A prospective evaluation of minimal residual disease as risk stratification for CCLG-ALL-2008 treatment protocol in pediatric B precursor acute lymphoblastic leukemia

Y.-X. HU, J. LU, H.-L. HE, Y. WANG, J.-Q. LI, P.-F. XIAO, J. LI, H. LV, Y.-N. SUN, J.-J. FAN, Y.-H. CHAI, S.-Y. HU

Department of Hematology and Oncology, The Children's Hospital of Soochow University, Suzhou, China

Abstract. – OBJECTIVE: The aim of this prospective study was to evaluate the cut-off value of minimal residual disease (MRD) in predicting the efficacy of CCLG-ALL-2008 or CCLG-2008 treatment protocol on pediatric B-precursor ALL (BP-ALL).

PATIENTS AND METHODS: Three hundred and seventy-nine Chinese pediatric BP-ALL were enrolled in this study between Dec 2008 and Sep 2013 in two stratified cohorts. One hundred and fifty-three patients enrolled between Dec 2008 and Oct 2010 as the first cohort, and 196 patients enrolled from Nov 2010 to Sep 2013 as the second cohort. Clinical and biological characteristics and 5 years EFS, RFS, and OS were analyzed.

RESULTS: Patients with E2A-PBX1 showed a favorable treatment response with a lower minimal residual disease (MRD) level (< 10⁻⁴) at the time point 1 (TP1, p = 0.039) and the highest proportion of the 5-year EFS, RFS, and OS. A high level of MRD was associated with high WBC counts, increased age, BCR-ABL1 fusion gene, MLL rearrangements and adverse karyotypes. In comparison with the first cohort, the second cohort with the MRD assay incorporated prospectively, the standard risk (SR) and the intermediate risk (IR) patients showed a better RFS, EFS, and OS while the high-risk (HR) patients displayed worse RFS, EFS, and OS than those of the first cohort, respectively. Patients with MRD level at either 10⁻⁴ or 10⁻³ showed a similar OS at TP1 or TP2, and patients with MRD level above 10-2 had the worst OS.

CONCLUSIONS: This study indicated that the levels of MRD to be an adequate guide in risk-adapted treatment under the CCLG-ALL-2008 protocol and can be adapted to the future development of advanced clinical protocols.

Key Words:

Acute lymphoblastic leukemia (ALL), Minimal residual disease (MRD), Relapse-free survival (RFS), Event-free survival (EFS), Overall survival (OS).

Introduction

Acute lymphoblastic leukemia (ALL) is the most common malignancy diagnosed in children (aged 1-18 years), accounting for 75% to 80% of cases of acute leukemia among this age group1. Dramatic improvements in the cure rates and survival outcomes for pediatric ALL have been made during the past five decades. Currently, the cure rate of pediatric ALL is above 80%, comparing with 30% in the late 1960s². These impressive improvements can be attributed to the advances in the understanding of the molecular genetics and pathogenesis of the disease, the incorporation of risk-adapted chemotherapy, and the availability of new targeted therapeutic agents¹. The risk stratification is commonly adopted in the treatment based on variables of prognostic importance, which include the patient age, initial leukocyte count, immunophenotype, chromosomal aberrations, responsiveness to chemotherapy and minimal residual disease $(MRD)^3$.

The CCLG-ALL-2008 protocol (the Chinese Children's Leukemia Group-acute lymphoblastic leukemia 08 protocols) was established in 2008 and recommended as a clinical guideline for the treatment of pediatric ALL in China⁴. The treatment regimen contains five phases, including induction, early reinforcement, consolidation, delayed reinforcement, and maintenance treatments⁵. Because MRD techniques by FACS were not available in most children's hospitals in China when the protocol was initially recommended, MRD level was not required in evaluating risk stratification⁶. However, it is well-known in the field that monitoring the level of MRD during chemotherapy is the most important prognostic

tool in the treatment of patients with ALL⁷. Low MRD after induction chemotherapy is associated with an excellent long-term prognosis whereas patients with high MRD have an extremely poor prognosis^{7,8}. Therefore, we have adapted minimal residual disease measurements to guide treatment in the 196 patients enrolled after Nov 2010. In this report, we compared their treatment outcomes with those who were not guided by the levels of MRD in the 153 patients enrolled between Dec 2008 and Oct 2010. Meanwhile, the clinical features, treatment response and long-term survival of entire patient cohort were analyzed.

Patients and Methods

Patients and Treatment Protocol

Between Dec 2008 to Sept 2013, 379 patients aged 3 months to 16 years (median, 4 years) were diagnosed as B-ALL according to MICM

criteria in our single institution. Due to the economic burden or disease crisis such as tumor lysis syndrome and life-threating pneumonia, 30 patients didn't proceed with the consolidation therapies and were excluded. As a result, 349 pediatric ALL patients who followed the protocol without hematopoietic stem cell transplantation (HSCT) were calculated for EFS, RFS, and OS. Three hundred and forty-nine patients were analyzed for clinical characteristics, treatment responses, as well as status of remission. Before October 2010, the MRD level wasn't considered as the risk factor and all 153 patients (named as the first cohort) were treated based only on conventional prognostic factors. While the second cohort patients (196 patients) were enrolled in this study after Oct 2010 and MRD level was incorporated into the risk-stratification, these patients were treated on the risk-readapted principle (Table I). Follow-up observations extended through Oct 2014. Details of the risk stratifica-

Table I. Different risk stratification criteria.

