Mechanism of LncRNA ROR promoting prostate cancer by regulating Akt

X.-Q. ZHAI¹, F.-M. MENG¹, S.-F. HU², P. SUN³, W. XU¹

Xingquan Zhai and Fanmei Meng contributed equally to this work

Abstract. – OBJECTIVE: To investigate the expression of long-chain non-coding RNA ROR in prostate cancer (PCa), and to further study its possible underlying mechanisms in prostate cancer.

PATIENTS AND METHODS: Quantitative Real-time polymerase chain reaction (qRT-PCR) was performed to detect the level of IncRNA ROR in 42 pairs of PCa tissues and adjacent normal tissues, and the correlation between ROR level and PCa pathological parameters was also evaluated. Besides, ROR expression in PCa cells was further verified by qRT-PCR, and knockdown model was constructed us tivirus in PCa cell lines including PC-3 and cap. Cell counting kit-8 (CCK-8), transwell sion and cell scratch assay were used to analthe effect of ROR on the biological function PCa cells and explore its under the chanish

RESULTS: QRT-PCR result ted tha emo. ere not the diff ROR levels in PCa tissue higher ce was than that in normal ones statistically significant Co with lowly-expresse ROR. with mgh ed tumor ROR level had re ely more e of lymph in stage, higher ing distant metastasis. Si empared with legative control group ie cei eration, invasion and metastasis bility of the knockdown group antly decrease addition, gRTwas sign s indicated that the pression of Akt, protein in the Akt signaling pathway, was PCR rg the k ced in si-ROR cell lines. Fursig ntly thern e exper ent revealed that there egulati etween ROR and Akt. was a n

CRNA ROR expression ringly and in PCa tissues or cells, and consider y associated with PCa stage, lym node and distant metastasis. Additionally R may promote PCa cell prolifermand migration by regulating Akt.

vrds:

chain non-coding RNA, ROR, Akt, Prostate cancer.

duction

Prostate cancer (PC) e most common malier in Western a loped countries, rang second in Western countries such as Amerimen¹⁻³. Prosta cancer has a large difference in incidence of erent races; for example, PCa lower inci ce in China than in Western ver, after reform and opening anges in dietary structure and the provement of diagnostic techniques for prostate incidence has been shown an increasing recent years^{6,7}. Prostate cancer has a sefious impact on the life expectancy of older men, both domestically and abroad. In particular, China has begun to enter an aging society, so the impact of prostate cancer on Chinese men's lifestyle has become more prominent8. However, early symptoms of PCa are concealed, which make many patients have been in a late stage at the time of diagnosis. But if diagnosed early, the harm of PCa to patients can be successfully alleviated, with a good chance of improving therapeutic effect and avoiding longterm complications9. With the rapid development of microarray technology and nucleic acid sequencing technology, a large number of non-coding RNA (ncRNA) transcripts have been discovered in eukaryotes, and these ncRNAs have become a crucial part of the intricate regulatory network in the body^{10,11}. According to the length, ncRNA can be divided into long-chain non-coding RNA (LncRNA) and small RNA (siRNA, miRNA, piRNA). The former are RNAs with a transcript length of more than 200 nt, which are specifically expressed between various cells and do not encode proteins themselves, but can regulate the expression level of genes at various levels, initially thought to be the "noise" of transcription^{12,13}. About 66% of the genome is transcribed into non-coding RNA. LncR-

