicle approach enables reconstruction of resection defects in the upper pole of the breast (Figure 1). A range of other approaches have recently been described, which are adaptations of the superior and inferior pedicle approaches^{6,10,19}.

Other established techniques, such as the "Grisotti" technique, the 'round block' and "batwing" approach, can be adapted to enable resection of tumors in particular clinical situations (Figure 2)^{6-10,39,43-46}.

Secondly, *volume replacement techniques*, when the resection defect is reconstructed by replacing the volume of tissue removed with a similar volume of autologous tissue from an extramammary site. The options include musculocutaneous flaps and perforator flaps that can be transferred on a vascularized pedicle or as a free tissue transfer^{10,18,47-59}.

The most commonly used flap for immediate reconstruction of the partial mastectomy defect has been the latissimus dorsi musculocutaneous flap (Figure 3). This flap has been effectively used for deformities of the superior, lateral and inferior aspects of the breasts. In general, a two-team approach is needed for this operation owing to the technical aspects in designing, elevating, and mobilizing the flap⁶⁰⁻⁷⁰.


There have been several methods described by which the latissimus dorsi flap can be harvested. The traditional technique incorporated a posterolateral thoracic incision, whereas the more modern technique utilizes an endoscope. With the endoscopic technique the muscle is accessed through the breast and axillary incision and no skin is removed⁷¹⁻⁷².

Another method of harvesting the latissimus dorsi is as a mini-flap. The advantage of the mini-flap is that variable amounts of the latissimus dorsi muscle can be harvested based on the volume requirements of the breast. The flap is generally harvested through an anterolateral breast incision that is used for the resection as well.

Figure 1. Volume displacement technique with reduction mammaplasty for a carcinoma invasive of right breast. **A**, Preoperative view. **B**, Postoperative view at 1 month.

Figure 2. Skin incisions in volume displacement techniques. **a**, In the donut mastopexy, two concentric circles of different diameter are designed around the nipple. **b**, In the batwing mastopexy, two halfcircle are designed and connected with angled wings on each side of the areola. **c**, In the Grisotti procedure, two circles are drawn, one along the borders of the areola, the other below the areola and lines from the medial and lateral sides of the areolar circle are connected down and laterally on the inframammary fold. **d**, In the reduction mammaplasty, a key-hole pattern incision may be used.

The use of perforator flaps for the reconstruction of the partial mastectomy has been receiving increasing attention. There are three flaps that have been used for this purpose: the thoracodorsal artery perforator flap (TDAP), the lateral thoracic flap, and the intercostal perforator flap⁷³⁻⁷⁴. The TDAP is an adipocutaneous flap in which the latissimus dorsi muscle is totally spared. The vascularity of the flap is derived from the perforating branches of the thoracodorsal artery and vein. The lateral thoracic flap is a fasciocutaneous flap that is perfused via either the lateral thoracic or thoracodorsal artery and vein. The intercostal perforator flap is usually perfused via a perforating intercostal artery and vein that is based along the inferior aspect of the

anterior axillary line. These flaps are usually transferred on a vascularized pedicle.

Other Classifications

Urban et al⁷⁵⁻⁷⁷ developed in order to improve surgical trainees another classification based on 3 distinct skills:

 Class I: monolateral breast reconstruction techniques such as aesthetic skin incisions, deepithelization of the areolar margins, glandular mobilization and reshaping techniques, pursestring sutures for central quadrant reconstruction, and immediate breast reconstruction with temporary expanders. Specific competence in plastic surgery is not required at this point.

Figure 3. Volume replacement technique with a thoracodorsal artery perforator flap (TDAP) after superior quadrantectomy of the right breast. **A,** Preoperative view. **B,** Postoperative view at 6 month.

- Class II: bilateral procedures such as immediate and delayed breast reconstruction with implants, lipofilling, breast augmentation, breast reduction, mastopexy, Grisotti flap, and nipple and areola reconstruction. Specific competence in plastic surgery techniques of the breast is required to achieve better symmetry.
- Class III: more complex monolateral or bilateral procedures involving autologous flaps (pedicled or free flaps) or a combination of techniques. A higher standard in plastic surgery techniques is required.

Hoffmann et al⁷⁸ proposed a complex classification system capable of accommodating, on the basis of surgical complexity, any major oncological, oncoplastic or reconstructive procedure used in the surgical treatment of primary and locally recurrent breast cancer. A novel two-type, six-tier classification system comprising 12 main categories, 13 subcategories and 39 sub-subcategories of oncological, oncoplastic and reconstructive breast cancer-related surgery was developed.

Clough et al^{24,25,79} proposed a new classification based on the amount of tissue excised and the relative level of surgical difficulty (this classification concerns the volume displacement procedures but does not include the volume replacement techniques):

- 1. Level I approach in which < 20% of breast volume is excised and no skin resection is required; there are six steps for level I (skin incision, skin undermining, NAC undermining, full-thickness excision, glandular reapproximation, deepithelialization and NAC repositioning)
- 2. Level II approach in which up to 50% of breast volume is excised and therapeutic mammoplasties with extensive skin excision and

breast reshaping are performed; to semplify the selection of the appropriate technique, Clough et al devised an Atlas based on tumor location; this atlas provides one or two surgical techniques for each tumor location.

