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Introduction 

Knee osteoarthritis (OA) has a detrimental ef-
fect on the quality of life of people worldwide1. It 
is characterized by progressive destruction of the 
articular cartilage and formation of osteophytes, 
subchondral cysts, and subchondral sclerosis of the 
synovial joints, which can ultimately lead to func-
tional disability2. Many patients with knee OA re-
quire early diagnosis and treatment3. Healthcare 
providers can diagnose knee OA based on clinical 
evaluations and imaging investigations. The first-
line investigation conventionally used in the diag-
nosis is plain radiography of the knee1. However, 
because there are usually many patients with knee 
OA in daily practice, radiographic interpretation 
in orthopedic and radiology departments requires 
an ever-increasing workload. Approximately 15% 
of cases of early knee OA are reportedly missed 
in routine practice4. In addition, the diagnostic 
accuracy is highly dependent on the physician’s 
knowledge and experience. Thus, OA detection 
can be missed by a less experienced reader. Mul-
tiple previous studies4-8 have shown highly incon-
sistent sensitivity and specificity ranging from 
3.0% to 95.0% and from 60.0% to 98.0%, respec-
tively, in detecting knee OA on posteroanterior 
standing knee X-ray images. These are issues for 

Abstract. – OBJECTIVE: Radiographic inter-
pretation suffers from an ever-increasing work-
load in orthopedic and radiology departments. 
The present study applied and assessed the per-
formance of a convolutional neural network de-
signed to assist orthopedists and radiologists in 
the detection and classification of knee osteo-
arthritis from early to severe degrees in accor-
dance with the Kellgren-Lawrence (KL) classifi-
cation system.

MATERIALS AND METHODS: In total, 1650 
knee joint radiographs (anteroposterior view) 
were collected from the Osteoarthritis Initiative 
public resource. Two models were developed: 
one distinguished normal (KL 0-I) from osteo-
arthritic knees (KL II-IV), and the other classi-
fied the severity as normal (KL 0-I), non-severe 
(KL II), or severe (KL III-IV). The regions of in-
terest were labeled under the supervision of ex-
perts. Our artificial intelligence (AI) models were 
trained using the You Only Look Once version 3 
(YOLOv3) detection algorithm.

RESULTS: Our first AI model using YOLOv3 ti-
ny could detect and classify normal and osteo-
arthritic knees on plain knee joint radiographs 
with 85% accuracy and 81% mean average preci-
sion. The second AI model for classifying sever-
ity achieved a total accuracy of 86.7% and mean 
average precision of 70.6%.

CONCLUSIONS: Our proposed deep learning 
models provided high accuracy and satisfacto-
ry precision for the detection and classification 
of early to severe knee osteoarthritis on antero-
posterior radiographs. These models may be 
used as diagnostic aids by interpreting knee ra-
diographs and guiding the treatment options via 
each osteoarthritic stage for related physicians 
and specialists.
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which artificial intelligence (AI) may play an in-
tegral role in assisting orthopedists, radiologists, 
and related specialists in interpreting radiographs 
in a shorter time and with higher accuracy. How-
ever, minimal information is available regarding 
the role of AI in the diagnosis of knee OA via radi-
ography. The application of AI has been emerging 
in the field of medical imaging, especially using 
deep learning approaches. Previous studies have 
applied both shallow machine learning and deep 
learning algorithms for the detection and classifi-
cation of knee OA. Brahim et al9 applied a shal-
low machine learning algorithm that included na-
ive Bayes and random forest classifiers to detect 
early knee OA based on the Kellgren-Lawrence 
(KL) classification10 of KL0 as normal and KL2 
as early knee OA. They achieved an accuracy 
rate of approximately 83% with their model using 
1024 knee X-ray images from the public database 
of the Osteoarthritis Initiative (OAI). Tiulpin et 
al11 adopted a deep Siamese convolutional neural 
network (CNN) to automatically classify knee 
OA severity based on the KL classification. Their 
model patched the medial and lateral sides of the 
knee joint, with a convolutional network applied 
to each side. Each output was concatenated and 
used in the final fully connected layer to make a 
prediction. This model produced a multiclass ac-
curacy of 66.7%. Thomas et al12 used DenseNet, 
a 169-layer CNN with a dense convolutional net-
work architecture, to propose a model that could 
predict the KL grading scale using the OAI data-
set with an average accuracy of 0.71.

