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Risperidone and ethyl pyruvate have
protective effects against ketamine-induced
cognitive impairments in mice
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Abstract. - OBJECTIVE: Ketamine, an N-meth-
yl D-aspartic acid receptor antagonist drug, is
reported to produce memory disruptions. The
aim of this study was to investigate the protec-
tive effects of ethyl pyruvate (EP), a pyruvic ac-
id derivative, and risperidone, an atypical anti-
psychotic drug, against ketamine-induced cog-
nitive disturbances.

MATERIALS AND METHODS: A passive-avoid-
ance test, a novel object recognition test, and a
modified elevated plus maze test were used to as-
sess memory functions. Hippocampal malondial-
dehyde (MDA) levels were measured to determine
the oxidation levels.

RESULTS: Ketamine applications produced
memory deficits in all tests and insignificantly
increased MDA levels, which were alleviated by
risperidone, EP, and combination treatments.

CONCLUSIONS: Increased oxidative stress
and neurotransmission imbalance can be re-
sponsible for ketamine-induced memory dis-
ruptions. With its antioxidant effects, EP may be
helpful to reduce cognitive impairments related
to schizophrenia either alone or in combination
with antipsychotics.
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Introduction

The popularity of N-methyl D-aspartic acid
(NMDA) receptor antagonizing drugs has been
growing over the past few decades. Ketamine,
an NMDA receptor antagonist, has beneficial
therapeutic effects in treatment-resistant depres-
sion, anxiety, and chronic and severe pain'?. Me-
mantine, another NMDA receptor antagonist, is
currently prescribed in dementia treatment?. Ket-
amine has evolved into a highly abused substance
with its hallucinogenic and euphoric effects®.
Recently, esketamine, a ketamine enantiomer,
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has been approved by Food and Drug Adminis-
tration (FDA) in treatment-resistant depression
and major depressive disorder with acute suicid-
al ideation®. Increasing NMDA antagonist drug
use rates have emerged the necessity to investi-
gate their acute and long-term effects.

Main concerns regarding the long-term use of
ketamine and esketamine remain unaltered, pri-
marily linked to possible neurodegenerative ef-
fects, along with its potential for substance abuse®.
Ketamine-induced neurodegeneration practically
limits its widespread use, while its abuse potential
reduces its safety’.

NMDA receptors play essential roles in long-
term potentiation, long-term depression, and
synaptic plasticity, representing their fundamen-
tal role in memory processes®'’. Antagonizing
these receptors with specific pharmacological
agents produces cognitive disturbances resem-
bling schizophrenia''.

Risperidone is an atypical antipsychotic drug
reported to reduce the cognitive symptoms of
schizophrenia'?. Neurotransmission dysregulation
is a significant cause of memory disruptions®, and
risperidone is believed to protect memory by regulat-
ing dopaminergic and serotonergic transmission'*'>.
However, the mechanisms underlying the protective
effects of risperidone are not yet entirely clear.

Continuous administration of ketamine is re-
ported to increase oxidative stress'®. Increased
oxidation of biomolecules leads to apoptosis and
even results in neuronal death!’. Therefore, evalu-
ation of oxidation levels is crucial to understand-
ing the effects of ketamine on memory processes.

Ethyl pyruvate (EP), a derivative of pyruvic
acid, functions as an endogenous antioxidant in
cells and is reported to have antioxidant, antia-
poptotic, and antiinflammatory effects in various
preclinical studies'®%".

The present study aimed to investigate the
protective effects of risperidone and EP on ket-
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amine-induced cognitive impairments in mice. A
passive avoidance test, a novel object recognition
test and a modified elevated plus-maze test were
used to evaluate memory functions. After the be-
havioral test, brain hippocampi tissues were iso-
lated to measure malondialdehyde levels as an
indicator of lipid peroxidation.

Materials and Methods

Animals

56 male BALB/c mice (35-45 gr) taken from
local animal colony facility (DUSAM, Dicle
University, Diyarbakir, Turkey) were separat-
ed into 7 groups, each comprised of 7-9 mice.
Mice were kept in cages in the laboratory for two
weeks before the experiments in standard labora-
tory conditions (21£1.5°C, 12 h light/dark cycle,
light onset at 8.00 pm). The mice were supplied
ad libitum access to food pellets and water. Eth-
ics permission was acquired from Dicle Uni-
versity Animal Ethics Committee (DUHADEK,
Number: 2019-02). All procedures concerning
the test subjects were conducted in accordance
with the European Community Council Direc-
tive of 24 November 1986. All subjects were
naive to the experiments and tested individual-
ly. All experiments were conducted within 9-14
a.m. in a semi-soundproof and dimly lit room
(approximately 100 lux).

