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Abstract. - Nuclear factor kB (NF-xB) is a
transcriptional factor that regulates a large
number of genes that controls diverse biologi-
cal functions, ranging from inflammation, cell
proliferation and tumor development to learn-
ing and memory. MicroRNAs (miRNAs) are small
non-coding RNA molecules involved in most as-
pects of physiological and pathological process-
es, including cancer, viral infections, inflamma-
tion and autoimmune diseases. miRNAs also play
an important role in the regulation of NF-xB sig-
naling pathway, some being inhibitory and oth-
ers activating. Here, we analyzed the conver-
gence of miRNAs involved in NF-xB signaling
regulation and dysregulation of miRNAs and
NF-xB activation in human diseases, particular-
ly in cancer. The function of miR-146, miR-125b,
miR-21, miR-301a, miR-30b, and miR-199 and
their impacts on tumorigenesis are analyzed in
this work. miRNAs as one of the most abundant
classes of regulatory molecules, deciphering
their biological function and pathological contri-
bution in NF-kB dysregulation is essential to un-
derstand the complexity of immune systems and
to develop therapeutics against cancer.
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Introduction

NF-«B is a dimeric transcriptional factor first
defined by Ranjan, which was latently present in
cells and could be induced into its DNA-binding
state, known as kB site'. All NF-kB proteins
share a reticuloendotheliosis (Rel) homology
domain (RHD), which is essential for binding to
cognate DNA sequence motifs and dimerization
to the members of NF-kB proteins as well as
nuclear translocation®. The Rel protein family
consists of five members, including p50, p52,
p65, RelB and c-Rel’. Except for RelB that can
only form heterodimers, all Rel proteins can
form homodimers or heterodimers®. Among
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these proteins, pS0-p65 heterodimer is the most
abundant form of NF-kB in most unstimulated
cells, which we discussed in this work unless
indicated otherwise. NF-kB activation is mainly
regulated by two pathways in response to
extracellular stimuli®. The classical pathway is
usually induced by microbial, viral infections and
proinflammatory cytokines, such as tumor necrosis
factor (TNFa), which all can activate the B-subunit
of IxB kinase (IKKp) complex through the toll-like
receptor (TLR). IkB kinases (IKKs) phosphorylate
IxBs (inhibitors of kB) binded to NF-kB, resulting
in ubiquitin-dependent degradation of IkBs and
translocation of NF-kB dimers to the nucleus’.
The non-classical pathway is induced by certain
members of the TNF cytokine family that selectively
activate the a-subunit of IKK (IKKa) through the
TNF receptor, BAFFR, RANK (receptor activator
for nuclear factor kappaB), TNFR2, Fnl4 and
CD40R, along with NF-kB inducing kinase (NIK),
to phosphorylate pl00. This phosphorylation leads
to polyubiquitination-dependent degradation of p100
to generate p52, forming p52-RelB heterodimers,
which then translocate to the nucleus and activate
target genes’.

