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Abstract. – Nuclear factor κB (NF-κB) is a 
transcriptional factor that regulates a large 
number of genes that controls diverse biologi-
cal functions, ranging from inflammation, cell 
proliferation and tumor development to learn-
ing and memory. MicroRNAs (miRNAs) are small 
non-coding RNA molecules involved in most as-
pects of physiological and pathological process-
es, including cancer, viral infections, inflamma-
tion and autoimmune diseases. miRNAs also play 
an important role in the regulation of NF-κB sig-
naling pathway, some being inhibitory and oth-
ers activating. Here, we analyzed the conver-
gence of miRNAs involved in NF-κB signaling 
regulation and dysregulation of miRNAs and 
NF-κB activation in human diseases, particular-
ly in cancer. The function of miR-146, miR-125b, 
miR-21, miR-301a, miR-30b, and miR-199 and 
their impacts on tumorigenesis are analyzed in 
this work. miRNAs as one of the most abundant 
classes of regulatory molecules, deciphering 
their biological function and pathological contri-
bution in NF-κB dysregulation is essential to un-
derstand the complexity of immune systems and 
to develop therapeutics against cancer.

Key Words:
NF-kB, MicroRNAs, Cancer, Inflammation. 

Introduction

NF-κB is a dimeric transcriptional factor first 
defined by Ranjan, which was latently present in 
cells and could be induced into its DNA-binding 
state, known as κB site1. All NF-κB proteins 
share a reticuloendotheliosis (Rel) homology 
domain (RHD), which is essential for binding to 
cognate DNA sequence motifs and dimerization 
to the members of NF-κB proteins as well as 
nuclear translocation2. The Rel protein family 
consists of five members, including p50, p52, 
p65, RelB and c-Rel3. Except for RelB that can 
only form heterodimers, all Rel proteins can 
form homodimers or heterodimers4. Among 

these proteins, p50-p65 heterodimer is the most 
abundant form of NF-κB in most unstimulated 
cells, which we discussed in this work unless 
indicated otherwise. NF-κB activation is mainly 
regulated by two pathways in response to 
extracellular stimuli5. The classical pathway is 
usually induced by microbial, viral infections and 
proinflammatory cytokines, such as tumor necrosis 
factor (TNFα), which all can activate the β-subunit 
of IκB kinase (IKKβ) complex through the toll-like 
receptor (TLR). IκB kinases (IKKs) phosphorylate 
IκBs (inhibitors of κB) binded to NF-κB, resulting 
in ubiquitin-dependent degradation of IκBs and 
translocation of NF-κB dimers to the nucleus6. 
The non-classical pathway is induced by certain 
members of the TNF cytokine family that selectively 
activate the α-subunit of IKK (IKKα) through the 
TNF receptor, BAFFR, RANK (receptor activator 
for nuclear factor kappaB), TNFR2, Fn14 and 
CD40R, along with NF-κB inducing kinase (NIK), 
to phosphorylate p100. This phosphorylation leads 
to polyubiquitination-dependent degradation of p100 
to generate p52, forming p52-RelB heterodimers, 
which then translocate to the nucleus and activate 
target genes7.