Indications

The main indication for OPS is breast cancer for which a standard BCS with safe margins would either seem impossible or lead to a major deformity^{10,15,18,19,24,25,27,79-84}.

Wide resections of more than 10-20% of the breast volume, for large tumor, extensive ductal carcinoma in situ, multifocality, are all potential indications for OPS intervention. Tumors in central, medial and lower pole resections may be managed with OPS to optimize aesthetic results (Table III).

OPS remains contraindicated when clear margins cannot be assured without performing a mastectomy (Table III); patients with large tumors, T4

Table III. Indications and controlndications for OPS.

Indications for OPS.

- Wide excision required (large tumor, multifocality, extensive ductal carcinoma in situ, partial or poor response to neoadjuvant treatment, high tumor to breast ratio with resection of more than 10-20% of the breast volume)
- Tumors in any location and in particular in central, medial and lower pole resections

Contraindications for OPS

- Large tumors that need a mastectomy to achieve clear margins
- Insufficient residual breast tissue following resection
- Multicentric disease
- Extensive malignant mammographic microcalcification
- Inflammatory carcinoma
- History of prior irradiation
- Prior augmentation mammaplasty
- · Multiple medical comorbidities

tumors, with multicentric disease, with extensive malignant mammographic microcalcification and with inflammatory carcinoma must be treated with radical breast surgery. Contraindications include also patients where there is insufficient residual breast tissue following resection to allow reshaping or with a history of prior irradiation. Patients with multiple medical comorbidities, active smokers are not ideal candidates for some complex oncoplastic techniques (reduction mammoplasty, volume replacement technique), and the risks will often outweigh the benefits in these situations.

Selection Criteria of the Technique

The selection criteria for oncoplastic techniques are not without controversy, scrutiny, and criticism The indications for every oncoplastic technique are different and various algorithms have been devised to assist with the decision process. The choice is usually based on tumor characteristics (size and location), extent of resection, breast characteristics (size, shape and glandular density), previous surgery and the expectations and wishes of the patient^{10,15,18,19,24,25,27,79-84} (Table IV).

Volume displacement techniques with adjacent tissue rearrangement are indicated for < 20% breast volume excision and for patients with large-medium sized breasts, ptosis and dense glandular tissue. These procedures are particularly appropriate for tumor localized in lateral and superior quadrants 8,10,18,24,25 .

Volume displacement techniques with reduction mammoplasty are indicated for 20-50% breast volume excision and for patients with large-medium sized breasts. These procedures are particularly appropriate for tumor localized in any site but

especially for unfavourable location as central, inner-upper and lower quadrants. Reduction mammaplasty techniques are suitable for patients with heavy, ptotic breasts, symptomatic macromastia who will benefit physically from the use of a bilateral breast reduction procedure^{8,10,18,24,25,27}.

Volume replacement is indicated for 20-50% breast volume excision and for patients with small-medium sized breasts and minimal ptosis, who cannot afford to lose the volume associated with volume displacement techniques, or who wish to avoid mastecomy or contralateral surgery. The volume replacement is appropriate for tumor localized in any site. These procedure cannot be used in lack of latissimus musculature and in a previous thoracotomy or axillary surgery if the pedicle has been injured or ligated 18,55-62.

Evaluation of Oncological and Cosmetic Outcomes

The outcome measures most frequently reported on studies of OPS are local recurrence, cosmesis and patient satisfaction. These studies are mostly retrospective and based on a limited number of patients and sometimes only a single surgeon's experience⁸⁵⁻¹¹¹. Furthermore, the methods of assessing cosmesis and patient satisfaction vary greatly. Where these outcomes have been reported, the length of follow-up is relatively short, with a median duration of around 3 years. Given these limitations, the reported rates of local recurrence and cosmetic failure are within acceptable limits when compared with conventional BCS. Some studies that have demonstrated the utility of OPS with volume displacement and replacement are listed in Tables V and VI.

Table IV. Factors influencing the selection of OPS techniques.

Factors	Volume displacement (adjacent tissue rearrangement)	Volume displacement (mammoplasty)	Volume replacement (latissimus dorsi flap)
Maximum excision volume ratio	< 20%	20-50%	20-50% with resection that preclude the use of volume displacement
Beast size	Medium or large	Medium or large	Small or medium
Breast characteristics	Heavy, ptotic	Heavy, ptotic, macromastia	Not Relevant
Preferible tumor position	Any position (preferable in lateral or superior locations)	Any position (preferable in central, inner-upper and lower locations)	Any site
Previous surgery to lateral chest wall, posterolateral thoracotomy	Not Relevant	Not Relevant	Not possible

Table V. Oncological and cosmetic outcomes using volume displacement techniques.