Multiple-step deep learning approaches were also 
formulated in previous studies. In 2017, Antony et 
al13 proposed a combination of object detection and 
classification techniques to classify the severity of 
knee OA. A fully CNN combined with a fine-tuned 
CNN with four convolutional layers and one fully 
connected layer was trained on 4446 and 2920 knee 
X-ray images from the OAI and MOST datasets. 
Detection of the knee joint was performed by the 
fully CNN, whereby the fine-tuned CNN with four 
convolutional layers and one fully connected layer 
was used to classify the severity according to the KL 
classification. A multiclass classification accuracy 
of 63.4% was achieved using this approach. Later, 
Chen et al14 adopted a similar protocol by first using 
the You Only Look Once version 2 (YOLO v2) al-
gorithm for knee joint detection. Various renowned 
CNN models were then used to classify the severi-
ty. The best performing combination was YOLO v2 
with the fine-tuned VGG-19 model, which achieved 
a classification accuracy of 69.7%.

In this paper, we propose an object detection 
method using a modern state-of-the-art object 
detection CNN architecture called YOLOv3 tiny. 
We developed two models: one was used to au-
tomatically distinguish a normal knee from knee 
OA, and the other classified the severity based on 
further grouping by the KL classification. This 
CNN model is designed to assist orthopedists, 
radiologists, and related specialists by automati-
cally detecting and classifying knee OA from ear-
ly to severe degrees in accordance with the KL 
classification.

Materials and Methods 

Dataset and Preprocessing 
In total, 1650 cropped right and left knee radio-

graphs (anteroposterior view) with a resolution of 
224 × 224 pixels were collected from public re-
sources distributed by Chen15 in that author’s “Knee 
Osteoarthritis Severity Grading Dataset” and pub-
lished article14. This dataset was taken from the 
OAI and modified by cropping only the areas of the 
knee joint that are split into right and left joints14,15. 
The OAI is a multicenter, longitudinal, prospective 
observational study of knee OA funded by the US 
National Institutes of Health. It provides a publicly 
accessible database of the natural history of knee 
OA, containing resources such as knee X-rays and 
magnetic resonance images. The present study in-
volved 4796 men and women ranging in age from 
45 to 79 years. Only trained and certified readers in 
each participating medical center were involved in 
classifying the radiographic images. The patients’ 
radiographic manifestations were described main-
ly according to the following features in accor-
dance with the KL classification1,10: osteophytes, 
narrowing of the joint space, and subchondral bone 
changes such as subchondral bone sclerosis and 
subchondral bone cysts. The KL classification is 
defined as follows1,11,16,17:
  •	 Grade 0: no radiological findings of OA
  •	 Grade I: doubtful narrowing of the joint 

space and possible osteophytic lipping
  •	 Grade II: definite osteophytes and possible 

narrowing of the joint space
  •	 Grade III: moderate multiple osteophytes, 

definite narrowing of the joint space, small 
pseudocystic areas with sclerotic walls, and 
possible bone contour deformity