NF-κB plays an important role in regulating a 
large number of genes as well as the regulation 
of innate and adaptive immunity8,9, cell 
proliferation10,11, inflammation12,13, tumorigenesis 
and tumor progression14,15. Therefore, NF-κB is 
a pluripotent and vital transcription factor for 
physiological and pathological processes. Besides, 
its transcriptional regulation system is complex, 
especially considering the fact that different NF-
κB dimers have different affinities for different 
DNA-binding sequences16 and various target 
genes are differentially regulated by distinct NF-
κB dimers in various cell contexts17. In addition, 
for activation and crosstalk with other signaling 
pathways, NF-κB subunits contain sites available 
for phosphorylations and other post-translational 
modifications18. 
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MicroRNAs (miRNAs) are a subclass of short 
(20-23 nucleotides in length), endogenous, non-
coding, single-stranded RNAs that regulate gene 
expression post-transcriptionally by binding 
mainly to the 3’ untranslated region (UTR) of 
target mRNAs. miRNAs are transcribed mostly 
by RNA polymerase II, as a long primary miRNA 
transcript (pri-miRNA)19 with a stem-loop 
structure20. It is, then, recognized and cleaved 
in the nucleus by the microprocessor complex, 
Drosha-DGCR8 (DiGeorge syndrome critical 
region gene 8), resulting in a hairpin-structured 
precursor of miRNAs (pre-miRNA) ranging from 
60 to 110 nucleotides in length. The pre-miRNA 
is exported from the nucleus to the cytoplasm by 
a nuclear transport receptor (exportin-5) and Ran-
GTP21,22. In the cytoplasm, Dicer cleaves the pre-
miRNA hairpin into a ~22 bp miRNA duplex23,24. 
The mature miRNA is incorporated with 
Argonaute (Ago2) proteins into the RNA-induced 
silencing complex (RISC)25-27, where miRNA 
guides the complex to partial complementary 
binding sites located in the 3’ untranslated region 
(UTR)28, 5’ untranslated region (UTR)29,30, or 
coding regions31,32 of target mRNAs to induce 
translational repression or degradation of targeted 
mRNAs. Moreover, a small part of miRNAs are 
derived from introns of protein-coding genes, 
termed as mirtrons20,33; the mirtron production is 
Drosha-independent to generate pre-miRNAs and 
is spliced by Spliceosome34. 

miRNAs-mediated gene silencing was via RISC 
to induce translational repression or degradation 
of targeted mRNAs. Numerous investigations 
have confirmed the important roles of miRNAs 
in the regulation of human cancer, as well as 
in physiological function including immune 
responses, cellular proliferation, differentiation, 
and apoptosis35-37. These processes are also known 
to be regulated by NF-κB11 and miRNAs play an 
important role in modulating NF-κB signaling 
pathway38,39. Thus, NF-κB and miRNAs play 
important roles in the gene expression regulatory 
network of the organism. Here we analyzed some 
key miRNAs involved in NF-κB signal pathway 
regulation (Figure 1).

miR-146
miR-146 is a vital modulator of differentiation 

and biology function of cells for the innate 
and adaptive immunity. In addition, it plays 
an important role in regulating different types 
of diseases and cancers40. Induction of miR-
146 is NF-κB dependent through the toll-like 

receptor (TLR) and its expression is upregulated 
in human monocytic THP-1 cells treated by 
lipopolysaccharides (LPS)41. As to the NF-
κB signal pathway regulation, TRAF6 and 
IRAK1 were identified as direct targets of miR-
146. Generally, NF-κB activation upregulates 
miR-146 gene expression and, then, miR-
146 down-regulates IRAK1 and TRAF6 to 
suppress the activity of NF-κB. Thus, this is a 
negative regulatory loop. According to previous 
literatures, miR-146 was demonstrated as an 
NF-κB negative regulator42 and it exhibited an 
important role in suppressing tumor genesis and 
progression by inhibiting tumor cell migration 
and invasion42,43. 

In the stressed human brain primary neural cells, 
the close connection between NF-κB and miR-
146a was confirmed by experiments which had 
tremendous potential to modulate neurotrophic 
support, neuroinflammation, synaptogenesis, 
innate immune signaling and amyloidogenesis44. 
Moreover, miR-146a was highly complementary 
to the 3’-untranslated region of complement 
factor H (CFH), an important repressor of 
the inflammatory response of the brain. Up-
regulation of miR-146a accompanied with down-
regulation of CFH was discovered in Alzheimer 
disease (AD) brain and as well as interleukin-
1β, Aβ42, and/or oxidatively stressed human 
neural (HN) cells in primary culture. It indicated 
that miR-146a-mediated modulation of CFH 
gene expression could affect the inflammatory 
response in AD brain and stressed HN cells. 
In summary, miRNAs could be an effective 
therapeutic target for treatment of AD disease and 
inflammation45. Besides, the NF-κB-miR-146a 
complex, as a novel regulatory mechanism, was 
approved to attenuate inflammation in response 
to respiratory toxicants through suppressing 
the expression of cyclooxygenase-2 (COX-2) in 
mouse lung fibroblasts46. It was reported that IL-
1β could induce upregulation of miR-146a, which 
in turn negatively regulates the expression of 
proinflammatory chemokines IL-8 and CCL5 in 
human lung alveolar epithelial tumor A549 cells. 
Besides, IL-8 and CCL5 are regulated by NF-κB 
activation, which provided additional evidence for 
the negative feedback regulation of inflammation 
response by miRNAs and NF-κB47. However, 
IRAK1 and TRAF6 were not involved in the 
pathway in A549 cell, which indicated that the 
regulatory effects of miR-146a may be cell type-
specific40. All in all, miR-146 is a target gene of 
NF-κB and it could negatively modulate IRAK1 
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and TRAF6, constituting a negative feedback 
loop. miR-146 is involved in the regulation of the 
adaptive and innate immune response and tumor 
progression. Further studies were needed to fully 
understand the relationship between miR-146 and 
NF-κB.