	Risk st	ratification	
	Traditional risk	MRD-based risk	MRD-combined risk
SR	(all the factors) None of the HR factor; B-precursor ALL; age ranged 1 to 10 years; WBC counts less than 50 × 10 ⁹ /L; the absolute value of spinal fluid blasts < 5 × 10 ⁶ /L; good BM histological remission (M1 or M2) on day 15; histological CR (normal BM cellularity with < 5% undifferentiated cells) achieved on day 33 of induction remission phase.	MRD < 10-4 at TP1	Traditional SR Plus MRD < 10-4 at TP1
IR	None of the HR factor; BM showed M3 after SR induction or M1/M2 after IR induction on day 15; (at least 1 factor) age ≥ 10 years; age < 1 year without MLL rearrangements; WBC counts ≥ 50 × 10 ⁹ /L; the absolute value of spinal fluid blasts >5 × 10 ⁶ /L; T-ALL; E2A-PBX1 fusion gene or t(1;19) chromosomal translocation.	MRD < 10 ⁻² at TP1	Traditional IR Plus MRD < 10-2 at TP1
HR	(at least 1 factor) MLL gene rearrangement (t[4;11] chromosomal translocation and/or MLL-AF4 gene fusion or other MLL rearrangement); BCR/ABL fusion gene or t(9;22) chromosomal translocation; early resistance to the 1-week steroid induction (the absolute value of peripheral blasts >1000/µl); poor BM blast clearance (M3) after IR induction on day 15; no histological CR (normal BM cellularity with > 5% undifferentiated cells) achieved on day 33 of induction remission phase	MRD $\geq 10^{-2}$ at TP1 or MRD $\geq 10^{-3}$ at TP2	Traditional HR or MRD $\geq 10^{-2}$ at TP1 or MRD $\geq 10^{-3}$ at TP2

Abbreviations: SR: standard risk; IR: intermediate risk; HR: high risk; MRD: minimal residual disease; BM: bone marrow; TP1: time point 1, at the end of induction around day 33; TP2: time point 2, before consolidation around week 12; M1:BM cellularity with < 5% undifferentiated cells; M2: BM cellularity with $\ge 5\%$, but < 25% undifferentiated cells; M3: BM cellularity with $\ge 25\%$ undifferentiated cells.

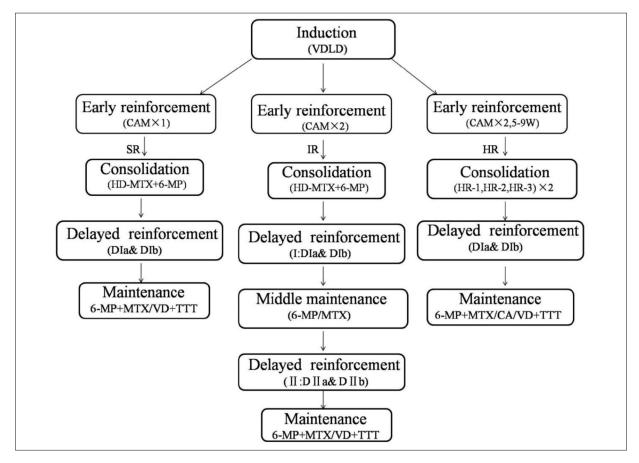
tion and treatment regimen of the protocol were illustrated in Table II and Figure 1. The CCLG-ALL-2008 treatment protocol was approved by the Children's Hospital of Soochow University Institutional Ethics Committee. Informed consents were signed by the parents or caregivers of each patient.

Cytogenetic Analysis and Fusion Gene Amplification

Conventional cytogenetics analysis was performed at the time of initial diagnosis. Chromosomes were R-banded on BM cells from direct and/or 24-hr stimulated cultures. According to the abnormality of chromosome, three subgroups were classified as the favorable group [t(12;21),hyperdiploid], the intermediate group [t(1;19),t(11;14), t(11;19), del(9p), del(6q), normal chromosome], and the adverse group [t(9;22), t(4;11),hypodiploid]. Meanwhile, the total RNA of each sample was extracted with Trizol (Invitrogen Life Technologies, Carlsbad, CA, USA), according to the manufacturer's instructions. A multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify simultaneously the following fusion transcripts in ALL: BCR-ABL1, E2A-PBX1, TEL-AML1, HOX11 and MLL rearrangements (MLLr).