Author	Year	Technique	Patients	Tumor size (cm)	Follow-up (months)	Margin involvement (%)	Local recurrence (%)	Cosmetic result/patient satisfaction (good-excellent) (%)
95	1998	Reduction mammaplasty	10	NR	52	0	5	95
96	1998	Reduction mammaplasty	50	3.25	48	10	7	85
97	1999	Reduction mammaplasty	20	NR	54	0	5	95
98	2001	Reduction mammaplasty	28	1,5	24	7	0	NR
6	2000	Reduction mammaplasty	56	NR	23	NR	0	91
94	2003	Reduction mammaplasty	101	3.2	46	10.9	6.9	88
99	2003	Reduction mammaplasty	11	NR	24	0	0	NR
100	2004	Reduction mammaplasty	37	0.6-5.2	NR	2.7	0	70
101	2005	Reduction mammaplasty	55	NR	18	0	13	82
102	2006	Reduction mammaplasty	74	55.4% < 2 44.6 % 2 < T <	22 4	7	0	93
89	2010	Reduction mammaplasty	540	2.9	49	18.9 (close and involved) (focal 14.3; diffuse 4.6)	6.8	90

Conclusions

OPS has generated great excitement over the past years and has become an integrated component of the surgical treatment of breast cancer. The enthusiasm for this procedures comes from reported data that seem to indicate an higher oncological safety and better cosmetic efficacy.

However, to date, the evidence in the literature on the oncological and cosmetic outcomes of these techniques are limited and based on relatively few, small and retrospective studies where the selection criteria is open to interpretation and debate. Where oncological and cosmetic outcomes have been assessed, OPS is associated with low rates of local recurrence and better cosmetic results.

Table VI. Oncological and cosmetic outcomes using volume replacement techniques.

Author	Year	Technique	Patients	Tumor size s (cm)	Follow-up (months)	Margin involvement (%)	Local recurrence (%)	Cosmetic result/patient satisfaction (good-excellent) (%)
103	1990	Latissimus dorsi flap reconstrction	23	NR	32	0	0	91.3
104	2002	Latissimus dorsi flap reconstrction	25	NR	NR (4-30)	12	NR	NR
105	1999	Latissimus dorsi flap reconstrction	30	NR	NR (3-30)	0	NR	100
106	2003	Latissimus dorsi flap reconstrction	49	2.2	53 (7-102)	0	4	82
107	1998	Latissimus dorsi flap reconstrction	5	NR	52	0	5	100
108	2004	Latissimus dorsi flap reconstrction	18	3	24 (8-63)	5.5	0	94.5
109	2004	Latissimus dorsi flap reconstrction	39	NR	44	NR	5,1	NR
110	1997	Latissimus dorsi flap reconstrction	20	2,5	10 (3-19)	10	NR	90
111	2006	Lateral thoracodorsal fasciocutaneous flap		64.7% < 2 35.3% 2 < T < 4	23 (6-71)	17.6	0	88.2%

Because of these limitations, there is an obvious need for further appraisal of OPS and prospective randomized studies.

As these oncoplastic techniques become more sophisticated, questions about the various applications are becoming more common. Clarifying the advantages, classifications, indications, criteria for proper selection of patients as well as of oncoplastic techniques is warranted in order to to facilitate one's ability to master these procedures and make OPS a safe and effective procedure.

References

- AUDRETSCH W. Space-holding technic and immediate reconstruction of the female breast following subcutaneous and modified radical mastectomy. Arch Gynecol Obstet 1987; 241(Suppl): S11-19.
- GABKA CJ, BOHMERT H. Future prospects for reconstructive surgery in breast cancer. Semin Surg Oncol 1996; 12: 67-75.
- HÜTER J. Tumor-adapted oncoplastic mastopexy and reduction-plasty. Zentralbl Gynakol 1996; 118: 549-552.
- Gabka CJ, Maiwald G, Baumeister RG. Expanding the indications spectrum for breast saving therapy of breast carcinoma by oncoplastic operations. Langenbecks Arch Chir Suppl Kongressbd 1997; 114: 1224-1227.
- GRAF H, RHEIN U, RETZKE U. Integration of plastic surgery-esthetic aspects in surgical therapy of breast carcinoma. Zentralbl Chir 1998; 123(Suppl 5): 105-109.
- 6) MASETTI R, PIRULLI PG, MAGNO S, FRANCESCHINI G, CHIESA F, ANTINORI A. Oncoplastic techniques in the conservative surgical treatment of breast cancer. Breast Cancer 2000; 7: 276-280.
- FRANCESCHINI G, TERRIBILE D, FABBRI C, MAGNO S, D'ALBA P, CHIESA F, DI LEONE A, MASETTI R Progresses in the treatment of early breast cancer. A minireview. Ann Ital Chir 2008; 79: 17-22.
- 8) NAHABEDIAN MY. "Oncoplastic Surgery of the Breast" edited by Saunders Elsevier, 2009. Chapter 1; pp. 1-8.
- MUSTONEN P, HÄRMÄ M. Viewpoints on oncoplastic surgery in invasive breast cancer. Scand J Surg 2002; 91: 255, 258-262.
- 10) MASETTI R, DI LEONE A, FRANCESCHINI G, MAGNO S, TERRIBILE D, FABBRI MC, CHIESA F. Oncoplastic techniques in the conservative surgical treatment of breast cancer: an overview. Breast J 2006; 12(5 Suppl 2): S174-S180.
- 11) Von Smitten K. Margin status after breast-conserving treatment of breast cancer: how much free margin is enough? J Surg Oncol 2008; 98: 585-587.
- DORIDOT V, NOS C, AUCOUTURIER JS, SIGAL-ZAFRANI B, FOURQUET A, CLOUGH KB. Breast-conserving therapy of breast cancer. Cancer Radiother 2004; 8: 21-28.