¹Department of Urology Surgery, Zoucheng People's Hospital, Zoucheng, Cara

²Department of General Surgery, Zoucheng People's Hospital, Zoucheng

³Department of Urology Surgery, Shandong Provincial Hospital, Jinan,

NA creates a complex network regulation system due to its abundance, location and diversity, which has led to the discovery that the differential expression of lncRNA is an important mechanism for the initiation, occurrence and development of cancer¹⁴. At present, gene chip technology is becoming more and more mature; in the mean time, more and more lncRNAs are being found, and the number of lncR-NAs associated with prostate cancer is increasing. We have also found 13 lncRNAs with differential expression through gene chip technology¹⁴. Most of them have not been studied, among which, we selected lncRNA ROR as the research object. The biological function and related molecular mechanism of lncRNA ROR remain elusive: let alone its role in the progression of prostate cancer. We firstly identified the differential expression of lncRNA ROR in prostate cancer, and focused on its influence on biological behavior of prostate tumor as well as its mechanism of action. In this study, we analyzed the expression of lncRNA ROR in 42 pairs of PCa and adjacent tissues, and explored the effect of ROR on the biological function of PCa cells. Previous works have proved that ROR is able to accelerate the growth and metastasis of tum ls, which may affect the development of tu ion this study, we aimed to investigate the exp of lncRNA ROR in prostate cancer and to its promoting effect on the malignant progres of prostate cancer by regulating

Patients an ethod

Patients and Progree Tu. Imples

Prostate tumor, ues and th sponding adjacent normal ere collected 42 paical resection and routients who un **E**) staining. All the tine hematoxym and eo samples x frozen and ste a refrigerator at subsequently used 1. ANA extraction. -80°C ag to the 8th edition of the UICC/AJCC Acc mor node metastasis (TNM) stapro patient re diagnosed as PCa by ging c al analysis, and no anti-tutholo topera radiotherapy or chemotheis perform before surgery. The study was ed by the Ethics Committee of our hospital had signed informed consent.

Lines and Reagents

human PCa cells (PC-3, DU-145, 22RV1, Lncap) and one human normal prostate matrix immortalized cell (WPMY-1) were purchased

from American Type Culture Collection (ATCC, Manassas, VA, USA). F-12k and 1640 medium (HyClone, South Logan, UT, USA) and bovine serum (FBS, Gibco, Rockville 12, 08, were purchased from Life Technogies (Gaithersburg, MD, USA). Cells were altured in an incubator with 5% CO₂ at 37°C, the culture medium was F-12k or 1640 antain. A fetal bovine serum (FBS).

Transfection

The lentivirus gative ontrol sequence or the DR k wn seg ce (sised from ROR) was pu na Company (Shap China). Cells seeded in yn to a cell a sity of 40%, 6-well pla an. and then ransfect as performed according to the manufacturer's ctions. Subsequently, harvested 48 s later for quantitace Real-time polymerase chain reaction (qRT-R) analysis are function experiments.

C Py Forma n Assay

sfection, 200 cells were seeded in each well fa 6-well plate and cultured in complete medium less. The medium should not be replaced may as possible in the previous week to avoid cell adhesion and then changed twice a week. After 2 weeks, when cell colony formed, the cells were washed twice with phosphate-buffered saline (PBS) and fixed in 2 ml of methanol for 20 minutes. After removing methanol, cells were washed with PBS and stained with 0.1% crystal violet staining solution for 20 minutes. Next, the cells were photographed and counted under a light-selective environment after washed 3 times with PBS.

Transwell Cell Migration and Invasion Assay

After transfection for 48 hours, cells were digested, centrifuged and resuspended in medium without fetal bovine serum (FBS) to adjust the density to 5 x 10⁵ cells/mL. A cell suspension of 200 uL (1 x 105 cells) was added to the upper chamber, and 700 uL of a medium containing 20% fetal bovine serum (FBS) were added to the lower chamber. According to the different migration abilities of each cell line, they were cultured in the incubator for a specific time. Transwell chamber was taken out, washed 3 times with 1 x PBS, and placed in methanol for 15 min of cell fixation. After the chamber was stained in 0.2% crystal violet for 20 min, the cells on the upper surface of the chamber

were carefully wiped off with water and a cotton swab. The cells were placed under a microscope to observe and photograph, and 10 fields of view were randomly selected for counting and statistical analysis was performed.

Wound Healing Assay

The cells underwent 48 hours of transfection were digested, centrifuged and resuspended in medium without FBS to adjust the density to 5 x 10⁵ cells/mL. The density of the plated cells was determined according to the size of the cells (the majority of the number of cells plated was set to 50,000 cells/well), and the confluency of the cells reached 90% or more the next day. After scratching in the middle of the culture plate, PBS was used to gently rinse cells for 2-3 times and low-concentration serum medium (such as 1% FBS) was added. Lastly, observation was performed after 24 hours. The difference in cell healing ability was judged according to the migration area.