Drugs and Treatment

Ketamine was purchased from Merck Co.
(Darmstadt, Germany), risperidone and EP were
purchased from Sigma-Aldrich Chemical Co. (St.
Louis, MO, USA). The drugs were dissolved in
saline and administered intraperitoneally. Ket-
amine (25 mg/kg), risperidone (0.2 mg/kg), and
EP (50 mg/kg) were administered for two weeks
before the experiments, and the vehicle group was
given saline in a volume of 10 ml/kg. The drug
doses were defined based on previous behavioural
studies®' 2.

Passive Avoidance Test

A one-trial, step-down, light-dark passive
avoidance (PA) test apparatus (MAY-PA 1014-M)
was used to measure the effects of the drugs on
emotional learning and memory based on con-
textual fear conditioning. In this test, the animals
learn to evade a particular place linked with an
aversive experience. After putting the mice in the
light compartment, the passing time to the dark

compartment of the mice was considered as step-
through latencies. If the mice did not pass in 300
seconds, the experiment ended afterward, and the
test subject was excluded from the experiment.

The apparatus consisted of two compartments
(22x21%22 cm). The illumined white compart-
ment was connected to a dark compartment with
an automatically operated flat-box door at floor
level. The ground of the apparatus was decorat-
ed with an electrifiable grid floor. In the acquisi-
tion trial (day 1), the mice were put in the light
compartment, and the door was opened after 30
seconds. When the mice entered the dark com-
partment, the door was automatically shut, and an
inescapable electrical shock was given to the ani-
mal’s paws (0.5 mA, 3 s). The mice then returned
to their cages, and the grid floor was rinsed thor-
oughly between each test to prevent affecting the
following mice with the olfactory cues. A reten-
tion trial (day 2) was conducted a day following
the acquisition trial, and step-through latencies of
the mice to enter the dark compartment were de-
termined. Step-through latencies in the retention
trial are considered as a ratio of emotional learn-
ing. Lower step-through latencies mean a disrupt-
ed memory, while higher latencies represent an
improved memory?.

Novel Object Recognition Test

According to the previously described pro-
tocol, the novel object recognition (NOR) test
was conducted?. Non-spatial declarative mem-
ory performances of the mice were analyzed us-
ing the NOR test. All tests were recorded with
a video camera, positioned centrally over the
open field (OF) test apparatus (40x40x35 cm).
The NOR test has consisted of 3 sessions: ha-
bituation, training, and retention. The mice
were gently put in the OF test apparatus in the
habituation session without any objects placed.
They were waited to explore freely for 5 min. 30
min after the habituation session, a training ses-
sion was performed. Two identical objects (two
cubes) were placed on the OF test apparatus in
a symmetrical position 10 cm beside the side
walls. The mice were put facing away from the
objects and were allowed to explore freely for 5
mins. The mice directing their nose to objects or
touching them is considered as exploration be-
haviour. 60 minutes after the training session, the
mice were put again to the apparatus for the test-
ing session (retention) and were allowed freely
to explore one familiar (a cube) and a novel (a
sphere) object for 5 mins. The exploration times
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of the familiar and novel objects in the training
and testing sessions were measured. The ratio in-
dex (RI) was calculated. RI was determined by
novel object exploration time (NT) relative to
the total object exploration time (TT), multiplied
by 100 [RI=NT/(NT+TT)*100]. Higher RI val-
ues indicate healthy memory, and lower values
indicate a null preference.