- 13) Franceschini G, Visconti G, Terribile D, Fabbri C, Magno S, Di Leone A, Salgarello M, Masetti R. The role of oxidized regenerate cellulose to prevent cosmetic defects in oncoplastic breast surgery. Eur Rev Med Pharmacol Sci 2012; 16: 966-971.
- 14) CHEN CY, CALHOUN KE, MASETTI R, ANDERSON BO. Oncoplastic breast conserving surgery: a renaissance of anatomically-based surgical technique. Minerva Chir 2006; 61: 421-434.
- RAINSBURY RM. Surgery insight: Oncoplastic breastconserving reconstruction-indications, benefits, choices and outcomes. Nat Clin Pract Oncol 2007; 4: 657-664.
- 16) Skillman JM, Humzah MD. The future of breast surgery: a new subspecialty of oncoplastic breast surgeons? Breast 2003; 12: 161-162.
- BERRY MG, FITOUSSI AD, CURNIER A, COUTURAUD B, SALMON RJ. Oncoplastic breast surgery: a review and systematic approach. J Plast Reconstr Aesthet Surg 2010; 63: 1233-1243.
- 18) Franceschini G, Magno S, Fabbri C, Chiesa F, Di Leone A, Moschella F, Scafetta I, Scaldaferri A, Fragomeni S, Adesi Barone L, Terribile D, Salgarello M, Masetti R. Conservative and radical oncoplastic approches in the surgical treatment of breast cancer. Eur Rev Med Pharmacol Sci 2008; 12: 387-396.
- 19) NAHABEDIAN MY. "Oncoplastic Surgery of the Breast" edited by Saunders Elsevier, 2009. Chapter 4; pp. 23-45.
- COLOMBO G, DELLACASA I, RUVOLO V, OTTONELLO M, BORMIOLI M, MESZAROS P. Oncoplastic surgery for the treatment of breast cancer. Minerva Ginecol 2009; 61: 439-444.
- LEBOVIC GS. Oncoplastic surgery: a creative approach to breast cancer management. Surg Oncol Clin N Am 2010; 19: 567-580.
- GAINER SM, LUCCI A. Oncoplastics: techniques for reconstruction of partial breast defects based on tumor location. J Surg Oncol 2011; 103: 341-347.
- Bous A, Nardella D, Maweja S, Lifrange E, Nizet JL. Breast oncoplastic surgery. Rev Med Liege 2011; 66: 341-350.
- 24) CLOUGH KB, KAUFMAN GJ, Nos C, BUCCIMAZZA I, SARFATI IM. Improving breast cancer surgery: a classification and quadrant per quadrant atlas for oncoplastic surgery. Ann Surg Oncol. 2010;17:1375-1391.
- CLOUGH K, KAUFMAN G, NOS C, BUCCIMAZZA I, SARFATI I. Reply to Comments on: Improving Breast Cancer Surgery: A Classification and Quadrant per Quadrant Atlas for Oncoplastic Surgery. Ann Surg Oncol 2011; 18(Suppl 3): S257-S258.
- NAHABEDIAN MY. "Oncoplastic Surgery of the Breast" edited by Saunders Elsevier, 2009. Chapter 5; pp. 47-70.
- MARGENTHALER JA. Optimizing conservative breast surgery. J Surg Oncol 2011; 103: 306-312.
- 28) IWUCHUKWU OC, HARVEY JR, DORDEA M, CRITCHLEY AC, DREW PJ. The role of oncoplastic therapeutic mammoplasty in breast cancer surgery—A review. Surg Oncol 2012; 21: 133-141.