Ouantitative Real-Time Phosphate Buffered Saline (qRT-PCR)

Total RNA was extracted from PCa cel and tissues using TRIzol reagent (Invitrog sbad, CA, USA), and RNA was reverse tran into cDNA using Primescript RT Reagent (Ra, Otsu, Shiga, Japan). QRT-PCR reactions performed using SYBR® Premix TaqTM (KaRa, Otsu, Shiga, Japan) an Plus Re , Foster al-time PCR System (Appli **Siosys** g primer City, CA, USA). The foll ere used for qRT-PCR reaction: R rw ACGAGAGGACCG CAAGTTCTAGA AGC-3 forward: 5'-TGCCACTG everse: **SAGAAGAA** TACCCA-3, β-actin: 5'-GCTCAC .GC forward: 5'-CVTGGCA AGCACAAT-3', reverse: CTGATCCA TGCTGGAA-3'. Data a sis was performed to g ABI Step One and relative expression levels of mRNA softy sing the $2^{-\Delta\Delta Ct}$ method. ulate we

Western Ass

trans. Als were lysed using cell lys uffer, she is on ice for 30 minutes, and cen uged at 14,000 x g for 15 minutes at 4°C. To incentration was calculated by bischonine acid (BCA) Protein Assay Kit (Pier-Cockford, IL, USA). The extracted proteins we parated using a 10% sodium dodecyl sulprate-polyacrylamide gel electrophoresis (SDS-PAGE) gel and subsequently transfer-

red to a polyvinylidene difluoride membrane (Millipore, Billerica, MA, USA). Western blot analysis was performed according to procedures. The primary antibodies are and glyceraldehyde 3-phosphate dydrogenase (GAPDH), and the secondary bodies were anti-mouse and anti-rabbit, which is all purchased from Cell Signalin Technol (Danvers, MA, USA).

Statistical Analysi

The continuous val analyze using the *t*-test, while varia were e cai using the χ^2 or Fishe obability rformed to method. Ka Leier method of patients, and the diffeanalyze the rence between diff. surves was compared by Log-rank test. The prowas processed using th tical Product Service Solutions SS) 22.0 (IBM, Armonk, NY, USA) program the data war xpressed as mean \pm standard 05 was considered to be staation $(\overline{x}\pm s)$. Vy signific

Results

Tissues and Cell Lines

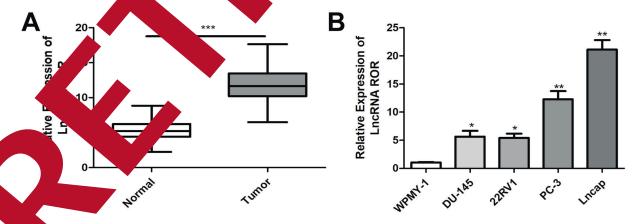
We examined the level of ROR in 42 pairs of PCa tissues as well as their adjacent tumor-free tissues and PCa cell lines by qRT-PCR. The results showed that ROR expression levels were appreciably increased in PCa tissues compared with adjacent tumor-free tissues. The difference was statistically significant (Figure 1A). Compared with human normal prostate matrix immortalized cells (WPMY-1), ROR was also found notably higher in PCa cells (Figure 1B).

ROR Expression was Correlated with Clinical Stage, Lymph Node and Distance Metastasis in PCa Patients

According to the results of qRT-PCR of 42 pairs of ROR expression in PCa tissues and paracancerous ones, the samples were divided into two groups, which were high expression one and low expression one. The number of each group was counted and the relationship between ROR level and age, sex, clinical stage of PCa patients, condition of lymph node or distant metastasis were analyzed. Table I indicated that highly expressed ROR was positively correlated with the above clinical parameters.

Parameters	Number of cases	ROR expression			
		Low (%)	High (%)	ue	
Age (years)				0.780	
< 60	15	9	6		
≥ 60	27	15	12		
Gender					
Male	20	12	8		
Female	22	12			
T stage				0.044	
T1-T2	26	18			
T3-T4	16	6			
Lymph node metastasis				0	
No	28	19	9		
Yes	14	5	9		
Distance metastasis				0.002	
No	31	22	9	•	
Vec	11	2			

Table I. Association of lncRNA ROR expression with clinicopathologic characteristics of prostate cancer.