NF-kB plays an important role in regulating a
large number of genes as well as the regulation
of innate and adaptive immunity®®, cell
proliferation'®!!, inflammation'>!?, tumorigenesis
and tumor progression'*"”. Therefore, NF-xB is
a pluripotent and vital transcription factor for
physiological and pathological processes. Besides,
its transcriptional regulation system is complex,
especially considering the fact that different NF-
kB dimers have different affinities for different
DNA-binding sequences'® and various target
genes are differentially regulated by distinct NF-
kB dimers in various cell contexts”. In addition,
for activation and crosstalk with other signaling
pathways, NF-kB subunits contain sites available
for phosphorylations and other post-translational
modifications'®.
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MicroRNAs (miRNAs) are a subclass of short
(20-23 nucleotides in length), endogenous, non-
coding, single-stranded RNAs that regulate gene
expression post-transcriptionally by binding
mainly to the 3’ untranslated region (UTR) of
target mRNAs. miRNAs are transcribed mostly
by RNA polymerase II, as a long primary miRNA
transcript (pri-miRNA)" with a stem-loop
structure?. It is, then, recognized and cleaved
in the nucleus by the microprocessor complex,
Drosha-DGCRS8 (DiGeorge syndrome critical
region gene §), resulting in a hairpin-structured
precursor of miRNAs (pre-miRNA) ranging from
60 to 110 nucleotides in length. The pre-miRNA
is exported from the nucleus to the cytoplasm by
anuclear transport receptor (exportin-5) and Ran-
GTP?"%, In the cytoplasm, Dicer cleaves the pre-
miRNA hairpin into a ~22 bp miRNA duplex*-.
The mature miRNA is incorporated with
Argonaute (Ago2) proteins into the RNA-induced
silencing complex (RISC)»?’, where miRNA
guides the complex to partial complementary
binding sites located in the 3’ untranslated region
(UTR)®, 5’ untranslated region (UTR)*-°, or
coding regions®*? of target mRNAs to induce
translational repression or degradation of targeted
mRNAs. Moreover, a small part of miRNAs are
derived from introns of protein-coding genes,
termed as mirtrons?®**; the mirtron production is
Drosha-independent to generate pre-miRNAs and
is spliced by Spliceosome?*.

miRNAs-mediated gene silencing was via RISC
to induce translational repression or degradation
of targeted mRNAs. Numerous investigations
have confirmed the important roles of miRNAs
in the regulation of human cancer, as well as
in physiological function including immune
responses, cellular proliferation, differentiation,
and apoptosis*?’. These processes are also known
to be regulated by NF-kB'!' and miRNAs play an
important role in modulating NF-xB signaling
pathway*®*. Thus, NF-xB and miRNAs play
important roles in the gene expression regulatory
network of the organism. Here we analyzed some
key miRNAs involved in NF-kB signal pathway
regulation (Figure 1).

miR-146

miR-146 is a vital modulator of differentiation
and biology function of cells for the innate
and adaptive immunity. In addition, it plays
an important role in regulating different types
of diseases and cancers*. Induction of miR-
146 is NF-xB dependent through the toll-like

receptor (TLR) and its expression is upregulated
in human monocytic THP-1 cells treated by
lipopolysaccharides (LPS)*. As to the NF-
kB signal pathway regulation, TRAF6 and
IRAKI1 were identified as direct targets of miR-
146. Generally, NF-xB activation upregulates
miR-146 gene expression and, then, miR-
146 down-regulates IRAK1 and TRAF6 to
suppress the activity of NF-kB. Thus, this is a
negative regulatory loop. According to previous
literatures, miR-146 was demonstrated as an
NF-kB negative regulator* and it exhibited an
important role in suppressing tumor genesis and
progression by inhibiting tumor cell migration
and invasion**,

Inthe stressed human brain primary neural cells,
the close connection between NF-kB and miR-
146a was confirmed by experiments which had
tremendous potential to modulate neurotrophic
support, neuroinflammation, synaptogenesis,
innate immune signaling and amyloidogenesis*.
Moreover, miR-146a was highly complementary
to the 3’-untranslated region of complement
factor H (CFH), an important repressor of
the inflammatory response of the brain. Up-
regulation of miR-146a accompanied with down-
regulation of CFH was discovered in Alzheimer
disease (AD) brain and as well as interleukin-
1B, AP42, and/or oxidatively stressed human
neural (HN) cells in primary culture. It indicated
that miR-146a-mediated modulation of CFH
gene expression could affect the inflammatory
response in AD brain and stressed HN cells.
In summary, miRNAs could be an effective
therapeutic target for treatment of AD disease and
inflammation®. Besides, the NF-kB-miR-146a
complex, as a novel regulatory mechanism, was
approved to attenuate inflammation in response
to respiratory toxicants through suppressing
the expression of cyclooxygenase-2 (COX-2) in
mouse lung fibroblasts*. It was reported that IL-
1B could induce upregulation of miR-146a, which
in turn negatively regulates the expression of
proinflammatory chemokines IL-8 and CCL5 in
human lung alveolar epithelial tumor A549 cells.
Besides, IL-8 and CCL5 are regulated by NF-xB
activation, which provided additional evidence for
the negative feedback regulation of inflammation
response by miRNAs and NF-«B¥. However,
IRAKI1 and TRAF6 were not involved in the
pathway in A549 cell, which indicated that the
regulatory effects of miR-146a may be cell type-
specific**. All in all, miR-146 is a target gene of
NF-kB and it could negatively modulate IRAK1
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Figure 1. Panoramic view of the NF-kB miRNA target genes and target genes of miRNAs.