Minimal Residual Disease (MRD) Analysis

FACS was used for immunophenotypes detection and MRD screening and monitoring. Detection of a leukemia cell was feasible among at least 10000 normal cells (10⁻⁴). The MRD level was detected at two-time points, TP1, at the end of induction therapy around day 33 after beginning chemotherapy, and TP2, before intensification around week 12 after finishing consolidation. In this study, MRD information in 327 samples was available at TP1 and TP2 in B-ALL. However, MRD incorporated risk stratification only applied to patients enrolled after Nov. 2010 (n = 196).


Criteria for Risk Evaluation

According to CCLG-ALL-2008 protocol, ALL patients were classified into three hierarchy subgroups as SR, IR, and HR based on the following factors such as, the clinical presentation (age, WBC count, ALL type and gene aberrations), the early treatment response (prednisone response and histological remission status of BM), as well as the MRD levels (Table I). In this study, we separated these factors into conventional risk-stratification, MRD-based

Table II. CCLG-2008 treatment protocol.

CCLG-2008	Prednisone induction	Remission induction	Early intensification	Consolidation	Delay intensification l	Maintenance I	Delay Intensification I Maintenance I intensification II	Maintenance II
Standard-risk Intermediate-risk High-risk	P (one week) P (one week) P (one week)	VDLD (DNR × 2) VDLD (DNR × 4) VDLD (DNR × 4)	CAM CAM×2 CAM×2	HD-MTX $(2 \text{ g/m}^2) \times 4$ VDLD+CAM HD-MTX $(5 \text{ g/m}^2) \times 4$ VDLD+CAM I'II'' $\times 2$ VDLD+CAM	VDLD+CAM VDLD+CAM VDLD+CAM	/ 6-MP+MTX /	VDLD+CAM	6-MP+MTX/VD+IT 6-MP+MTX/VD+TIT 6-MP+MTX/CA/VD+IT

CLG, Chinese Childhood Leukemia Group; VDLD, vincristine+daunorubicin+L-asparaginase+dexamethasone; CAM, cyclophosphamide +cytarabine+6-mercaptopurine (6-MP); HD. MTX, high-dose methotrexate; VD, vincristine+dexamethasone; IT, intrathecal injection with dexamethasone and methotrexate; CA, cyclophosphamide+cytarabine; TIT, intrathecal injection ion with dexamethasone, methotrexate and cytarabine; I', Berlin-Frankfurt-Munster (BFM) High Risk block-1'; II', BFM High Risk block-2'; III', BFM High Risk block-3'

Figure 1. The flow chart of CCLG-2008 treatment protocol. Note: VDLD, vincristine+daunorubicin+L-asparaginase+dexamethasone; CAM, cyclophosphamide +cytarabine+6-mercaptopurine (6-MP); HD-MTX, high-dose methotrexate; VD, vincristine+dexamethasone; IT, intrathecal injection with dexamethasone and methotrexate; CA,cyclophosphamide+cytarabine; TTT, intrathecal injection with dexamethasone, methotrexate and cytarabine; BFM, Berlin-Frankfurt-Munster; HR-1, BFM High Risk Block-1; HR-2, BFM High Risk Block-2; HR-3, BFM High Risk Block-3.

risk stratification and MRD-combined riskstratification. The detailed information was listed in Table I.

Treatment Response Definitions

Poor response to prednisone (PPR) was defined as the presence of more than 1000 blasts/ μ L blood blasts on day 8 after prednisone treatment, otherwise, good prednisone response (GPR). Relapse was defined as the reappearance of leukemic cells in BM (> 25% blasts) after CR. CNS relapse was defined as more than 5 blasts/ μ L in the CFS. Testicular relapse was diagnosed clinically and confirmed with ultrasonography. Very early relapse refers to less than 18 months from the first diagnosis; early relapse refers to 18 months or more after the first diagnosis and less than 6 months from stopping therapy; late relapse refers to 6 months or more after stopping therapy⁹.

Statistical Analysis

Data collection ended on October 31th, 2014. RFS was defined as the duration from the time of diagnosis to the date of disease relapse. EFS was defined as the duration from the date of diagnosis to the date of relapse, death, or treatment failure, whatever came first, or the last contacting with patients in continuous hematological complete remission (CR). OS was referred to the date of diagnosis to the date of death or last follow-up. The analysis of RFS, EFS and OS was calculated with the Kaplan-Meier procedure. Comparisons between different classified groups were performed with the log-rank test. The Cox proportional hazards regression model was used to evaluate the significance of differences in survival among the clinical indicators. All tests were two-sided with a p < 0.05 considered statistically significant. SPSS 16.0 software (SPSS Inc., Chicago, IL, USA)was used for all statistical analysis.

Results

Clinical Features of ALL Patients

Clinical features and biological characteristics at the time of initial diagnosis were illustrated in Table III. The detailed information on chromosome distribution was listed in Figure 2. The fusion gene transcripts were illustrated in Table III.