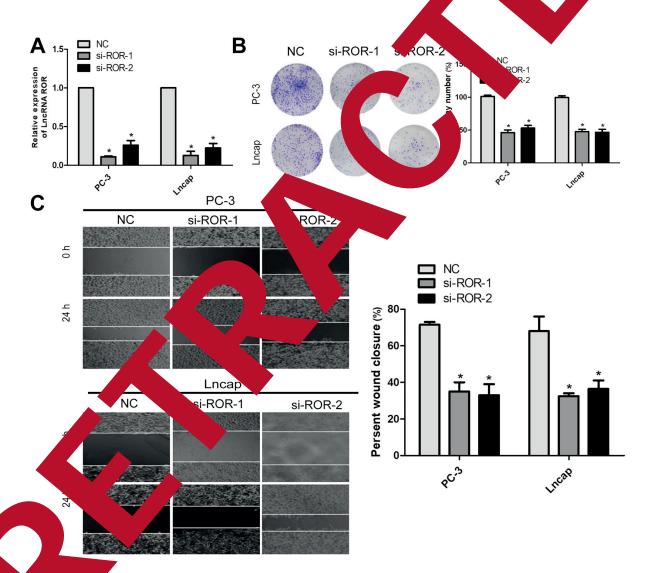

Knockdown of ROR Inhibited Cell Proliferation, Migration and Invasion

To explore the effects of ROR on PCa cell proliferation, migratory and invasive capacity, we first successfully constructed a ROR knock model and verified it using qRT-PCR 2A). Subsequently, we used cell-cloning riments to investigate the effect of ROR proliferation of PCa cells, and found that the proliferation rate of the si-ROR ficantly lower than that of the (Figur 2B). In addition, using the igration answei est, the assay and wound heali mber of transmembrane PCa cells

of the si-RC group was extensively less the NC group suggesting that the migrative bility of costs with down-regulated ROR was sited group also showed a poor healing bility (Figure 2C).

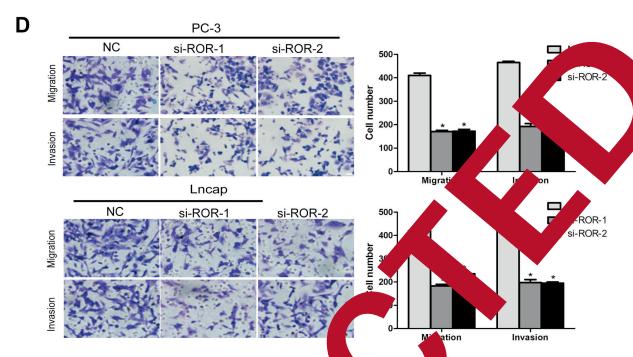
Akt Expression

To analyze the potential mechanisms of Akt and ROR in influencing the malignant progression of PCa, we examined Akt expression in 42 pairs of PCa tissues and their corresponding normal ones using qRT-PCR. The results indicated that



LncRNA ROR was highly expressed in prostate cancer tissues and cell lines. A, QRT-PCR was used to detect the disconnection of LncRNA ROR in prostate cancer tissues and adjacent non-tumor tissues; B, QRT-PCR was used to detect the expression level of LncRNA ROR in prostate cancer cell lines. Data were expressed as mean \pm SD, *p < 0.05, **p < 0.01, ***p < 0.001.

compared to adjacent tissue, the expression level of Akt in PCa tissue was considerably elevated, with the difference statistically significant (Figure 3A). Furthermore, ROR level was also notably high in PCa cells compared to WPMY-1 (Figure 3B). Therefore, we analyzed the expression of ROR and Akt both on gene and protein levels in tissues and found a clear correlation between the two (Figure 3C). Next, using qRT-PCR method, we demonstrated that the level of Akt was downregulated after ROR knockdown (Figure 3D).