and TRAF6, constituting a negative feedback
loop. miR-146 is involved in the regulation of the
adaptive and innate immune response and tumor
progression. Further studies were needed to fully
understand the relationship between miR-146 and
NF-«B.

miR-125b

Previous literature showed that up-regulation of
miR-125b is associated with the suppression of
the 15-lipoxygenase (ALOX15) and the synaptic
vesicle-associated phosphoprotein synapsin-2
(SYN-2) in the brain. This indicated that miR-
125b was involved in the regulation of innate
and adaptive immune signaling, inflammation
response, synaptogenesis, amyloidogenesis
and neurotrophic support**. As one of the most
human brain abundant miRNAs*, miR-125b
was shown to be up-regulated by neurotoxic
metal sulfates and was also up-regulated in brain

cancers to suppress the expression of cyclin-
dependent kinase inhibitor 2A (CDKN2A),
which is a negative regulator of cell growth.
These effects of miRNA-125b were related to
regulation of astrogliosis and cell cycle*-*.

A previous study*’ indicated that miR-125a
and miR-125b constitutively activate NF-kB by
repressing TNFa-induced protein 3 (TNFAIP3)’'.
TNFAIP3 is a critical inhibitor of NF-kB
signaling. Thus, miR-25b-1 plays a vital role in
the NF-xB signal pathway through forming a
positive feedback regulation loop*. Meanwhile,
up-regulation of miR-125b by ultraviolet can
promote cell survival in human embryonic
kidney cell line HEK293 and keratinocyte cell
line HaCaT through preventing prolonged p38a
activation®®. PPP1R12A, a gene regulating cell
survival, is the target gene of miR-125b-1%. All
these researches suggest that miR-125b plays a
role in the regulation of cell survival.
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miR-21

The overexpression of miR-21 was identified
in most types of human carcinomas®, and NF-
kB activation is also reported in all of these
cancers'!, indicating the interplay of miR-21
and NF-xB in cancer. In human breast cancer
cells, NF-kB-dependent miR-21 up-regulation
following genotoxic treatment contributes to both
therapeutic resistance and metastasis through
repressing expression of PTEN and PDCD4*.
Knockdown of miR-21 using peptide nucleic
acids (PNAs) inhibits proliferation and migration
of MCF-7 and MDA-MB-231 cells*. The up-
regulation of miR-21 promotes growth, migration,
invasion and chemo/radio-resistance of non-small
cell lung cancer cells through suppressing its
target’s expression of PTEN, a tumor suppressor
gene®. The up-regulation of miR-21 by STAT3
under the treatment of IL-6 induces enhanced
proliferation and suppressed apoptosis in human
nasopharyngeal carcinoma (NPC) through PTEN-
AKT pathway®'. In human skin and head and neck
squamous cell carcinoma (SCC), up-regulation of
miR-21 also suppresses the development related
transcription factor GRHL3 and PTEN, a direct
GRHL3 target, through PI3K/AKT/mTOR
signaling pathway, promoting tumorigenesis®.
In human glioblastoma tissue and glioblastoma-
derived cell lines, either downregulation of mir-
21 or up-regulation of its target, programmed cell
death 4 (Pdcd4), leads to decreased proliferation,
colony formation, and increased apoptosis®. The
up-regulation of mir-21 possesses the important
significances as the indicators of prognostic and
tumor stage in human hepatocellular carcinoma
(HCC)**. Furthermore, Ma et al. confirmed
that knocking out the miR-21 allele in mice
could promote cell apoptosis and suppress cell
proliferation, which showed that miR-21 plays its
oncogenic function through downregulating its
target genes such as Spryl, Pten, and PDCD4%.
In all, mir-21 may act as a potential diagnostic and
prognostic biomarker®®*” and a novel therapeutic
target for cancers.