Clinical Prognostic Factors and Treatment Response

Table I indicated that patients with WBC counts below 50×10^9 /L had a better response to prednisone induction (p < 0.01). No gender bias was observed in the responses of the treatment. Pediatric patients older than 10 years showed a poorer response with less histological BM remission on day 15 (p = 0.048) than the younger patients. As a result, the relapse rate was higher in the older patients (> 10 years old patient population, p = 0.002). The relapse rate was 19.2% (74/379), equally distributed at different stages [7.4% (28/379) very early, 6.3% (24/379) early, and 5.8% (22/379) late stages, respectively, Table III]. Moreover, in most cases the relapse sites were in BM except for five in the testis and two in the central nerves systems. Our data indicated that WBC and age were the most important prognostic factors, which were consistent with previous reports. Relapse is a serious issue that contributes to the poor outcome of the treatment of ALL.

The Influence of Gene Rearrangement on the Treatment Response

In our clinical observation, patients with different types of fusion transcripts had diverse responses to the treatment. Comparing with normal cytogenetic patients, those with TEL-AML1⁺ or HOX11+ had no differences in treatment response; among positive fusion transcript cohort, patients with E2A-PBX1 showed a favorable outcome with lower MRD level ($< 10^{-4}$) at TP1 (p =0.039) (Table III). On the contrary, patients with MLL rearrangements and BCR-ABL1 fusion gene showed an adverse response. These two groups had a poor response to prednisone pretreatment (p < 0.001 and 0.015, respectively) (Table III). Meanwhile, the BCR-ABL1+ group had a higher level of MRD (> 10^{-2}) at TP1 (p < 0.001). Given the cytogenetic aberrations, we found that patients with favorable karyotypes had good prednisone response compared with those with intermediate and adverse ones, with a p-value of 0.013 and < 0.001, respectively. Moreover, patients with favorable karyotypes usually were with the lower level of MRD at TP1 (< 10^{-2}) and TP2 (< 10^{-3}) (Table III). Our results indicated that fusion gene transcripts do play an important role in chemo-response and E2A/PBXI positive patients responded well to CCLG-ALL-2008 protocol.

The Effect of Different Indictors on RFS, EFS and OS

Using Cox regression, we found that age, gene rearrangement and MRD-based risk stratification were all independent prognostic factors for RFS, EFS and OS (Table IV). WBC count was an independent prognostic factor of RFS and EFS, prednisone response and remission status of BM after induction treatment were independent prognostic factors of EFS and OS (Table IV). The adverse features were high WBC counts, age ≥10 years, fusion gene transcripts with BCR-ABL or MLL rearrangement, poor response to prednisone and BM remission status. However, the karyotypes in our study couldn't be characterized as an independent factor for the data analysis (Table IV). Our results confirmed the previously reported predicting factors by other groups using different protocols¹⁰⁻¹².

The Influence of MRD on RFS, EFS and OS

The first cohort (n = 153) were given riskadapted treatment based on the conventional risk-stratification without the MRD evaluation. They were classified into three groups, including 86 cased in SR, 47 in IR and 20 in HR. The 5year RFS, EFS and OS was 82.8 \pm 4.2%, 82.8 \pm 4.2%, and $85.0 \pm 4.0\%$ for SR, $70.9\pm10.5\%$, 70.9 \pm 10.5%, and 85.1 \pm 5.2% for IR, and 48.2 \pm 20.9%, $42.8 \pm 18.9\%$, and $70.0 \pm 10.2\%$ for HR, respectively (p < 0.001, Figure 3). After Nov 2010, the MRD detection became fully functional, 196 patients were treated according to the evaluation of MRD incorporated with conventional risk factors (the second cohort). Patients were classified into 3 groups, 63 patients in MRD-combined SR, 63 in MRD-combined IR, and 70 in MRD-combined HR. The 5-year RFS, EFS and OS was $88.8 \pm 4.9\%$, $88.8 \pm 4.9\%$, and $94.9 \pm 3.8\%$ for MRD-combined SR, $84.7 \pm$ 5.2%, $85.0 \pm 5.0\%$, and $90.9 \pm 3.9\%$ for MRDcombined IR, and $35.4 \pm 9.4\%$, $29.2 \pm 8.0\%$, and $33.4 \pm 10.3\%$ for MRD-combined HR, respectively (p < 0.001, Figure 3). From our data, we

Table III. Clinical characteristics and treatment response of ALL patients.