  •	 Grade IV: large osteophytes, marked narrow-
ing of the joint space, severe sclerosis, and 
definite deformity of the bone contour
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Because of the ambiguity of the KL classifica-
tion, its intra-rater reliability is relatively unreli-
able, ranging only from 0.67 to 0.7314,18. Two sys-
tems with which to categorize the subgroups of 
radiographic findings using the KL classification 
have been suggested. The first system divides all 
KL grades into two subgroups, where KL grade 
0 to I is considered “normal” and KL grade ≥II 
is designated “definite OA”1,10,19. The second sys-
tem divides all KL grades into three subgroups 
of the severity of osteoarthritic changes, where 
KL grade 0 is “normal,” KL grade I to II indi-
cates “non-severe OA,” and KL grade III to IV 
is considered “severe OA”20. We propose a modi-
fied system in which KL grade 0 indicates that the 
knee joint is “normal,” KL grade 0 to I indicates 
“non-severe OA,” and KL grade III to IV indi-
cates “severe OA.” The logic behind this classifi-
cation is based on the cutoff point of OA being KL 
grade ≥II in the original study and various other 
studies1,10,19 and the response to treatment18,21. In 
this study, the first system and our proposed clas-
sification system were adopted, resulting in two 
datasets as shown in Table I.

All regions of interest with features in accor-
dance with the first and our proposed systems 

were manually labeled with rectangular bounding 
boxes to create ground truth via CiRA-CORE, 
an in-house deep learning platform (https:// git.
cira-lab.com/cira/cira-core), under the guidance 
of experts (Figure 1). Each class of each system 
was then randomly split into a training set and 
testing set at a ratio of 9:1 to train and test the 
model, respectively. After splitting, the testing set 
for validation contained 1500 knee X-ray images 
with 500 images in each class for both datasets.

Data Augmentation 
Prior to training the model, multiple data aug-

mentation techniques were implemented to im-
prove the generalization capabilities of the model. 
This was conducted to increase the variation of 
the dataset in an attempt to imitate the real-life 
scenario in which the qualities and parameters, 
such as exposure and orientation, are not consis-
tent. The techniques applied were as follows:
  •	 Rotation of the image with the value ranging 

from −3 to 3 degrees, varying at every 45 de-
grees

  •	 Adjustment of the brightness and contrast by 
multiplying all pixel red, green, and blue val-
ues by seven steps ranging from 0.6 to 1.0

Table I. Two datasets used in the present study.

Dataset	 Classification	 Training set (Knee X-ray images)	 Testing set (Knee X-ray images)

I	 Normal (KL 0-I)	 500	 50
	 OA (KL II-IV)	  500	 50
II	 Normal (KL 0-I)	 500	 50
	 Non-severe (KL II)	 500	 50
	 Severe (KL III-IV)	 500	 50

Dataset I contains Normal (KL 0-I) and OA (KL II-IV) classes with 500 training and 50 testing samples each. Dataset II contains 
Normal (KL 0-I), Non-severe (KL II), and Severe (KL II-IV) classes with 500 training and 50 testing samples each. Abbreviations: 
OA, osteoarthritis; KL, Kellgren-Lawrence.

Figure 1. ROI labeling. ROIs are shown in X-rays of a (A) normal knee, (B) knee with OA, (C) knee with non-severe OA, and 
(D) knee with severe OA. Abbreviations: ROI, region of interest; OA, osteoarthritis
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Deep Learning Model Configuration 
and Training

Modified YOLO algorithms were employed 
under the CiRA-CORE platform22,23 as the pro-
posed methodology for developing models to 
detect and classify knee OA. These models were 
then assessed and evaluated based on their perfor-
mance in detecting and classifying knee OA us-
ing relevant learning methods. Introduced earlier, 
YOLO is a state-of-the-art object detector that 
combines object detection and classification via a 
deep CNN. It uses features from the whole image 
to predict and split the image into multiple bound-
ing boxes and then predicts the classification24. 
YOLO is well known for its balance of speed and 
accuracy, especially for real-time detection, and 
for processing 45 to 155 frames per second22,24; 
these features make it suitable for on-demand 
detection in the clinical setting. Furthermore, 
previous studies have suggested that YOLO ex-
hibits impressive performance in detecting small 
objects25, which is critical in detecting small le-
sions such as miniature osteophytes in non-severe 
OA. However, some versions of YOLO, such as 
YOLOv3, require a high level of computing pow-
er. For this reason, we employed a more simplified 
and optimized version dubbed the “tiny” variant 

of YOLO. This version requires less computing 
power for comparable accuracy and is suitable as 
an embedded AI detector system26.