In human glioblastoma (GBM) cell lines,
downregulation of miR-21 could suppress cell
proliferation and induced cell apoptosis through
inhibiting EGFR pathway with the manner of
PTEN-independent®. miR-21 induced by LPS
attenuates pro-inflammatory effects of TLR4
signaling through suppressing NF-kB activity®.
Mice deficient in PDCD4, a confirmed miR-21
target, exhibit the lower LPS-induced mortality
rates, lower IL-6 production and increased IL-

10 protein levels compared to the WT mice.
Meanwhile, reduction of PDCD4 by increased
miR-21 expression can account for the increased
neoplastic transformation in mice JB6 cell lines™.
As depletion of the NF-kB subunit p65 abolished
LPS-induced miR-21 expression, the authors then
show that miR-21 is an NF-kB transactivational
gene’!. Moreover, during earlier stages of liver
regeneration, the up-regulation of miR-21 leads
to down-regulation of pellinol, an activator of
NF-«kB, indicating that miR-21 may act as an NF-
kB inhibitor’?. Thus, cell-type specificity may
determine the various functions of miR-21 in NF-
kB signal pathway. Generally, in epithelial cells,
miR-21 acts to down-regulate PTEN, activate
AKT, and induce NF-«kB activation. On the other
hand, miR-21 can act as an NF-kB inhibitor to
suppress PDCD4, a proinflammatory protein that
promotes activation of NF-xB in LPS-stimulated
macrophages. It needs more research to dissect
the correlation of miR-21 overexpression and
NF-kB activation in cancer, as well as the role
of miR-21 in NF-«B signaling, inflammation and
immune diseases.

miR-301a

miR-30la was identified as an activator of
NF-kB by negatively regulating its target gene
of NF-kB repressing factor (NKRF)”; NKRF
broadly suppressed the expression of NF-kB
transactivational targets. Besides, the promoter of
miR-301a contained a bona fide kB site. Thus, it
forms a positive feedback loop as a mechanism for
persistent NF-xB activation in which miR-30la
suppresses NKRF to activate NF-kB activity,
which in turn, promote the expression of miR-
30la.

miR-301a, which is the most potent NF-
kB activator is over expressed in pancreatic
adenocarcinoma and other tumor cell lines™.
Over expression of miR-301a promoted pancreatic
cancer (PC) cell proliferation, and repressed
the expression of Bim gene in vitro and in vivo.
Meanwhile, Bim re-expression could suppress
PC cell proliferation induced by miR-301a™.
In human pancreatic ductal adenocarcinoma
(PDAC), miR-30la over expression promotes
cancer growth through suppressing manganese
superoxide dismutase (MnSOD) expression,
a tumor suppressor gene. On the other hand,
decreased miR-301a levels are associated with
increased MnSOD expression and inhibition
of PDAC growth”. In human colorectal cancer,
the up-regulation of miR-30la represses the
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expression of suppressor of cytokine signaling
6 (SOCS6)® and Smad4 through TGF-p/
Smad pathway’’, which in turn, promotes cell
proliferation, migration and invasion and tumor
growth. Meanwhile, miR-30la is an activator
of both NF-xB and Stat3, generating a pro-
inflammatory microenvironment that promotes
colorectal cancer as well as lung cancer
tumorigenesis™. Suppression of miR-30la can
repress tumor cells proliferation, migration and
invasion. It indicates that miR-30la acts as an
oncogene miRNAs facilitating tumorigenesis.
The significant up-regulation of miR-301a both
in cells and tissues of gastric cancer can promote
cell proliferation, soft agar clonogenicity, cell
migration and invasion through downregulating
RUNX3 expression”, which plays a key role in
the clinical progression and prognosis of gastric
cancer®. The significant up-regulation of miR-
30la and downregulation of Gax in human
hepatocellular carcinoma (HCC) promote cell
proliferation, migration and invasion, while
inhibiting miR-30la expression induces the
up-regulation of Gax and repression of NF-
kB expression®. Moreover, miR-30la plays
an important role in prostate cancer through
regulating the miR-30la/androgen receptor
(AR)/TGF-B1/Smad/MMP9 signals pathway®
and in autoimmune demyelination through
regulating immune response®. Intriguingly, over
expression of miR-30la promotes breast cancer
cell migration, invasion and metastasis with
the hyper-activation of Wnt/B-catenin signaling
through suppression of PTEN expression®.
Meanwhile, the up-regulation of miR-30la and
down-regulation of PTEN, a target of miR-
301a, reduces the effect of IL-6-induced insulin
resistance and hepatic glycogenesis through
the AKT/GSK pathway®. It shows that PTEN
is a vital component in miR-301a target genes.
Altogether, miR-301a exerts important roles in
many physiological processes and is an important
therapeutic target for cancers.