			5			4		21			4							4		_	
	је <i>р</i>		0.195			0.874		0.002			0.034							0.254			
e e	No Late relapse	305	236	38	31	5	183		23	282		52	19	14	6	19	188		172	11	14
Relapse		22	16	3	3	0	13		4	18		2	0	1	0	1	18		14	7	0
	Early	24	16	3	2	-	13		4	20		9	0	0	0	0	18		14	2	S
	Very early	28	16	4	∞	5	15		6	19		_	_	\mathcal{E}	-	0	20		70	3	3
	р		0.101			0.307		0.230			0.127							0.023			
TP2	MRD > 10-3	53	35	6	6	ć	56		∞	45		6	0	3	7	Э	53		34	9	2
	MRD < 10 ⁻³	274	219	34	21	103	171		23	251		46	18	6	33	17	167		140	77	_
	٩		0.226			0.826		0.121			0.002							0.036			
	MRD ≥ 10-2	37		9	9		24		2	32		∞	0	2	9	ϵ	18	0	25	3	7
TP1																					
	MRD ≥ 10 ⁻⁴ , < 10 ⁻²	130	106	17	7	7	79		15	115		20	5	13	∞	2	93		73	37	S
	MRD > 10.4 >	160	129	18	13	37	95		6	151		30	13	∞	7	6	86		98	20	3
<u> </u>	_ Q		0.28			0.426		0.476			0.094							0.059			
BM remission on day 33	NCR	27	17 (4	9		5 1 4	0	4	23		2	0	_	3	2	23	0	19	7	7
BM re	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	352	267	4	41	5	142 210		31	316		59	20	17	7	19	227		201	06	16
5	۵		0.569			0.340		0.048			0.161							0.198		_	
emission on day 15	M3 25%	88	0 61	13	14	31 0	57	0	15	73		17	2	3	2	3	59	0	52	15	S
ion or	^																			•	_
_	M2 5%-25%	89	65	12	12	-	48		10	79		10	3	5	2	2	29		5]	29	
BM	M1 × 5%	202	158	23	21	00	911		15	187		34	15	10	3	15	124		117	48	9
nse	٥		< 0.001			0.300		0.129			0.004						0.004	0.003			
Prednisone response	Non	55		13	21		36		6	46		9	3	9	4	3	30		35	2	9
isone	re sen																				
Predr	Non Total Sensitive sensitive	324	263	35	56	126	188		31	293		55	17	12	9	17	230		185	87	12
	Total	379	284	48	47	7.7	224		40	339		61	20	18	10	20	250		220	92	18
		umber	10°/L)						rs	ILS	ne	1L.1	X1		3L1		ted	ره ده	le	liate	
		Patients number 379	WBC (× 10°/L) < 50	50-100	> 100	Gender	remaie Male	Age	: 10 yea	< 10 years	Fusion gene	EL-AN	E2A-PBX1	MLLr	3CR-AE	HOX11	Undetected	Karyotype	Favorable	Intermediate	Adverse
		Pa	≥ ∨	ďΩ	۸\	ŭ	- ~	Ą	ΛI	٧	표		щ		Ч	Т	1	것	-	Ι	Ŧ

Abbreviations: B-ALL: B-acute lymphoblastic leukemia, WBC: white blood cell, BM: bone marrow, MRD: minimal residual disease, TPI: time point 1: at the end of remission induction around day 33, TP2: time point 2: before consolidation around week 12, CR: complete remission: normal BM cellularity with < 5% undifferentiated cells, NCR: non-complete remission: BM cellularity with ≥ 5% undifferentiated cells, MI: BM cellularity with < 5% undifferentiated cells, MI: BM cellularity with > 25% undifferentiated cells, MI: BM cellularity with

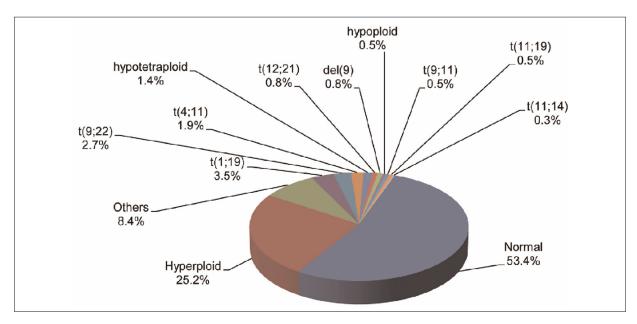


Figure 2. Distributions of different recurring chromosome aberrations in BP-ALL patients.

found that the proportion of HR patients significantly increased as defined by MRD incorporated and had a worse outcome than the first cohort. The SR and IR patients had a better outcome in the second cohort than the first cohort.

We retrospectively reevaluated the outcome of two cohorts with MRD data together to figure out the effect of the MRD level on the patient outcomes without considering the other risk factors. We reclassified the patients into 4 groups and found that the patients with MRD levels less than 10⁻⁴ had similar OS to the patients with MRD levels less than 10⁻³, patients with MRD levels above 10-2 had the worst outcome, and patients with MRD levels higher than 10⁻³ and lower than 10⁻² had an intermediate outcome at TP2 (Figure 4). From these results, we concluded that MRD alone has the highest correlation in evaluating the effect of the protocol. We propose that the risk levels for MRD to be setup at two levels, namely, 10⁻³ and 10⁻² based on CCLG ALL 2008 protocol. It is unnecessary to defined MRD level at 10⁻⁴ as the low risk recommended in the protocol (Table I). In this way, MRD monitor will be easier to operate and promote in most institutions because it is much easier to detect 10⁻³ level than 10⁻⁴ level for the FACS technicians with the current technology.