miR-125b
Previous literature showed that up-regulation of 

miR-125b is associated with the suppression of 
the 15-lipoxygenase (ALOX15) and the synaptic 
vesicle-associated phosphoprotein synapsin-2 
(SYN-2) in the brain. This indicated that miR-
125b was involved in the regulation of innate 
and adaptive immune signaling, inflammation 
response, synaptogenesis, amyloidogenesis 
and neurotrophic support44. As one of the most 
human brain abundant miRNAs48, miR-125b 
was shown to be up-regulated by neurotoxic 
metal sulfates and was also up-regulated in brain 

cancers to suppress the expression of cyclin-
dependent kinase inhibitor 2A (CDKN2A), 
which is a negative regulator of cell growth. 
These effects of miRNA-125b were related to 
regulation of astrogliosis and cell cycle49,50.

A previous study52 indicated that miR-125a 
and miR-125b constitutively activate NF-κB by 
repressing TNFα-induced protein 3 (TNFAIP3)51. 
TNFAIP3 is a critical inhibitor of NF-κB 
signaling. Thus, miR-25b-1 plays a vital role in 
the NF-κB signal pathway through forming a 
positive feedback regulation loop55. Meanwhile, 
up-regulation of miR-125b by ultraviolet can 
promote cell survival in human embryonic 
kidney cell line HEK293 and keratinocyte cell 
line HaCaT through preventing prolonged p38α 
activation56. PPP1R12A, a gene regulating cell 
survival, is the target gene of miR-125b-155. All 
these researches suggest that miR-125b plays a 
role in the regulation of cell survival.

Figure 1. Panoramic view of the NF-κB miRNA target genes and target genes of miRNAs.
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miR-21
The overexpression of miR-21 was identified 

in most types of human carcinomas57, and NF-
κB activation is also reported in all of these 
cancers11, indicating the interplay of miR-21 
and NF-κB in cancer. In human breast cancer 
cells, NF-κB-dependent miR-21 up-regulation 
following genotoxic treatment contributes to both 
therapeutic resistance and metastasis through 
repressing expression of PTEN and PDCD458. 
Knockdown of miR-21 using peptide nucleic 
acids (PNAs) inhibits proliferation and migration 
of MCF-7 and MDA-MB-231 cells59. The up-
regulation of miR-21 promotes growth, migration, 
invasion and chemo/radio-resistance of non-small 
cell lung cancer cells through suppressing its 
target’s expression of PTEN, a tumor suppressor 
gene60. The up-regulation of miR-21 by STAT3 
under the treatment of IL-6 induces enhanced 
proliferation and suppressed apoptosis in human 
nasopharyngeal carcinoma (NPC) through PTEN-
AKT pathway61. In human skin and head and neck 
squamous cell carcinoma (SCC), up-regulation of 
miR-21 also suppresses the development related 
transcription factor GRHL3 and PTEN, a direct 
GRHL3 target, through PI3K/AKT/mTOR 
signaling pathway, promoting tumorigenesis62. 
In human glioblastoma tissue and glioblastoma-
derived cell lines, either downregulation of mir-
21 or up-regulation of its target, programmed cell 
death 4 (Pdcd4), leads to decreased proliferation, 
colony formation, and increased apoptosis63. The 
up-regulation of mir-21 possesses the important 
significances as the indicators of prognostic and 
tumor stage in human hepatocellular carcinoma 
(HCC)64. Furthermore, Ma et al. confirmed 
that knocking out the miR-21 allele in mice 
could promote cell apoptosis and suppress cell 
proliferation, which showed that miR-21 plays its 
oncogenic function through downregulating its 
target genes such as Spry1, Pten, and PDCD465. 
In all, mir-21 may act as a potential diagnostic and 
prognostic biomarker66,67 and a novel therapeutic 
target for cancers.