- BAILDAM AD. Oncoplastic surgery of the breast. Br J Surg 2002; 89: 532-533.
- 30) Nahabedian MY. Oncoplastic Surgery of the Breast. Saunders Elsevier, 2009. Chapter 5; pp. 71-82.
- Bong J, Parker J, Clapper R, Dooley W. Clinical series of oncoplastic mastopexy to optimize cosmesis of large-volume resections for breast conservation. Ann Surg Oncol 2010; 17: 3247-3251.
- RAINSBURY RM. Training and skills for breast surgeons in the new millennium. NZ J Surg 2003; 73: 511-516.
- Rew DA. Towards a scientific basis for oncoplastic breast surgery. Eur J surg Oncol 2003; 29: 105-106.
- 34) Benson JR, Querci della Rovere G. Towards a scientific basis for oncoplastic breast surgery. Eur J Surg Oncol 2003; 29: 629.
- 35) Brown IM, WILSON CR, DOUGHTY JC, GEORGE WD, COOKE TG, WEILER-MITHOFT EM, SCOTT JR, RAY AK. The future of breast surgery: a new sub-speciality of oncoplastic breast surgeons? Breast 2004; 13: 82.
- 36) AUDISIO RA, CHAGLA LS. Oncoplastic fellowship: can we do better? Breast 2007; 16: 11-12.
- ACEA NEBRIL B. Patient information in oncoplastic surgery for breast cancer. Cir Esp 2007; 82: 204-208.
- BAILDAM AD. Oncoplastic surgery for breast cancer. Br J Surg 2008; 95: 4-5.
- SILVERSTEIN MJ. How I do it: oncoplastic breast-conservation surgery. Ann Surg Oncol 2010; 17(Suppl 3): 242-244.
- 39) Anderson BO, Masetti R, Silverstein MJ. Oncoplastic approaches to partial mastectomy: an overview of volume-displacement techniques. Lancet Oncol 2005; 6: 145-157.
- ACHARD E, SALMON RJ. Reduction mammoplasty in breast cancers of the lower quadrants. Bull Cancer 2007; 94: 225-228.
- 41) LOSKEN A, STYBLO TM, CARLSON GW, JONES GE, AMER-SON BJ. Management algorithm and outcome evaluation of partial mastectomy defects treated using reduction or mastopexy techniques. Ann Plast Surg 2007; 59: 235-242.
- 42) Kuima Y, Yoshinaka H, Funasako Y, Natsugoe S, Alkou T. Oncoplastic surgery after mammary reduction and mastopexy for bilateral breast cancer lesions: report of a case. Surg Today 2008; 38: 335-339.
- 43) Franceschini G, Terribile D, Magno S, Fabbri C, D'Alba P, Chiesa F, Di Leone A, Masetti R. Conservative treatment of the central breast cancer with nipple-areolar resection: an alternative oncoplastic technique. G Chir 2008; 29: 23-27.
- 44) Franceschini G, Masetti R, D'Alba P, Consorti G, Picciochi A. Conservative treatment with nipple-areolar resection for subareolar breast cancer. Breast J 2006; 12: 91-92.
- 45) Franceschini G, Masetti R, D'Ugo D, Palumbo F, D'Alba P, Mulè A, Costantini M, Belli P, Picciocchi A. Synchronous bilateral Paget's disease of the nipple associated with bilateral breast carcinoma. Breast J 2005;11: 355-356.

- 46) Bognár G, Novák A, Barabás L, Lóderer Z, Ondreika P. Retroareolar breast cancer: oncoplastic resection technique with central quadrantectomy and reconstruction with Grisotti's inferior dermoglandular flap. Magy Seb 2011; 64: 183-188.
- 47) NAHABEDIAN MY. Oncoplastic Surgery of the Breast. Saunders Elsevier, 2009. Chapter 5; pp. 83-92.
- 48) CARUSO F, FERRARA M, CASTIGLIONE G, CANNATA I, MARZIANI A, POLINO C, CARUSO M, GIRLANDO A, NUCI-FORO G, CATANUTO G. Therapeutic mammaplasties: full local control of breast cancer in one surgical stage with frozen section. Eur J Surg Oncol 2011; 37: 871-875.
- 49) YANG JD, LEE JW, KIM WW, JUNG JH, PARK HY. Oncoplastic surgical techniques for personalized breast conserving surgery in breast cancer patient with small to moderate sized breast. J Breast Cancer 2011; 14: 253-261.
- 50) Kuima Y, Yoshinaka H, Hirata M, Mizoguchi T, Ishigami S, Nakaio A, Arima H, Ueno S, Natsugoe S. Oncoplastic surgery in a Japanese patient with breast cancer in the lower inner quadrant area: partial mastectomy using horizontal reduction mammoplasty. Breast Cancer 2010 [Epub ahead of print].
- 51) FRANCHELLI S, MESZAROS P, GUENZI M, CORVÓ R, PERTILE D, MASSA M, BELGIOIA L, D'ALONZO A, CAFIERO F, SANTI P. Preliminary experience using oncoplastic techniques of reduction mammaplasty and intra-operative radiotherapy: Report of 2 cases. Aesthetic Plast Surg 2011; 35: 1180-1183.
- 52) MALYCHA PL, GOUGH IR, MARGARITONI M, DEO SV, SANDELIN K, BUCCIMAZZA I, AGARWAL G. Oncoplastic breast surgery: a global perspective on practice, availability, and training. World J Surg 2008; 32: 2570-2577.
- 53) FITZAL F. Oncoplastic surgery: "a rolling stone gathers no moss". Breast 2010; 19: 437-438.
- 54) CARDOSO MJ, MACMILLAN RD, MERCK B, MUNHOZ AM, RAINSBURY R. Training in oncoplastic surgery: an international consensus. The 7th Portuguese Senology Congress, Vilamoura, 2009. Breast 2010; 19: 538-540.
- 55) NAHABEDIAN MY. Oncoplastic Surgery of the Breast. Elsevier, 2009. Chapter 5; 83-92.
- LIEM AA, IOBAL A. Oncoplastic breast surgery in Britain. Plast Reconstr Surg 2011; 127: 1012-1013.
- 57) HERNANZ DE LA FUENTE F, GÓMEZ FLEITAS M, MARTÍNEZ GARCÍA F. Reduction mammaplasty in breast cancer surgery. Cir Esp 2009; 85: 140-146.
- 58) Hernanz F, Regaño S, Vega A, Gómez Fleitas M. Reduction mammaplasty: an advantageous option for breast conserving surgery in large-breasted patients. Surg Oncol 2010; 19: 95-102.
- 59) Kuima Y, Yoshinaka H, Ishigami S, Hirata M, Kaneko K, Mizoguchi T, Nakajo A, Arima H, Funasako Y, Ueno S, Natsugoe S. Oncoplastic surgery for Japanese patients with ptotic breasts. Breast Cancer 2011; 18: 273-281.