Akt Modulated ROR Expression in Human Prostate Cancer Cells

Subsequently, to figure out the regula between ROR and Akt, we transfect rexpression-plasmid into ROR kno wned-PCa cells. The expression of Akt was cted by qRT-PCR and Western Blot, respective ults revealed that overexpression of ole of knockdown of ROR in P ells (Figur Figure 4B). Subsequer through cell c experiments, we four at over ression of A

Gre Z. . . . NA ROR affected prostate cancer cell proliferation and invasion and migration. *A*, QRT-PCR validated the ference efficiency of LncRNA ROR after transfection of si-ROR in PC-3 and Lncap cell lines; *B*, Results of cell colony on assay showed the effect of knockdown of ROR on prostate cancer cell proliferation in PC-3 and Lncap cell lines; *C*, Cell cach assay was used to detect the effect of knock-downed ROR on the healing ability of prostate cancer cells in PC-3 and Lncap cell lines.

Figure continued

on PCa cell proliferation rate (Figures 4C).

Discussion

As a common malign tumor, a's early diagnosis, metastasis, retreatment of advang argery nave become the focus current r Scholars^{4,7,9} have fou IncRNA play tal role in various di ding tumors. Multiple abnormally expressed-in s in PCa may play a crucial in the diagno. eatment and pro-Ca. Therefore, fina. these lncRNAs gnosis and analyzing its correlation with clinical in P p to improve the diagnosis and pro Ca, and prove the prognosis of treatn ients.

RNAs a scale ncRNAs that can regular a variety chological processes. They are wide distributed and generally more than 200 by However, most of them do not get ability of encoding proteins due to the lack valid open reading frame (ORF)^{9,10}. The role on NA in tumors is still in infancy and has gradually become a hot spot. It has been found that some LncRNAs exert a crucial influence on

ssion of tumors. They are abnormally d in various malignant tumors such as liver cancer, lung cancer, and prostate cancer, and have played a considerable role in the occurrence and development of malignant tumors, even some IncRNAs can be used as a marker for tumor diagnosis and prognosis11-14. Therefore, finding abnormal expression of lncRNA in prostate cancer and analyzing its function will help to elevate diagnosis and treat level of prostate cancer and improve the prognosis of patients^{15,16}. Currently, lncRNA related to prostate cancer is being gradually discovered, including PCA3, PCEGM1, etc. These lncRNAs are gradually being applied to clinical diagnosis and prognosis evaluation¹⁷⁻¹⁹. In this study, RNA was extracted from pathologically diagnosed tumor specimens and adjacent normal tissues of patients with prostate cancer, and 13 lncRNAs were found to be associated with prostate cancer by gene chip hybridization screening. Further literature review provided that LncRNA ROR gene is closely related to the development of colorectal and esophageal cancer, but its association with prostate cancer remains elusive^{15,16}. Our research focused on the lncRNA ROR expression in PCa tissues and its role in the development of this tumor. We first verified the level of ROR in 42 pairs of PCa tissues and adja-

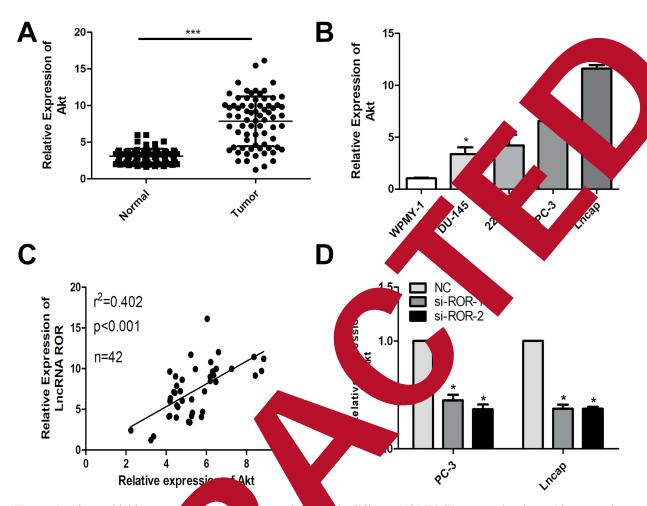
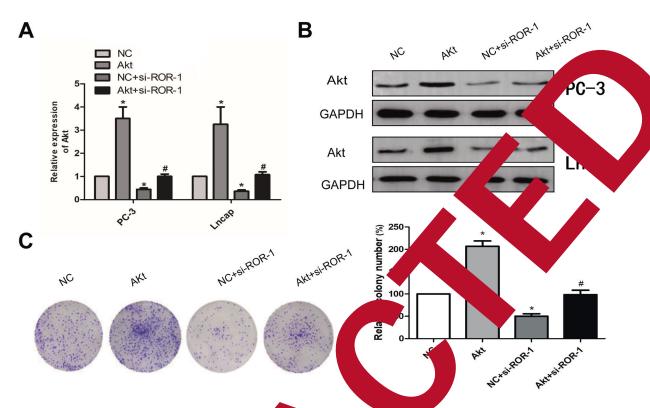