Modified Elevated Plus-Maze Test

Spatial long-term memory was measured us-
ing the modified elevated plus-maze test (mEPM).
This experiment is based upon the avoidance be-
haviour of rodents from open spaces and heights,
preference for the enclosed and protected areas of
the maze. The maze consisted of two open arms
(29 cm longx5 cm wide) enclosed by a plexiglass
edge (1 cm) to avoid falls and two enclosed arms
(29 cm longx5 cm wide, 15 cm high walls). Two
open and two closed arms were stationed on the
opposite sides and were united by a square-shaped
centrepiece (5x5 cm). The maze was completely
coloured black and 50 cm high above the floor.
In the acquisition session (day 1), each mouse
was individually placed at the distal edge of an
open arm facing away from the centrepiece. The
time passes for mice to enter either closed arms
(with all four paws) were recorded and considered
transfer latencies. If the mouse did not enter one
of the closed arms in 90 s, it is excluded from the
experiment. After entrance to either closed arms,
the mice were allowed to move freely regardless
of closed or open arms for 10 secs. Then, the mice
were returned to their home cage. 24 h after the
acquisition trial, a retention trial was conducted.
The mice were placed on the same distal edge
of the open arm, and the transfer latencies were
calculated®. Higher transfer latencies represent a
disrupted memory, while lower values indicate a
better memory.

Measurement of Lipid Peroxidation

To measure the oxidation levels, we mea-
sured malondialdehyde levels of the hippocam-
pi tissue. We used the thiobarbituric acid (TBA)
method to assess MDA levels, which is based
on the reaction of MDA with TBA. After the
behavioural tests, the mice were sacrificed by
cervical decapitation for further analyses. Hip-
pocampi were separated to determine the tissue
MDA levels. The weighted tissue samples were
put in ice-cold 0.5 ml 10%, w/v, trichloroacetic
acid (TCA), plus 4.5 ml 5% (w/v) TCA. Next,
hippocampi tissues were homogenized (Fish-
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er Scientific Model FB50) and centrifuged (15
mins) at 4500 rpm (model). After centrifuga-
tion, supernatant (1 ml) was put into a glass tube
with an equivalent volume of 0.6% (w/v) TBA.
The mixture was heated and kept at 100°C for
10 minutes. Following cooling, the absorption
spectrum at 532 nm was measured with a spec-
trophotometer (UV-1205 Shimadzu). Outcomes
were estimated using the molar extinction coef-
ficient concerning tissue weights, and the results
were shown as nmol/gram tissue®.

Statistical Analysis

SPSS 24 (IBM, Armonk, NY, USA) was used
for statistical analysis. A one-way analysis of
variance (ANOVA) ensued with a post hoc Tukey
test was used if significant differences were de-
tected between test groups. The data are presented
as mean values +SEM. When p-values were less
than 0.05, the differences between the test groups
were considered statistically significant.

Results

Passive Avoidance Test

On the first day (acquisition trial) of the PA
test, no significant difference was observed be-
tween test groups (p>0.05) (Figure 1).

On the second day (retention trial) of the PA
test, step-through latencies were lower in the
ketamine applied group (KET) compared with
the vehicle group (VEH) (p<0.05). Ketamine-EP
combination (KE), ketamine-risperidone combi-
nation (KR), and ketamine-risperidone-EP com-
bination (KRE) groups had higher step-through
latencies compared with the KET group (p<0.05)
(Figure 2).

Novel Object Recognition Test

Ratio index (RI) values were lower in the KET
group compared with the VEH group (p<0.05)
and were slightly increased in KE, KR, and KRE
groups compared with the KET group (p>0.05)
(Figure 3).

Modified Elevated Plus-Maze Test

No significant difference was observed in trans-
fer latencies in the modified elevated plus-maze
test (mEPM) first-day trial (»>0.05) (Figure 4).

In the mEPM test second-day trial, the KET
group had higher transfer latencies compared with
the VEH group (p<0.05). Latencies were lower
in KE, KR, and KRE groups compared with the



Risperidone and ethyl pyruvate reduce ketamine-induced memory disruptions

-

1%,

o
]

100+

14}
o
1

Step through latencies (sec)

o
1

S E ¢ & ¢ &

VEH
KET
EP
RIS
KE

(N Wi |

KRE

Figure 1. Acquisition trial of the passive avoidance test, step-through latencies. VEH: vehicle, KET: ketamine (25 mg/
kg, 14 days), EP: ethyl pyruvate (50 mg/kg, 14 days), RIS: risperidone (0.2 mg/kg, 14 days), KE: ketamine-ethyl pyruvate
combination, KR: ketamine-risperidone combination, KRE: ketamine-risperidone-ethyl pyruvate combination. Each column
represents the mean = SEM of 7-9 mice. One-way ANOVA followed by a post hoc Tukey test was used for statistical analysis.