MRD-combined HR had more disease relapses than MRD-combined SR (p < 0.001) and MRD-combined IR (p = 0.002). However, with the tra-

ditional risk stratification, there were no significant differences among them of relapse (Table V). Our data indicated that HR patients identified by MRD responded poorly to chemotherapy who are candidates for HSCT to improve their outcome.

Discussion

In the pediatric population, ALL is the most common type of childhood leukemia for patients younger than 15 years, accounting for 26% of all cancers and 78% of leukemia in this age group, and for approximately 20% of adult acute leukemia¹³. Recent advances in molecular biology and clinical studies have led to a wealth of information and deeper understanding of the pathology of ALL. The genetic basis in ALL is of most importance. Till now, more than 50 recurring genetic alterations have been identified, and many of the genes involved encode proteins with key roles in cooperation to leukemia genesis¹⁴. The incidence rate of distinct fusion transcripts detected in our patients' cohort was 34.0%, which was similar to Gao et al¹⁵ report (37.05%).

Risk-stratification by MRD assessment has already brought about considerable improvement in individualized treatment planning². MRD level has become a highly reliable prog-

Table IV. Variable prognostic indictors of RFS, EFS and OS

		RFS	S			EFS	S				SO	
	<i>p</i> -value	Exp(B)	95.0% CI for Exp(B) low	5.0% CI for 9 Exp(B) up	<i>p</i> -value	Exp(B)	95.0% CI for Exp(B) low	95.0% CI for Exp(B) up	<i>p</i> -value	Exp(B)	95.0% CI for Exp(B) low	95.0% CI for Exp(B) up
WBC	0.001	1.943	1.324	2.851	0.000	1.913	1.341	2.728	080.0	1.456	0.956	2.219
Age	0.001	2.917	1.545	5.507	0.002	2.662	1.450	4.888	0.001	3.186	1.621	6.260
Gene aberrations	0.015	0.757	0.604	0.948	0.003	0.755	0.627	0.911	0.018	0.769	0.619	0.956
Karyotypes	0.650	1.080	0.774	1.507	0.578	1.092	0.800	1.491	0.244	1.256	0.856	1.842
Prednisone response	0.126	0.560	0.267	1.176	0.008	0.418	0.220	0.793	0.004	0.332	0.157	0.702
BM remission status	0.056	2.174	0.981	4.815	0.000	3.423	2.078	5.639	0.000	3.481	1.997	990.9
MRD-based risk stratification	0.015	1.574	1.093	2.267	9000	1.631	1.151	2.310	0.027	1.603	1.056	2.433

Abbreviations: RFS: relapse-free survival; EFS: event-free survival; OS: overall survival; WBC: white blood cell; BM: bone marrow; MRD: minimal residual disease.

nostic indicator because it not only reflects intrinsic drug sensitivity, but also treatment adherence, and treatment efficacy¹⁶. We selected TP1 and TP2 as the check points for MRD measurement, which was consistent with most reports^{2,15}. At TP1, the MRD level was higher in groups with age ≥ 10 years, BCR/ABL fusion gene, as well as adverse karyotypes; and at TP2, the MRD level was higher in groups with WBC \geq 50 × 10⁹/L, MLL rearrangements and adverse karyotypes. In our study, patients who received treatment after MRD incorporated for monitoring have improved survival outcomes of SR and IR comparing with patients received treatment without MRD monitoring. The risk of relapse was more in the MRD-based HR patients who are candidates for HSCT to improve their outcomes.

The univariate survival analysis demonstrated that the MRD measurements at both time points had prognostic significance to 5-year RFS, EFS, and OS. The risk was consistent with MRD level. Gao et al¹⁵ reported that higher MRD levels at the end of induction and before intensification were related to elevated WBC counts and a poor prednisone response. Our results demonstrated that MRD is a validated early index of the response to treatment, an important biologic feature in risk stratification and modification of treatment intensity at an early phase. Patients with MRD level above 1% should be considered as candidates for HSCT after entering intensification instead of chemotherapy alone. In this study, we also found that patients with MRD level at 10-4 showed a similar outcome to patients with MRD level at 10⁻¹ ³ treated by the protocol. It indicated that the cutoff level of MRD at 10⁻³ was a reasonable value for a risk-stratified treatment. This finding is very useful and helpful in China because the CCLG-ALL-2008 protocol has been recommended as the clinical guideline for Chinese pediatric ALL. In practice, detection of MRD level at 10⁻³ is much easier and more promote in operation than the 10⁻⁴ level for typical labs in China.