In human glioblastoma (GBM) cell lines, 
downregulation of miR-21 could suppress cell 
proliferation and induced cell apoptosis through 
inhibiting EGFR pathway with the manner of 
PTEN-independent68. miR-21 induced by LPS 
attenuates pro-inflammatory effects of TLR4 
signaling through suppressing NF-κB activity69. 
Mice deficient in PDCD4, a confirmed miR-21 
target, exhibit the lower LPS-induced mortality 
rates, lower IL-6 production and increased IL-

10 protein levels compared to the WT mice. 
Meanwhile, reduction of PDCD4 by increased 
miR-21 expression can account for the increased 
neoplastic transformation in mice JB6 cell lines70. 
As depletion of the NF-kB subunit p65 abolished 
LPS-induced miR-21 expression, the authors then 
show that miR-21 is an NF-kB transactivational 
gene71. Moreover, during earlier stages of liver 
regeneration, the up-regulation of miR-21 leads 
to down-regulation of pellino1, an activator of 
NF-κB, indicating that miR-21 may act as an NF-
κB inhibitor72. Thus, cell-type specificity may 
determine the various functions of miR-21 in NF-
κB signal pathway. Generally, in epithelial cells, 
miR-21 acts to down-regulate PTEN, activate 
AKT, and induce NF-κB activation. On the other 
hand, miR-21 can act as an NF-κB inhibitor to 
suppress PDCD4, a proinflammatory protein that 
promotes activation of NF-κB in LPS-stimulated 
macrophages. It needs more research to dissect 
the correlation of miR-21 overexpression and 
NF-κB activation in cancer, as well as the role 
of miR-21 in NF-κB signaling, inflammation and 
immune diseases.

miR-301a
miR-301a was identified as an activator of 

NF-κB by negatively regulating its target gene 
of NF-κB repressing factor (NKRF)73; NKRF 
broadly suppressed the expression of NF-κB 
transactivational targets. Besides, the promoter of 
miR-301a contained a bona fide κB site. Thus, it 
forms a positive feedback loop as a mechanism for 
persistent NF-κB activation in which miR-301a 
suppresses NKRF to activate NF-κB activity, 
which in turn, promote the expression of miR-
301a. 

miR-301a, which is the most potent NF-
κB activator is over expressed in pancreatic 
adenocarcinoma and other tumor cell lines73. 
Over expression of miR-301a promoted pancreatic 
cancer (PC) cell proliferation, and repressed 
the expression of Bim gene in vitro and in vivo. 
Meanwhile, Bim re-expression could suppress 
PC cell proliferation induced by miR-301a74. 
In human pancreatic ductal adenocarcinoma 
(PDAC), miR-301a over expression promotes 
cancer growth through suppressing manganese 
superoxide dismutase (MnSOD) expression, 
a tumor suppressor gene. On the other hand, 
decreased miR-301a levels are associated with 
increased MnSOD expression and inhibition 
of PDAC growth75. In human colorectal cancer, 
the up-regulation of miR-301a represses the 
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expression of suppressor of cytokine signaling 
6 (SOCS6)76 and Smad4 through TGF-β/
Smad pathway77, which in turn, promotes cell 
proliferation, migration and invasion and tumor 
growth. Meanwhile, miR-301a is an activator 
of both NF-κB and Stat3, generating a pro-
inflammatory microenvironment that promotes 
colorectal cancer as well as lung cancer 
tumorigenesis78. Suppression of miR-301a can 
repress tumor cells proliferation, migration and 
invasion. It indicates that miR-301a acts as an 
oncogene miRNAs facilitating tumorigenesis. 
The significant up-regulation of miR-301a both 
in cells and tissues of gastric cancer can promote 
cell proliferation, soft agar clonogenicity, cell 
migration and invasion through downregulating 
RUNX3 expression79, which plays a key role in 
the clinical progression and prognosis of gastric 
cancer80. The significant up-regulation of miR-
301a and downregulation of Gax in human 
hepatocellular carcinoma (HCC) promote cell 
proliferation, migration and invasion, while 
inhibiting miR-301a expression induces the 
up-regulation of Gax and repression of NF-
κB expression81. Moreover, miR-301a plays 
an important role in prostate cancer through 
regulating the miR-301a/androgen receptor 
(AR)/TGF-β1/Smad/MMP9 signals pathway82 
and in autoimmune demyelination through 
regulating immune response83. Intriguingly, over 
expression of miR-301a promotes breast cancer 
cell migration, invasion and metastasis with 
the hyper-activation of Wnt/β-catenin signaling 
through suppression of PTEN expression84. 
Meanwhile, the up-regulation of miR-301a and 
down-regulation of PTEN, a target of miR-
301a, reduces the effect of IL-6-induced insulin 
resistance and hepatic glycogenesis through 
the AKT/GSK pathway85. It shows that PTEN 
is a vital component in miR-301a target genes. 
Altogether, miR-301a exerts important roles in 
many physiological processes and is an important 
therapeutic target for cancers.