Figure 3. Akt was highly expres d cell lines. A, QRT-PCR was used to detect Akt expression n pros ancer tiss in prostate cancer tissues and tissues; B, RT-PCR was used to detect Akt expression in prostate cancer ent non-tu cell lines; C, LncRNA ROR in canc gnificantly positively correlated with the expression level of Akt; **D**, QRT-PCR verified the erfei ter transfection of si-ROR in PC-3 and Lncap cell lines. Data were **p<0.001. expressed as mean \pm SD 0.05,

cated that ROR cent tissi and the result considerably up-regated and posilevel orrelated with PCa TNM stage, lymph tivel etastasis. From this we believe not play a r in promoting the prothat k ther explore the effects sion gical function of PCa, we knockdown model using lencted a k COL Cell colony formation experiments, invativi tion assay and wound healing test wed that KOR exerted an important influence occurrence and development of PCa, but its molecular mechanism remains unclear. a serine kinase, also known as protein kinase B (PKB) or A and C related protein kinases

(RAC.PK) because its amino acid composition in kinase activity region is very similar to PKA and PKC^{20,21}. There are three subtypes of Akt, including Aktl, Akt2 and Akt3. Among them, Aktl is widely present in various tissues. Akt2 is mainly found in insulin-like tissues, while Akt3 is more strictly distributed in the brain and testes^{21,22}. The Akt protein consists of three parts: pleckstrin homology domain (PH domain), the intermediate kinase domain and the carboxy-terminal regulatory region. Among them, the PH domain of Akt is highly similar to that of some other signaling molecules which are capable of binding 3-phosphatidylinositol^{22,23}. In this experiment, in order to clarify whether ROR promotes the progres-

Figure 4. LncRNA ROR could regulate the expression of kt in prostate can, assues and cell lines. A, Akt gene levels were detected by qRT-PCR in LncRNA ROR and Akt contains the first lines; B, Akt protein levels were detected by western blot test in LncRNA ROR and Akt co-transfected cell section of LncRNA ROR and Akt in regulating prospection. Data were expressed as mean \pm SD, *p<0.05.

sion of PCa by regulating Al ined th expression of Akt after kno own o R using Western Blot assay. Re that the indicat expression level of the ab drastically after RQ nock uggesums a ROR and relationship between addition, we also found cell rescue iments counteracted the role that overexpr of knockdown of ROR cells. As the research cont es to deepen, r understanding gene and its role of the gical function of A evelopment of tumors will be more conin th du the gnosis, treatment and prognosis dly brings good news of tun s undov pati and their families, and nany dawn to human conquest new er.

Conclusions

ROK was remarkably upregulated in PCa tissues and cells, and notably correlated with PCa TNM

stage, lymph node or distant metastasis. In addition, LncRNA ROR may have the ability to promote the malignant progression of PCa by regulating Akt.

Conflict of Interest

The Authors declare that they have no conflict of interest.