The 5-year EFS and OS in our study were less than those reported from the western countries¹⁶⁻¹⁸, but similar to those from Asian countries^{12,19,20}. This could be resulted from the less intensive treatment because of the poor economic situation in some families and early death due to insufficient supportive cares. The relapse rate in our study was 17.9%, a little higher than 15% reported in literature²¹. A large proportion of relapse arose from bone

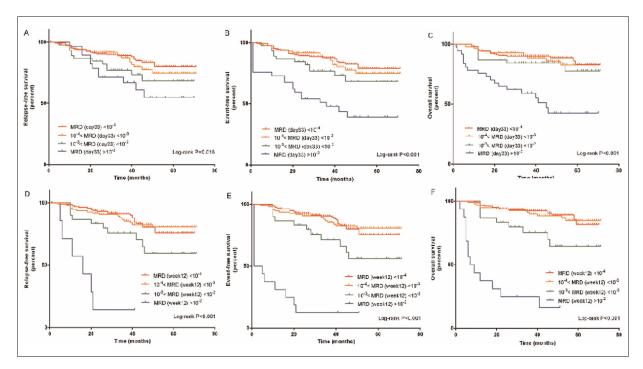



Figure 3. Outcome of two cohorts. (A) The 5 years RFS of two cohorts. (B) The 5 years EFS of two cohorts. (C) The 5 years OS of two cohorts.

Figure 4. The outcome of patients classified only based on MRD level. **(A)** Comparison of the five years RFS among different levels of MRD at TP1. **(B)** Comparison of the five years EFS among different levels of MRD at TP1. **(C)** Comparison of the five years OS among different levels of MRD at TP1. **(D)** Comparison of the five years RFS among different levels of MRD at TP2. **(E)** Comparison of the five years EFS among different levels of MRD at TP2. **(F)** Comparison of the five years OS among different levels of MRD at TP2. **(Note:** TP1 indicated the day 33 after induction therapy started. TP2 indicated the time around 12 week before consolidation therapy started.

Table V. Relapses in groups of MRD based risk stratification or MRD uncombined.

	Trac	ditional risk	stratificatio	n group	MRD-co	ombined ris	k stratificat	tion group
	SR	IR	HR	<i>p</i> -value	SR	IR	HR	<i>p</i> -value
Relapse Non-relapse	14 72	9 38	6 14	0.370	5 58	8 55	25 45	< 0.001

Abbreviations: MRD: minimal residual disease; SR: standard risk; IR: intermediate risk; HR: high risk.

marrow. Attributed to the intensification of prophylactic intrathecal chemotherapy of CCLG-ALL-2008 protocol, the recurrence in the center never systems were rare in our study. Nowadays, the effective systemic and intrathecal therapy had opened an exciting way for eliminating prophylactic cranial irradiations¹⁶.

Conclusions

Our prospective study proved that MRD monitoring during remission induction treatment and before intensification treatment had important prognostic and therapeutic implications which could be incorporated into the risk factors in the protocol. Patients with high MRD levels either at TP1 or TP2 should be considered as HSCT candidates to improve their outcomes in the long run.

Acknowledgements

This work was supported by the grants from Jiangsu Province's Project Clinical Medical Science and Technology Projects (Grant No. BL2013014), National Natural Science Foundation of China (No. 81170513 and 81370627), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Suzhou Clinical Key Project (LCZX201507 and SZZX201504).

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

- ASSELIN BL, GAYNON P, WHITLOCK JA. Recent advances in acute lymphoblastic leukemia in children and adolescents: an expert panel discussion. Curr Opin Oncol 2013; 25 Suppl 3: S1-13; quiz S14-16.
- BARTRAM CR, SCHRAUDER A, KOHLER R, SCHRAPPE M. Acute lymphoblastic leukemia in children: treatment planning via minimal residual disease assessment. Dtsch Arztebl Int 2012; 109: 652-658.
- YEOH AE, TAN D, LI CK, HORI H, TSE E, PUI CH, ASIAN ONCOLOGY SUMMIT 2013. Management of adult and paediatric acute lymphoblastic leukaemia in Asia: resource-stratified guidelines from the Asian Oncology Summit 2013. Lancet Oncol 2013; 14: e508-523.
- 4) Subspecialty Group of Hematology, the Society of Pediatrics, Chinese Medical Association; Editorial