miR-30b
In HER2-positive breast cancer cells, the up-

regulation of miR-30b induced by trastuzumab 
can inhibit cell growth through repressing 
CCNE286. Up-regulation of miR-30b can 
promote the apoptosis of gastric cancer cells and 
significantly inhibit tumorigenicity of gastric 
cancer through negatively regulating its target of 
plasminogen activator inhibitor-1 (PAI-1)87. miR-
30b expression in human colorectal cancer (CRC) 

is significantly lower than that in normal tissues. 
The literature showed that over expression of 
miR-30b could suppress cell proliferation in vitro 
and tumor growth in vivo through regulating its 
target genes of KRAS, PIK3CD and BCL2. These 
researches indicated that miR-30b could act as a 
potential prognostic marker and therapeutic target 
for CRC88. In laryngeal carcinoma cells, the up-
regulation of miR-30b can promote p53-mediated 
tumor cell apoptosis89. However, the up-regulation 
of miR-30b in glioma cells impairs tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL)-
dependent apoptosis by inhibiting the expression 
of caspase-390. And the up-regulation of miR-30b 
in human melanoma promotes the metastatic 
behavior of melanoma cells by repressing the 
GalNAc transferase GALNT7, which may lead 
to increased synthesis of the immunosuppressive 
cytokine IL-10, and decreased immune cell 
activation and recruitment91. Thus, the  opposite 
function of miR-30b in cancers can be explained 
by its cell type-specific function.

Moreover, miR-30b is a negative regulator of 
cell death induced by loss of attachment (anoikis) 
through regulating the expression of caspase 392. 
miR-30b regulates cell death in cardiomyocytes 
by repressing Bcl-293. miR-30b also plays an 
important role in schizophrenia94, angiogenesis95 
and phagocytosis96. 

miR-199
The down-regulation of miR-199a/b is found 

in non-small cell lung cancer (NSCLC), which 
promotes cell proliferation, migration and 
invasion through negatively regulating Axl 
expression97. The up-regulation of miR-199a can 
increase survival in aggressive diffuse large B-cell 
lymphoma patients by modifying drug sensitivity 
to immunochemotherapy98. The up-regulation of 
miR-199a suppresses renal cancer cell growth and 
expression ofGSK-3β, which indicates that miR-
199a can act as a potential therapeutic target of 
renal cancer99. The down-regulation of miR-199a 
induced by reactive oxygen species (ROS) in 
ovarian cancer cells can elevate the expression of 
ERBB2 and ERBB3, which in turn promote cancer 
progression100. On the other hand, miR-199a-3p 
is significantly up-regulated in gastric cancer 
(GC) cell lines and tissues which promote cell 
proliferation, suppresses cell apoptosis through 
suppressing the expression of zinc fingers and 
homeoboxes 1 (ZHX1)101. The up-regulation of 
miR-199a-3p in colorectal cancer suppresses the 
expression of its target gene NLK, which in turn 



The functional analysis of MicroRNAs involved in NF-kB signaling

1769

to promote the lymph node metastasis, venous 
invasion, liver metastasis of colorectal cancer102. 
Thus, the members of miR-199 have diverse 
functions in different cancers.