miR-30b

In HER2-positive breast cancer cells, the up-
regulation of miR-30b induced by trastuzumab
can inhibit cell growth through repressing
CCNE28%,  Up-regulation of miR-30b can
promote the apoptosis of gastric cancer cells and
significantly inhibit tumorigenicity of gastric
cancer through negatively regulating its target of
plasminogen activator inhibitor-1 (PAI-1)*". miR-
30b expression in human colorectal cancer (CRC)
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is significantly lower than that in normal tissues.
The literature showed that over expression of
miR-30b could suppress cell proliferation in vitro
and tumor growth in vivo through regulating its
target genes of KRAS, PIK3CD and BCL2. These
researches indicated that miR-30b could act as a
potential prognostic marker and therapeutic target
for CRC™. In laryngeal carcinoma cells, the up-
regulation of miR-30b can promote p53-mediated
tumor cell apoptosis*. However, the up-regulation
of miR-30b in glioma cells impairs tumor necrosis
factor-related apoptosis-inducing ligand (TR AIL)-
dependent apoptosis by inhibiting the expression
of caspase-3°°. And the up-regulation of miR-30b
in human melanoma promotes the metastatic
behavior of melanoma cells by repressing the
GalNAc transferase GALNT7, which may lead
to increased synthesis of the immunosuppressive
cytokine IL-10, and decreased immune -cell
activation and recruitment®'. Thus, the opposite
function of miR-30b in cancers can be explained
by its cell type-specific function.

Moreover, miR-30b is a negative regulator of
cell death induced by loss of attachment (anoikis)
through regulating the expression of caspase 3°%.
miR-30b regulates cell death in cardiomyocytes
by repressing Bcl-22. miR-30b also plays an
important role in schizophrenia®, angiogenesis®
and phagocytosis™.

miR-199

The down-regulation of miR-199a/b is found
in non-small cell lung cancer (NSCLC), which
promotes cell proliferation, migration and
invasion through negatively regulating AxI
expression®’. The up-regulation of miR-199a can
increase survival in aggressive diffuse large B-cell
lymphoma patients by modifying drug sensitivity
to immunochemotherapy®®. The up-regulation of
miR-199a suppresses renal cancer cell growth and
expression of GSK-3f, which indicates that miR-
199a can act as a potential therapeutic target of
renal cancer®”. The down-regulation of miR-199a
induced by reactive oxygen species (ROS) in
ovarian cancer cells can elevate the expression of
ERBB2 and ERBB3, which in turn promote cancer
progression'”. On the other hand, miR-199a-3p
is significantly up-regulated in gastric cancer
(GC) cell lines and tissues which promote cell
proliferation, suppresses cell apoptosis through
suppressing the expression of zinc fingers and
homeoboxes 1 (ZHX1)"'. The up-regulation of
miR-199a-3p in colorectal cancer suppresses the
expression of its target gene NLK, which in turn
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to promote the lymph node metastasis, venous
invasion, liver metastasis of colorectal cancer'®.
Thus, the members of miR-199 have diverse
functions in different cancers.