- BOARD, CHINESE JOURNAL OF PEDIATRICS; SUBSPECIALTY GROUP OF HEMATOLOGY THE SOCIETY OF PEDIATRICS CHINESE MEDICAL ASSOCIATION; EDITORIAL BOARD CHINESE JOURNAL OF PEDIATRICS. Guidelines for the diagnosis and treatment of childhood acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi 2014; 52: 641-644
- 5) GAO C, LIU SG, ZHANG RD, LI WJ, ZHAO XX, CUI L, CUI L, WU MY, ZHENG HY, LI ZG. NOTCH1 mutations are associated with favourable long-term prognosis in paediatric T-cell acute lymphoblastic leukaemia: a retrospective study of patients treated on BCH-2003 and CCLG-2008 protocol in China. Br J Haematol 2014; 166: 221-228.
- 6) LIU X, ZOU Y, WANG H, CHEN X, RUAN M, CHEN Y, YANG W, GUO Y, LIU T. Treatment outcome of childhood standard-risk and median-risk acute lymphoblastic leukemia with CCLG-2008 protocol. Zhonghua Er Ke Za Zhi 2014; 52: 449-454.
- 7) Pui CH, Pei D, Coustan-Smith E, Jeha S, Cheng C, Bowman WP, Sandlund JT, Ribeiro RC, Rubnitz JE, Inaba H, Bhojwani D, Gruber TA, Leung WH, Downing JR, Evans WE, Relling MV, Campana D. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol 2015; 16: 465-474.
- 8) Borowitz MJ, Wood BL, Devidas M, Loh ML, Raetz EA, Salzer WL, Nachman JB, Carroll AJ, Heerema NA, Gastier-Foster JM, Willman CL, Dai Y, Winick NJ, Hunger SP, Carroll WL, Larsen E. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children's Oncology Group study AALL0232. Blood 2015; 126: 964-971.
- 9) PARKER C, WATERS R, LEIGHTON C, HANCOCK J, SUTTON R, MOORMAN AV, ANCLIFF P, MORGAN M, MASUREKAR A, GOULDEN N, GREEN N, RÉVÉSZ T, DARBYSHIRE P, LOVE S, SAHA V. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet 2010; 376: 2009-2017.
- CHESSELLS JM, HALL E, PRENTICE HG, DURRANT J, BAI-LEY CC, RICHARDS SM. The impact of age on outcome in lymphoblastic leukaemia; MRC UKALL X and XA compared: a report from the MRC Paediatric and Adult Working Parties. Leukemia 1998; 12: 463-473.
- 11) CRIST W, BOYETT J, JACKSON J, VIETTI T, BOROWITZ M, CHAUVENET A, WINICK N, RAGAB A, MAHONEY D, HEAD D, ET AL. Prognostic importance of the pre-B-cell immunophenotype and other presenting features in B-lineage childhood acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1989; 74: 1252-1259.
- 12) FENAUX P, LAI JL, MOREL P, NELKEN B, TABOUREAU O, DEMINATTI M, BAUTERS F. Cytogenetics and their prognostic value in childhood and adult acute lymphoblastic leukemia (ALL) excluding L3. Hematol Oncol 1989; 7: 307-317.

- 13) MARIOTTO A, NOONE AM, HOWLADER N, CHO H, KEEL GE, GARSHEL J. Woloshin S, Schwartz LM. Cancer survival: an overview of measures, uses, and interpretation. J Natl Cancer Inst Monogr 2014; 49: 145-186.
- ZHAO Y, HUANG H, WEI G. Novel agents and biomarkers for acute lymphoid leukemia. J Hematol Oncol 2013; 6: 40.
- 15) GAO C, ZHAO XX, LI WJ, CUI L, ZHAO W, LIU SG, YUE ZX, JIAO Y, WU MY, LI ZG. Clinical features, early treatment responses, and outcomes of pediatric acute lymphoblastic leukemia in China with or without specific fusion transcripts: a single institutional study of 1,004 patients. Am J Hematol 2012; 87: 1022-1027.
- Pui CH, Evans WE. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol 2013; 50: 185-196.
- 17) Moricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H, Ludwig WD, Ritter J, Harbott J, Mann G, Klingebiel T, Zintl F, Niemeyer C, Kremens B, Niggli F, Niethammer D, Welte K, Stanulla M, Odenwald E, Riehm H, Schrappe M. Longterm results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010; 24: 265-284.
- 18) Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, Reaman GH, Carroll WL. Improved

- survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology group. J Clin Oncol 2012; 30: 1663-1669.
- 19) TSUCHIDA M, OHARA A, MANABE A, KUMAGAI M, SHIMADA H, KIKUCHI A, MORI T, SAITO M, AKIYAMA M, FUKUSHIMA T, KOIKE K, SHIOBARA M, OGAWA C, KANAZAWA T, NOGUCHI Y, OOTA S, OKIMOTO Y, YABE H, KAJIWARA M, TOMIZAWA D, KO K, SUGITA K, KANEKO T, MAEDA M, INUKAI T, GOTO H, TAKAHASHI H, ISOYAMA K, HAYASHI Y, HOSOYA R, HANADA R; TOKYO CHILDREN'S CANCER STUDY GROUP. Long-term results of Tokyo Children's Cancer Study Group trials for childhood acute lymphoblastic leukemia, 1984-1999. Leukemia 2010; 24: 383-396.
- 20) YAMAJI K, OKAMOTO T, YOKOTA S, WATANABE A, HORIKOSHI Y, ASAMI K, KIKUTA A, HYAKUNA N, SAIKAWA Y, UEYAMA J, WATANABE T, OKADA M, TAGA T, KANEGANE H, KOGAWA K, CHIN M, IWAI A, MATSUSHITA T, SHIMOMURA Y, HORI T, TSURUSAWA M; JAPANESE CHILDHOOD CANCER LEUKEMIA STUDY GROUP. Minimal residual disease-based augmented therapy in childhood acute lymphoblastic leukemia: a report from the Japanese Childhood Cancer and Leukemia Study Group. Pediatr Blood Cancer 2010; 55: 1287-1295.
- August KJ, Narendran A, Neville KA. Pediatric relapsed or refractory leukemia: new pharmacotherapeutic developments and future directions. Drugs. 2013; 73: 439-461.