In primary hepatocellular carcinomas (HCCs) 
and HCC cell lines, miR-199 can modulate Ad-
199T virus replication, which is an oncolytic 
adenovirus. This indicated that miR-199 can 
be used as a therapeutic potential against liver 
cancer103. The up-regulation of miR-199a is 
positively and significantly correlated to the 
progression of liver fibrosis, while the expression 
levels of fibrosis-related genes in hepatic stellate 
cells (HSC) are significantly increased by over-
expression of miR-199a104. Generally, chronic 
hepatitis can develop into liver cirrhosis (LC) and 
hepatocellular carcinoma (HCC) consequently. 
Thus, miR-199 plays important roles in the 
physiological progression of liver diseases. 
Interestingly, miR-199 also plays an important 
role in somatic cell reprogramming through the 
p53 signal pathway105. In summary, the members 
of miR-199 possess the vital functions in many 
physiological processes and more researches 
are needed to uncover its full functions and 
mechanisms.

Other miRNAs Target Genes Related to 
NF-κB

There are many other miRNAs that are related 
to NF-κB signal pathway. In human biliary 
epithelial cells, miR-125b-1, miR-21, miR-30b 
and miR-23b-27b-24-1 genes involve in the 
immune responses following C. parvum infection 
being relevant to the regulation of epithelial anti-
microbial defense106. In Alzheimer’s disease, 
up-regulation of miR-34a represses TREM2 
expression and may shape innate immune 
and phagocytic responses that contribute to 
inflammatory neurodegeneration through an 
epigenetic mechanism107. In human esophageal 
squamous cancer EC109 cell, up-regulation of 
miR-34a transcribed by NF-κB and p53 plays an 
important role in tumor progression108. NF-κB and 
p53 also repress miR-224 expression and induce 
Smad4 expression to influence the proliferation 
of mouse ovarian granulosa cells109. Celastrol 
can inhibit the migration and invasion of HepG2 
cells by efficiently decreasing the expression of 
miR-224 and MMP-2 and MMP-9110. The up-
regulation of miR-223 expression represses 
the tumor suppressor FBXW7 in T-cell acute 
lymphoblastic leukemia (T-ALL), which in turn to 
promote cancer progression through Notch signal 

pathway111. Up-regulation of miR-143 expression 
promotes HCC invasion/migration and tumor 
metastasis by repression of fibronectin type III 
domain containing 3B (FNDC3B) expression112. 
Up-regulation of miR-425 expression increases 
gastric cancer cell survival by repressing PTEN 
expression113. In human hepatoma cell lines, 
HepG2, GQY-7701 and Bel-7402, up-regulation of 
miR-9 represses CD166 expression and promotes 
cells migration114. The up-regulation of miR-
145 inhibits glucose uptake and induces insulin 
resistance through repressing IRS-1 expression in 
HepG2 cells115. In summary, miR-155, miR-193b, 
miR-34a, miR-451, miR-150 and miR-199 involve 
in the transformation of human B-cells and 
diffuse large B cell lymphoma (DLBCL) through 
NF-κB pathway116.

Conclusions

miRNAs act as posttranscriptional regulators of 
gene expression and regulate many target genes 
including NF-κB, IκB, IKK and regulators in the 
NF-κB signaling pathway forming positive or 
negative sophisticated feedback loops. miRNAs 
constitute an important layer of regulation 
of gene expression with profound impacts on 
biological organisms. miRNAs have the unique 
expression profile in cells of the innate and 
adaptive immune system and have vital roles 
in the regulation of cell development, function 
and epigenetic inheritance. Dysregulation 
of miRNAs often associates with tumor 
development and progression. miRNAs can 
function as both oncogenes or tumor suppressors 
in different tumors and cell types, which is cell 
type specific. Therefore, miRNAs can act as a 
therapeutic target of cancers. However, it needs 
more work to fully understand the role and 
mechanism of miRNAs in normal and pathologic 
conditions as well as to identify target genes of 
miRNAs involved in NF-κB signaling pathway.
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