References

- JEAN-PIERRE G. Advice about screening for prostate cancer with prostate-specific antigen. J Adv Pract Oncol 2017; 8: 639-645.
- ALTWAURY N, SOMANI S, DUFES C. Targeted nonviral gene therapy in prostate cancer. Int J Nanomedicine 2018; 13: 5753-5767.
- 3) SMITH ZL, EGGENER SE, MURPHY AB. African-American prostate cancer disparities. Curr Urol Rep 2017; 18: 81.
- Health Quality Ontario. Prolaris cell cycle progression test for localized prostate cancer: a health technology assessment. Ont Health Technol Assess Ser 2017; 17: 1-75.
- SOHAIL A, SHERIN L, BUTT SI, JAVED S, LI Z, IOBAL S, BE'G OA. Role of key players in paradigm shifts of

- prostate cancer bone metastasis. Cancer Manag Res 2018; 10: 1619-1626.
- ANGELES AK, BAUER S, RATZ L, KLAUCK SM, SULTMANN H. Genome-based classification and therapy of prostate cancer. Diagnostics (Basel) 2018; 8: 62.
- Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev 2018; 32: 1105-1140.
- YAO M, ROGERS L, SUCHOWERSKA N, CHOE D, AL-DAB-BAS MA, NARULA RS, LYONS JG, SVED P, LI Z, DONG Q. Sensitization of prostate cancer to radiation therapy: Molecules and pathways to target. Radiother Oncol 2018; 128: 283-300.
- Guo T, Wang XX, Fu H, Tang YC, Meng BQ, CHEN CH. Early diagnostic role of PSA combined miR-155 detection in prostate cancer. Eur Rev Med Pharmacol Sci 2018; 22: 1615-1621.
- YANG C, SHEN C, FENG T, LI H. Noncoding RNA in NK cells. J Leukoc Biol 2018 Sep 28. doi: 10.1002/ JLB.1RU0518-197RR. [Epub ahead of print]
- CORRA F, AGNOLETTO C, MINOTTI L, BALDASSARI F, VOLINIA S. The network of non-coding RNAs in cancer drug resistance. Front Oncol 2018; 8: 327.
- KAIKKONEN MU, ADELMAN K. Emerging roles of non-coding RNA transcription. Trends Biochem Sci 2018; 43: 654-667.
- 13) Roy S, Trautwein C, Luedde T, Roderburg C ral overview on non-coding RNA-based stic and therapeutic approaches for liver ses. Front Pharmacol 2018; 9: 805.
- 14) He A, He S, Li X, ZHOU L. ZFAS1: a novel vital cogenic IncRNA in multiple by the species. Coprolif 2018: e12513.

- 15) AIRD J, BAIRD AM, LIM M, McDERMOTT R, FINN SP, GRAY SG. Carcinogenesis in prostate cancer: the role of long non-coding RNAs. Noncoding PMT Pos 2018; 3: 29-38.
- 16) KLINGE CM. Non-coding RNAs: lo con-coding RNAs and microRNAs in endocrated cancers. Endocr Relat Cancer 201 R259-R282.
- 17) GIUNCHI F, CICCARESE C, MONTIRON, ARPELLI M, LOPEZ-BELTRAN A, CHENG LA SCH H, N. F. FIORENTINO M. Urinary biom 12 or for prosts. Curr Drug Metab 2017 35: 723-726.
- 18) Dani H, Loeb S. The sile of protect cancer commarkers in undia Curr Orin Urol 2017; 27: 210-116.
- 19) TANASE CP, Conici E, POPES MIHAV ANCIU AM, NECULA LC FDA A, ISMAIL C, R. Prostate cancer marker discovery. Oncotarget 2017; c. 18497-
- 20) Hans X, Liu G, Gb Z. The PI3K/AKT pan obesity and ty, diabetes. Int J Biol Sci 2018; 14: 1483-1496.
- BAIYUN R, LI STU B, LU J, LV Y, XU J, WU J, LI J, LV Z, ZHANG LI Iteolin-mediated PI3K/AKT/Nrf2 ignaling part ay ameliorates inorganic mer-rinduced ardiac injury. Ecotoxicol Environ 655-661.
- 22) ROGEL A, WILLOUGHBY JE, BUCHAN SL, LEONARD HJ, THIRDBOROUGH SM, AL-SHAMKHANI A. Akt signaling tical for memory CD8(+) T-cell development aumor immune surveillance. Proc Natl Acad Scr U S A 2017; 114: E1178-E1187.
- 23) KOUNDOUROS N, POULOGIANNIS G. Phosphoinositide 3-kinase/akt signaling and redox metabolism in cancer. Front Oncol 2018; 8: 160.