KET group, but the differences were not signifi-
cant (Figure 5).

Measurement of Tissue Malondialdehyde
Levels

Malondialdehyde levels of the hippocampi
were higher in the KET group compared with the
VEH group, but the differences were insignifi-
cant (p>0.05). Compared with the KET group,
MDA levels were lower in KE, KR, and KRE
groups; similarly, the differences were insignif-
icant (Figure 6).

Discussion

The popularity of ketamine has increased over
the past few decades after the discovery of its effects
on mood and anxiety-related disorders'. It is one of
the top abused substances due to its hallucinogenic
and euphoric effects®. Ketamine can mimic positive
symptoms of schizophrenia and extended high-dose
applications are reported to cause cognitive disrup-
tions™!". Increased employment of the substance has
created the need to uncover its pharmacodynamic
effects, mechanism of action, and toxicity.
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Figure 2. Retention trial of the passive avoidance test, step-through latencies. VEH: vehicle, KET: ketamine (25 mg/kg, 14
days), EP: (50 mg/kg, 14 days), RIS: risperidone (0.2 mg/kg, 14 days), KE: ketamine-ethyl pyruvate combination, KR: ket-
amine-risperidone combination, KRE: ketamine-risperidone-ethyl pyruvate combination. Each column represents the mean +
SEM of 7-9 mice. "p<0.05 vs. VEH group, "p<0.05 vs. KET group. One-way ANOVA followed by a post hoc Tukey test was

used for statistical analysis.
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Figure 3. Ratio index values of the novel object recognition test. VEH: vehicle, KET: ketamine (25 mg/kg, 14 days), EP:
ethyl pyruvate (50 mg/kg, 14 days), RIS: risperidone (0.2 mg/kg, 14 days), KE: ketamine-ethyl pyruvate combination, KR:
ketamine-risperidone combination, KRE: ketamine-risperidone-ethyl pyruvate combination. Each column represents the mean +
SEM of 7-9 mice. ‘p<0.05 vs. VEH group. One-way ANOVA followed by a post hoc Tukey test was used for statistical analysis.

Ketamine is reported to increase serotonergic
and dopaminergic transmission by decreasing se-
rotonin and dopamine transporter activity”’. It also
has a direct agonistic affinity to 5-HT2 and D2 re-
ceptors®%. Ketamine is reported to activate the me-
solimbic dopaminergic system®. These interactions
may collectively contribute to positive symptoms
development. High occupation of dopaminergic re-
ceptors and excessive serotonin release is a critical
cause for cognitive disruptions®!. On the other hand,
ketamine is reported to increase oxidation, which
is believed to have roles in its effects on memory?.

Risperidone is a second-generation antipsychotic
drug. It regulates dopaminergic transmission by an-
tagonizing serotonin 2A (5-HT2A) and dopamine 2
(D2) receptors. Tolerable adverse effects of risperi-
done made it a preferred option to treat positive and
negative symptoms and reduce cognitive disruptions
of schizophrenia®-**. The protective effect of risper-
idone on memory represents dopaminergic and se-
rotonergic transmission balance is necessary for the
brain to function properly'**>.

Literature data state that long-term ketamine
applications alter brain monoamine levels?,
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Figure 4. Transfer latencies (day 1) of mice in the modified elevated plus-maze test. VEH: vehicle, KET: ketamine (25 mg/kg,
14 days), EP: ethyl pyruvate (50 mg/kg, 14 days), RIS: risperidone (0.2 mg/kg, 14 days), KE: ketamine-ethyl pyruvate combina-
tion, KR: ketamine-risperidone combination, KRE: ketamine-risperidone-ethyl pyruvate combination. Each column represents
the mean = SEM of 5-7 mice. One-way ANOVA followed by a post hoc Tukey test was used for statistical analysis.
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Figure 5. Transfer latencies (day 2) of mice in the modified elevated plus-maze test. VEH: vehicle, KET: ketamine (25 mg/
kg, 14 days), EP: ethyl pyruvate (50 mg/kg, 14 days), RIS: Risperidone (0.2 mg/kg, 14 days), KE: ketamine-ethyl pyruvate
combination, KR: ketamine-risperidone combination, KRE: ketamine-risperidone-ethyl pyruvate combination. Each column
represents the mean + SEM of 5-7 mice. "p<0.05 vs. VEH group. One-way ANOVA followed by a post hoc Tukey test was used

for statistical analysis.