- 60) Almasad JK, Salah B. Breast reconstruction by local flaps after conserving surgery for breast cancer: an added asset to oncoplastic techniques. Breast J 2008; 14: 340-344.
- 61) HERNANZ F, REGAÑO S, REDONDO-FIGUERO C, ORALLO V, ERASUN F, GÓMEZ-FLEITAS M. Oncoplastic breastconserving surgery: analysis of quadrantectomy and immediate reconstruction with latissimus dorsi flap. World J Surg 2007; 31: 1934-1940.
- 62) RAMAKANT P, MISHRA A, CHAND G. Oncoplastic breast-conserving surgery: analysis of quadrantectomy and immediate reconstruction with latissimus dorsi flap. World J Surg 2008; 32: 1569; author reply 1570.
- 63) REZAI M, DARSOW M, KUMMEL S, KRAMER S. Autologous and alloplastic breast reconstruction—overview of techniques, indications and results. Gynakol Geburtshilfliche Rundsch 2008; 48: 68-75.
- 64) SALGARELLO M, VISCONTI G, FARALLO E. Autologous fat graft in radiated tissue prior to alloplastic reconstruction of the breast: report of two cases. Aesthetic Plast Surg 2010; 34: 5-10.
- 65) RAGETH CJ, TAUSCH C. Intramammarian flap reconstruction (IFR) technique in breast conserving surgery. Breast 2009; 18: 387-392.
- 66) Zaha H, Sunagawa H, Kawakami K, Touyama T, Yonaha T, Ohshiro N. Partial breast reconstruction for an inferomedial breast carcinoma using an omental flap. World J Surg 2010; 34: 1782-1787.
- 67) LIU J, FANG ZY, XIAO CH, WANG B, GU L. Application of latissimus dorsi muscle flap for breast conservation in breast cancer. Zhonghua Zhong Liu Za Zhi 2011; 33: 05-307.
- 68) Kuima Y, Yoshinaka H, Hirata M, Mizoguchi T, Ishigami S, Arima H, Nakajo A, Ueno S, Natsugoe S. Immediate reconstruction using a modified thoracodorsal adipofascial cutaneous flap after partial mastectomy. Breast 2011; 20: 464-467.
- 69) OGAWA T, HANAMURA N, YAMASHITA M, KIMURA H, KASHIKURA Y. Long-term results of breast volume replacement using an inframammary adipofascial flap after breast-conserving surgery. Breast Cancer 2011; [Epub ahead of print].
- LEE J, BAE Y, AUDRETSCH W. Combination of two local flaps for large defects after breast conserving surgery. Breast 2011; 21: 194-198.
- 71) MISSANA MC, POMEL C. Endoscopic latissimus dorsi flap harvesting. Am J Surg 2007; 194: 164-169.
- 72) GÜEMES A, SOUSA R, CACHÓN R, VALCARRERES P, RUFAS M, GONZALO A, GIL I, LOZANO R. Minimally invasive breast surgery. Breast reconstruction using pure muscular latissimus dorsi flap. Cir Esp 2008; 83: 85-88.
- 73) ORTIZ CL, MENDOZA MM, SEMPERE LN, SANZ JS, TOR-RES AN, BARRAQUER EL. Versatility of the pedicled thoracodorsal artery perforator (TDAP) flap insoft tissue reconstruction. Ann Plast Surg 2007; 58: 315-320.
- 74) HAMDI M, VAN LANDUYT K, MONSTREY S, BLONDEEL P. Pedicled perforator flaps in breast reconstruction: a new concept. Br J Plast Surg 2004; 57: 531-539.