We fed 1000 labeled knee X-ray images, with 
500 annotated as “Normal” and 500 as “Osteoar-
thritis,” into the model to test the first system. We 
then fed 1500 labeled knee X-ray images, with 500 
annotated as “Normal,” 500 as “Non-severe,” and 
500 as “Severe,” into the model to test the second 
system. This study was performed using a dedi-
cated deep learning server with a 64-bit Ubuntu 
16.04 operating system and a library based on the 
CUDA 10.1 toolkit and cuDNN v7.5.0. All exper-
iments were conducted on a server with the fol-
lowing configuration: CPU i7-8700 (3.70 GHz), 
RAM 16 × 2 GB, GPU NVIDIA GTX 1070Ti 
(8 GB), and the C++ programming language. A 
modified version of YOLOv3 tiny was employed 
under CiRA-CORE with a mini-batch size of 64 
and 8 subdivisions, while the momentum and de-
cay were set at 0.9 and 0.0005, respectively. The 
model learning rate was 0.001.

The model automatically located the knee le-
sions and regions of interest of each knee in the 
radiographic images, depicting a rectangular 
bounding box during the analysis. An intersection 
of union of 0.5 between the predicted detection 

Figure 2. In total, 1000 samples and 1500 samples of plain knee radiographs in the first dataset and second dataset, respec-
tively, were labeled and fed to the YOLO algorithm to train the model. After training, images from the test set were used to test 
and validate the trained YOLO model. Here, the output is a bounding box with a predicted class, such as “Severe.”
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and manually labeled bounding box was used as 
the threshold to determine whether the predicted 
bounding box represented the actual class. A val-
ue less than the threshold was considered a false 
positive. The workflow of the methodology is 
shown in Figure 2.

Model Evaluation
To evaluate the performance of our models, we 

first validated the model using the testing set con-
taining 50 normal and 50 OA knee X-ray images in 
the first dataset and 50 images each for the normal, 
non-severe, and severe classes for the second data-
set. Next, a performance assessment was carried 
out by constructing a confusion matrix. Aside from 
the computation of four performance metrics [sen-
sitivity (recall), specificity, accuracy, and precision 
(positive predictive value)], the true positive, true 
negative, false positive, and false negative were 
also analyzed using the confusion matrix. The for-
mulas used to calculate these parameters are listed 
in Table II. The other parameter, the F1 score, was 
calculated using the following formula:

	 2 x Precision x Recall	
F1 score =	 ––––––––––––––––––––
	 Precsion+Recall

Furthermore, we used a precision-recall curve 
(PRC) to evaluate the object detection model. 
A PRC is a two-dimensional graph in which the 
X-axis is the recall (sensitivity) and the y-axis is 
the precision. It depicts the relationship between 
the precision and recall at each threshold. General-
ly, a model is deemed satisfactory if the precision 
remains at a high level as the recall increases. The 
area under the curve (AUC) is the area under the 
PRC that summarizes the model performance in 
a single number. It is used to measure the useful-
ness of the tested model; a larger AUC is associated 
with better performance of the model. The mean 
average precision (mAP) was also computed.

Results

The present study included varying degrees of 
OA severity in accordance with the KL classifi-
cation on the collected images. For the first sys-
tem, 500 normal radiographs (KL grades 0-I) and 
500 radiographs with osteoarthritic findings (KL 
grades II-IV) were used for training of the deep 
learning model via YOLOv3 tiny. Testing of the 
model was performed on 50 normal radiographs 
(KL grades 0-I) and 50 radiographs with osteoar-