In primary hepatocellular carcinomas (HCCs)
and HCC cell lines, miR-199 can modulate Ad-
199T virus replication, which is an oncolytic
adenovirus. This indicated that miR-199 can
be used as a therapeutic potential against liver
cancer'. The up-regulation of miR-199a is
positively and significantly correlated to the
progression of liver fibrosis, while the expression
levels of fibrosis-related genes in hepatic stellate
cells (HSC) are significantly increased by over-
expression of miR-199a'®. Generally, chronic
hepatitis can develop into liver cirrhosis (LC) and
hepatocellular carcinoma (HCC) consequently.
Thus, miR-199 plays important roles in the
physiological progression of liver diseases.
Interestingly, miR-199 also plays an important
role in somatic cell reprogramming through the
p53 signal pathway'®. In summary, the members
of miR-199 possess the vital functions in many
physiological processes and more researches
are needed to uncover its full functions and
mechanisms.

Other miRNAs Target Genes Related to
NFxB

There are many other miRNAs that are related
to NF-xB signal pathway. In human biliary
epithelial cells, miR-125b-1, miR-21, miR-30b
and miR-23b-27b-24-1 genes involve in the
immune responses following C. parvum infection
being relevant to the regulation of epithelial anti-
microbial defense!®. In Alzheimer’s disease,
up-regulation of miR-34a represses TREM2
expression and may shape innate immune
and phagocytic responses that contribute to
inflammatory neurodegeneration through an
epigenetic mechanism'”’. In human esophageal
squamous cancer EC109 cell, up-regulation of
miR-34a transcribed by NF-kB and p53 plays an
important role in tumor progression'®. NF-kB and
p53 also repress miR-224 expression and induce
Smad4 expression to influence the proliferation
of mouse ovarian granulosa cells!”. Celastrol
can inhibit the migration and invasion of HepG2
cells by efficiently decreasing the expression of
miR-224 and MMP-2 and MMP-9'"°, The up-
regulation of miR-223 expression represses
the tumor suppressor FBXW7 in T-cell acute
lymphoblastic leukemia (T-ALL), which in turn to
promote cancer progression through Notch signal

pathway'!'. Up-regulation of miR-143 expression
promotes HCC invasion/migration and tumor
metastasis by repression of fibronectin type III
domain containing 3B (FNDC3B) expression'!?,
Up-regulation of miR-425 expression increases
gastric cancer cell survival by repressing PTEN
expression'®. In human hepatoma cell lines,
HepG2, GQY-7701 and Bel-7402, up-regulation of
miR-9 represses CD166 expression and promotes
cells migration'*. The up-regulation of miR-
145 inhibits glucose uptake and induces insulin
resistance through repressing IRS-1 expression in
HepG2 cells'. In summary, miR-155, miR-193b,
miR-34a, miR-451, miR-150 and miR-199 involve
in the transformation of human B-cells and
diffuse large B cell lymphoma (DLBCL) through
NF-«B pathway''®.

Conclusions

miRNAs act as posttranscriptional regulators of
gene expression and regulate many target genes
including NF-xB, IxB, IKK and regulators in the
NF-kB signaling pathway forming positive or
negative sophisticated feedback loops. miRNAs
constitute an important layer of regulation
of gene expression with profound impacts on
biological organisms. miRNAs have the unique
expression profile in cells of the innate and
adaptive immune system and have vital roles
in the regulation of cell development, function
and epigenetic inheritance. Dysregulation
of miRNAs often associates with tumor
development and progression. miRNAs can
function as both oncogenes or tumor suppressors
in different tumors and cell types, which is cell
type specific. Therefore, miRNAs can act as a
therapeutic target of cancers. However, it needs
more work to fully understand the role and
mechanism of miRNAs in normal and pathologic
conditions as well as to identify target genes of
miRNAs involved in NF-kB signaling pathway.
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