- Urban C, Lima R, Schunemann E, Spautz C, Rabinovich I, Anselmi K. Oncoplastic principles in breast conserving surgery. Breast 2011; 20(Suppl 3): S92-S95.
- 76) URBAN CA. Oncoplastic in a pre-paradigm era: a Brazilian perspective in an American problem. Plast Reconstr Surg 2010; 125: 1839-1841.
- DE ANDRADE URBAN C. New classification for oncoplastic procedures in surgical practice. Breast 2008; 17: 321-322.
- 78) HOFFMANN J, WALLWIENER D. Classifying breast cancer surgery: a novel, complexity-based system for oncological, oncoplastic and reconstructive procedures, and proof of principle by analysis of 1225 operations in 1166 patients. BMC Cancer 2009 8; 9: 108.
- 79) SANTANELLI F, PAOLINI G, LONGO B. Comments on: Improving Breast Cancer Surgery: A Classification and Quadrant per Quadrant Atlas for Oncoplastic Surgery. Ann Surg Oncol 2011; 18(Suppl 3): S257-S258; author reply S259-S260. Epub 2010 Sep 3.
- 80) Franceschini G, Terribile D, Magno S, Fabbri C, D'Al-BA PF, Chiesa F, Di Leone A, Masetti R. Update in the treatment of locally advanced breast cancer: a multidisciplinary approach. Eur Rev Med Pharmacol Sci 2007; 11: 283-289.
- 81) Franceschini G, Terribile D, Fabbri C, Magno S, D'Alba P, Chiesa F, Di Leone A, Masetti R. Management of locally advanced breast cancer. Mini-review. Minerva Chir 2007; 62: 249-255.
- 82) DELAY E, CLOUGH KB. Oncoplastic breast surgery: conclusions and future perspectives. Ann Chir Plast Esthet 2008; 53: 226-227.
- 83) COTHIER-SAVEY I, RIMAREIX F. Principles of oncoplastic surgery in breast surgery. Ann Chir Plast Esthet 2008; 53: 102-111.
- 84) Spear SL. Oncoplastic surgery. Plast Reconstr Surg 2009; 124: 993-994.
- 85) GIACALONE PL, ROGER P, DUBON O, EL GAREH N, RI-HAOUI S, TAOUREL P, DAURÉS JP. Comparative study of the accuracy of breast resection in oncoplastic surgery and quadrantectomy in breast cancer. Ann Surg Oncol 2007; 14: 605-614.
- 86) GIACALONE PL, ROGER P, DUBON O, EL GAREH N, DAU-RÉS JP, LAFFARGUE F. [Lumpectomy vs oncoplastic surgery for breast-conserving therapy of cancer. A prospective study about 99 patients]. Ann Chir 2006; 131: 256-261.
- 87) RIETJENS M, URBAN CA, REY PC, MAZZAROL G, MAISON-NEUVE P, GARUSI C, INTRA M, YAMAGUCHI S, KAUR N, DE LORENZI F, MATTHES AG, ZURRIDA S, PETIT JY. Long-term oncological results of breast conservative treatment with oncoplastic surgery. Breast 2007; 16: 387-395.
- 88) VEIGA DF, VEIGA-FILHO J, RIBEIRO LM, ARCHANGELO I JR, BALBINO PF, CAETANO LV, NOVO NF, FERREIRA LM. Quality-of-life and self-esteem outcomes after oncoplastic breast-conserving surgery. Plast Reconstr Surg 2010; 125: 811-817.
- 89) FITOUSSI AD, BERRY MG, FAMÀ F, FALCOU MC, CURNIER A, COUTURAUD B, REYAL F, SALMON RJ. Oncoplastic breast surgery for cancer: analysis of 540 consecutive cases [outcomes article]. Plast Reconstr Surg 2010; 125: 454-462.