Figure 3. Precision-recall curve with AUC of the first proposed model using YOLOv3 tiny. The first proposed model using 
YOLOv3 tiny detected normal knees as KL 0-I and knees with OA as KL II-IV with an AUC of 0.73 and 0.80, respectively.
Abbreviations: AUC, area under the curve; OA, osteoarthritis; KL, Kellgren-Lawrence
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thritic findings (KL grades II-IV). The analytical 
results of the tested model were promising with 
respect to the accuracy, sensitivity, and specifici-
ty, as shown in Table III. The overall accuracy of 
the first model using YOLOv3 tiny was 85% in 
detecting normal and osteoarthritic knee joints, 
while the overall sensitivity and specificity were 
the same at 85%. The mAP was also satisfactory 
at 81%. Individually, as shown in Table IV, simi-
lar performance was also observed in classifying 
normal and osteoarthritic knees (sensitivity of 
86% and 84%, respectively). However, specifici-
ty of identifying normal knees was slightly lower 

than that of osteoarthritic knees (84% and 86%, 
respectively).

For the second proposed model, there were 500 
normal radiographs (KL grades 0-I), 500 radio-
graphs with non-severe osteoarthritic findings 
(KL grade II), and 500 radiographs with severe 
osteoarthritic findings (KL grades III-IV) using 
YOLOv3 tiny. Testing of the model was per-
formed using 50 unobserved normal radiographs 
(KL grade 0), 50 radiographs with non-severe os-
teoarthritic findings (KL grades I-II), and 50 ra-
diographs with osteoarthritic findings (KL grades 
III-IV). Using the second system, our second 

Figure 4. Precision-recall curve with AUC of the second proposed model using YOLOv3 tiny. The second proposed model 
using YOLOv3 tiny detected normal knees as KL 0-I, knees with non-severe OA as KL II, and knees with severe OA as KL 
III-IV with an AUC of 0.66, 0.27, and 0.92, respectively. Abbreviations: AUC, area under the curve; OA, osteoarthritis; KL, 
Kellgren-Lawrence.

Table II. Confusion matrix with sensitivity, specificity, precision, negative predictive value, and accuracy calculation.

	 Predicted class

		  Positive	 Negative

Actual class	 Positive	 TP	 FN	 Sensitivity (recall)
				    TP/(TP + FN)

	 Negative	 FP	 TN	 Specificity
				    TN/(TN + FP)
		  Precision	 Negative predictive	 Accuracy
		  TP/(TP + FP)	 value TN/(TN + FN)	 TP + TN/(TP + TN + FP + FN)

Abbreviations: TP, true positive; FP, false positive; FN, false negative; TN, true negative.
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trained model demonstrated highly satisfactory 
results in terms of the overall performance, as 
shown in Table III, with accuracy and specificity 
of 86.7% and 85.9%, respectively. However, only 
fair overall sensitivity and mAP were achieved 
for this system (Table III). The individual perfor-
mances for each class are shown in Table V. The 
PRCs with the AUCs of the first and second pro-
posed models using YOLOv3 tiny are shown in 
Figures 3 and 4, respectively.

Discussion 

OA affects more than 250 million people 
worldwide (approximately 4% of the world pop-
ulation) and is considered one of the 50 most 
common sequelae of diseases and injuries1,27. 
By 2010, OA was responsible for approximately 
17 million years lost to disability, and knee OA 
alone constituted 83% of this number1,27. Cur-
rently, a combination of clinical presentation and 
plain radiography is considered the mainstay in 
the diagnosis of OA. In 1957, Kellgren and Law-
rence were among the first to formalize the ra-
diographic classification of OA1,10. The present 
study highlights the benefits of AI in the inter-
pretation and classification of knee OA findings 

on radiographs. In the first proposed model, the 
accuracy, sensitivity, specificity, and mAP were 
high for the detection of the normal, OA, and 
overall groups. These levels were higher than 
the results of interpretation and classification by 
orthopedic surgeons in a previous study28. Thus, 
the herein proposed deep learning model may be 
used to help not only orthopedic surgeons and 
related specialists but also general practitioners 
in interpreting radiographic findings and diag-
nosing OA in daily practice.