increase oxidation*’, and induce apoptosis’®
leading to cognitive disturbances’’. Ethyl py-
ruvate is a potent antioxidant molecule. It has
essential roles in intermediary metabolism. Re-
searchers have shown protective effects of EP
in neurodegenerative diseases**. Cho et al*’ re-
ported neuronal cell death reductions with EP
treatment against kainic acid-induced neuro-
toxicity. Moro reported beneficial effects of EP
following traumatic brain injury with improved
oxidative metabolism and reduced inflamma-
tion*. A study by Ozacmak et al*' highlighted
that EP administration could alleviate memo-

ry impairment caused by chronic cerebral hy-
poperfusion. Another study*’ reported attenuat-
ed cognitive decline, microglia activation, and
impaired neurogenesis with EP treatment in an
experimental sepsis model. A recent study*® re-
ported improved sensorimotor function and re-
duced myelin loss with EP treatments against
traumatic brain injury.

In this experiment, ketamine-applied groups
had lower step-through latencies in the PA test re-
tention trial. The amygdala-dependent emotional
memory deficits were reversed by risperidone and
EP treatments. Cho et al*® also reported reduced
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Figure 6. Malondialdehyde levels of the hippocampi tissue. VEH: vehicle, KET: ketamine (25 mg/kg, 14 days), EP: ethyl
pyruvate (50 mg/kg, 14 days), RIS: risperidone (0.2 mg/kg, 14 days), KE: ketamine-ethyl pyruvate combination, KR: ket-
amine-risperidone combination, KRE: ketamine-risperidone-ethyl pyruvate combination. Each column represents the mean +
SEM of 7-9 mice. One-way ANOVA followed by a post hoc Tukey test was used for statistical analysis.
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impairment in a passive avoidance test with EP
treatment.

Ketamine reduced the NOR test ratio index
values indicating short-term recognition memory
deficit. Ketamine applied groups spent less time
exploring the novel object compared with the
vehicle group. Risperidone and EP, alone or in
combination, slightly lessened ketamine-induced
memory disruptions in the NOR test. Similarly,
chronic pyruvate supplementation is reported to
increase the exploration behavior of rodents in
odour recognition task*. Risperidone, on the oth-
er hand, is reported to reverse recognition mem-
ory deficits induced by post-weaning social iso-
lation®.

Modified elevated plus maze (mEPM) test was
conducted to measure spatial memory functions.
In the mEPM test, transfer latencies of ketamine
applied groups were increased, indicating mem-
ory deficits. Cognitive impairment was reduced
with risperidone and EP treatments. Shi et al*
reported improved spatial memory functions with
EP after traumatic brain injury, and Koivisto has
shown similar results with chronic pyruvate treat-
ment, both in a morris water maze (MWM) test*.
Celikyurt reported MK-801-induced memory
disruption reductions with risperidone. She has
shown improved spatial memory functions using
an mEPM and an MWM test'’.

Ketamine is known to increase oxidation in the
literature which contributes to neurodegenerative
processes'®. EP is reported to reduce neurode-
generation due to augmented oxidation?. In this
study, MDA levels were assessed and regarded
as an indicator of lipid peroxidation. MDA lev-
els were insignificantly increased with ketamine
applications. EP treatments were reversed the ket-
amine-induced MDA level alterations. Neverthe-
less, the differences were not found significant.

Alleviation of ketamine-induced cognitive
impairments with EP can be linked to reduced
oxidation, apoptotic markers, and inflammation,
while the protective effects of risperidone may be
primarily linked to improved neurotransmission
balance.

Conclusions

According to the results of our study, we
conclude that ethyl pyruvate can be a promis-
ing agent to alleviate ketamine-induced mem-
ory disturbances. However, a combination of
EP and risperidone was not proven synergistic.
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With its potent antioxidant effects, EP can be
considered an adjunct therapy to antipsychotics
that are not as effective as risperidone to relieve
cognitive symptoms. EP may be a profitable add-
on in schizophrenia treatment to increase pa-
tients’ comfort who are suffering from cognitive
symptoms.
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