- 90) CHAN SW, CHEUNG PS, LAM SH. Cosmetic outcome and percentage of breast volume excision in oncoplastic breast conserving surgery. World J Surg 2010; 34: 1447-1452. Erratum in: World J Surg 2010; 34: 1446.
- Losken A, Schaefer TG, Newell M, Styblo TM. The impact of partial breast reconstruction using reduction techniques on postoperative cancer surveillance. Plast Reconstr Surg 2009; 124: 9-17.
- Meretoja TJ, Svarvar C, Jahkola TA. Outcome of oncoplastic breast surgery in 90 prospective patients. Am J Surg 2010; 200: 224-228.
- 93) VEIGA DF, VEIGA-FILHO J, RIBEIRO LM, ARCHANGELO-JUNIOR I, MENDES DA, ANDRADE VO, CAETANO LV, CAMPOS FS, JULIANO Y, FERREIRA LM. Evaluations of aesthetic outcomes of oncoplastic surgery by surgeons of different gender and specialty: a prospective controlled study. Breast 2011; 20: 407-412.
- 94) CLOUGH KB, LEWIS JS, COUTURAUD B, FITOUSSI A, Nos C, FALCOU MC. Oncoplastic techniques allow extensive resections for breast-conserving therapy of breast carcinomas. Ann Surg 2003; 237: 26-34.
- 95) PAPP C, WECHSELBERGER G, SCHOELLER T. Autologous breast reconstruction after breast-conserving cancer surgery. Plast Reconstr Surg 1998; 102: 1932-1936; discussion 1937-1938.
- 96) Nos C, Fitoussi A, Bourgeois D, Fourquet A, Salmon RJ, Clough KB. Conservative treatment of lower pole breast cancers by bilateral mammoplasty and radiotherapy. Eur J Surg Oncol 1998; 24: 508-514.
- 97) CLOUGH KB, KROLL SS, AUDRETSCH W. An approach to the repair of partial mastectomy defects. Plast Reconstr Surg 1999; 104: 409-420.
- 98) NEWMAN LA, KUERER HM, McNEESE MD, HUNT KK, GURTNER GC, VLASTOS GS, ROBB G, SINGLETARY SE. Reduction mammoplasty improves breast conservation therapy in patients with macromastia. Am J Surg 2001; 181: 215-220.
- 99) SPEAR SL, PELLETIERE CV, WOLFE AJ, TSANGARIS TN, PENNANEN MF. Experience with reduction mammaplasty combined with breast conservation therapy in the treatment of breast cancer. Plast Reconstr Surg 2003; 111: 1102-1109.
- 100) CHANG E, JOHNSON N, WEBBER B, BOOTH J, RAH-HAL D, GANNETT D, JOHNSON W, FRANZINI D, ZEGZULA H. Bilateral reduction mammoplasty in combination with lumpectomy for treatment of

- breast cancer in patients with macromastia. Am J Surg 2004; 187: 647-650; discussion 650-651.
- 101) GOFFMAN TE, SCHNEIDER H, HAY K, ELKINS DE, SCHNARRS RA, CARMAN C. Cosmesis with bilateral mammoreduction for conservative breast cancer treatment. Breast J 2005; 11: 195-198.
- 102) MUNHOZ AM, MONTAG E, ARRUDA EG, ALDRIGHI C, GEMPERLI R, ALDRIGHI JM, FERREIRA MC. Critical analysis of reduction mammaplasty techniques in combination with conservative breast surgery for early breast cancer treatment. Plast Reconstr Surg 2006; 117: 1091-1103; discussion 1104-1107.
- 103) Noguchi M, Taniya T, Miyazaki I, Saito Y. Immediate transposition of a latissimus dorsi muscle for correcting a postquadrantectomy breast deformity in Japanese patients. Int Surg 1990; 75: 166-170.
- 104) DIXON JM, VENIZELOS B, CHAN P. Latissimus dorsi mini-flap: a technique for extending breast conservation. Breast 2002; 11: 58-65.
- 105) KAT CC, DARCY CM, O'DONOGHUE JM, TAYLOR AR, REGAN PJ. The use of the latissimus dorsi musculocutaneous flap for immediate correction of the deformity resulting from breast conservation surgery. Br J Plast Surg 1999; 52: 99-103.
- 106) GENDY RK, ABLE JA, RAINSBURY RM. Impact of skinsparing mastectomy with immediate reconstruction and breast-sparing reconstruction with miniflaps on the outcomes of oncoplastic breast surgery. Br J Surg 2003; 90: 433-439.
- PAPP C, McCraw JB. Autogenous latissimus breast reconstruction. Clin Plast Surg 1998; 25: 261-266.
- 108) NANO MT, GILL PG, KOLLIAS J, BOCHNER MA. Breast volume replacement using the latissimus dorsi miniflap. ANZ J Surg 2004; 74: 98-104.
- 109) LOSKEN A, CARLSON GW, SCHOEMANN MB, JONES GE, CULBERTSON JH, HESTER TR. Factors that influence the completion of breast reconstruction. Ann Plast Surg 2004; 52: 258-261; discussion 262.
- 110) RAJA MA, STRAKER VF, RAINSBURY RM. Extending the role of breast-conserving surgery by immediate volume replacement. Br J Surg 1997; 84: 101-105.
- 111) MUNHOZ AM, MONTAG E, ARRUDA EG, ALDRIGHI C, GEMPERLI R, ALDRIGHI JM, FERREIRA MC. The role of the lateral thoracodorsal fasciocutaneous flap in immediate conservative breast surgery reconstruction. Plast Reconstr Surg 2006; 117: 1699-1710.