For our second proposed deep learning ap-
proach, the results demonstrated high accura-
cy and specificity but only fair sensitivity and 
mAP in the overall detection. The rationale of 
this system is related to the recommendation of 
a treatment option for knee OA that depends on 
the KL grade. Regarding non-severe OA as KL 
grade II, several studies20,29,30 have indicated that 
nonoperative treatments or joint-sparing surger-
ies could be the first-choice treatments. How-
ever, regarding severe OA as KL grades III-IV, 
joint replacement surgery may be the treatment 
of choice because of unsatisfactory results of 
joint-sparing surgeries30,31. The second proposed 
model in this study provided excellent specific-
ity and accuracy and satisfactory sensitivity for 
the detection of severe OA (KL grades III-IV). 

Table III. Model performance evaluation between two classification systems using YOLO network.

					     Mean 
					     average 
Model	 Accuracy	 Sensitivity	 Specificity	 F1 score	 precision

First proposed model with YOLOv3 tiny	 85.0%	 85.0%	 85.0%	 85.0%	 81.0%
Second proposed model with YOLOv3 tiny	 86.7%	 55.1%	 85.9%	 61.1%	 70.6%

The first proposed model with YOLOv3 tiny defined the knee joint as normal if KL 0-I and OA if KL II-IV. The second 
proposed model with YOLOv3 tiny detected normal knees as KL 0-I, non-severe osteoarthritic knees as KL II, and severe 
osteoarthritic knees as KL III-IV. Abbreviations: KL, Kellgren-Lawrence; OA, osteoarthritis. 

Table IV. Evaluation results for first proposed model trained with 1000 samples using YOLOv3 tiny.

 	 Normal	 OA	 Average	 Total

TPR (Sen/Rec)	 0.860	 0.840	 0.850	 0.850
FNR	 0.140	 0.160	 0.150	 0.150
TNR (Spec)	 0.840	 0.860	 0.850	 0.850
FPR	 0.160	 0.140	 0.150	 0.150
Precision	 0.843	 0.857	 0.850	 0.850
Accuracy	 0.850	 0.850	 0.850	 0.850
Misclassification rate	 0.150	 0.150	 0.150	 0.150
F1 score	 0.851	 0.848	 0.850	 0.850

Normal: KL 0-I, OA: KL II-IV. Abbreviations: TPR, true positive rate; FNR, false negative rate; TNR, true negative rate; FPR, 
false positive rate; Sen/Rec, sensitivity/recall; Spec, specificity; KL, Kellgren-Lawrence; OA, osteoarthritis.
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In addition, it provided excellent accuracy and 
specificity, albeit low sensitivity, for the detec-
tion of non-severe OA (KL grade II). The low 
sensitivity, especially in the normal and non-se-
vere groups, might stem from the similarity and 
minimal differences stated in the KL classifica-
tion criteria. Although low sensitivity was shown 
in this approach, it still outperformed orthopedic 
surgeons in detecting knee OA from plain-film 
knee X-rays in a previous study28. 

Limitations
This study had some limitations. The sample 

size was relatively small. A larger sample size 
might improve the overall performances of both 
models, especially for sensitivity and mAP. Addi-
tionally, other classification systems may require 
testing because the KL classification has been 
documented as ambiguous, and interpretation 
may vary based on the reader15,17. However, de-
spite these limitations, these models can aid or-
thopedic surgeons, related specialists, and even 
general practitioners in obtaining and differenti-
ating normal findings from pathological findings 
and assessing the severity of knee OA. This AI 
assistance may help to develop treatment options 
that correspond to the severity grade.

Conclusions

Our proposed model provided highly satisfac-
tory to excellent sensitivity, specificity, accuracy, 
and mAP for the detection and classification of 
normal (KL 0-I) and osteoarthritic findings (KL 
II-IV) on anteroposterior radiographs. Further-
more, the second proposed model based on our 
modified classification system assisted in the dif-
ferentiation of severe grades (KL III-IV) from a 
non-severe grade (KL II) or normal findings (KL 

0-I). The proposed AI technology could help or-
thopedic surgeons and related specialists interpret 
knee radiographs for the diagnosis of knee OA. It 
can also assist in classifying the disease severity 
for determining the appropriate treatment option.
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