Effects of miR-132 on proliferation and apoptosis of pancreatic cancer cells *via* Hedgehog signaling pathway

D.-W. ZHAO¹, Y.-S. HOU², F.-B. SUN³, B. HAN³, S.-J. LI³

Dawei Zhao and Yingsheng Hou contributed equally to this work

Abstract. – OBJECTIVE: Micro ribonucleic acids (miRNAs) and Hedgehog (Hh) signaling pathway play key roles in the proliferation, migration and invasion of tumor cells. The aim of this study was to investigate the role of miR-132 and Hh signaling pathway in the proliferation and apoptosis of pancreatic cancer cells, and to investigate the possible underlying mechanism.

MATERIALS AND METHODS: The expressions of miR-132 and Shh (a ligand of Hh) in clinical pancreatic cancer specimens and pancreatic cancer cell lines were determined by qRT-PCR. Meanwhile, the correlation between the two molecules was analyzed. Pancreatic cancer cell line (MiaPaCe-2a) was transfected with miR-132 mimics and inhibitor. The effects of miR-132 up- and down-regulation on the expressions of miR-132, Shh, Cyclin-D1, cleaved Caspase-3 and cleaved Caspase-9 were detected. In addition, the exact role of miR-132 in the proliferation, apoptosis and distribution of MiaPaCe-2a cells were investigated.

RESULTS: The expression level of miR-132 in pancreatic cancer specimens and pancreatic cancer cell lines was significantly elevated when compared with that of control group. Meanwhile, miR-132 expression was negatively correlated with the expression level of Shh. Moreover, transfection with miR-132 mimics evidently up-regulated miR-132 expression. Moreover, miR-132 up-regulation significantly decreased the mRNA and protein expressions of Shh, facilitated the proliferation of MiaPaCe-2a cells, reduced the protein expressions of Cyclin-D1, cleaved Caspase-3 and cleaved Caspase-9, and suppressed cell apoptosis. On the contrary, miR-132 inhibitor transfection significantly inhibited the proliferative activity of MiaPaCe-2a cells, decreased the proportion of cells in G1 phase, and increased the proportion of cells in G2/M phase.

CONCLUSIONS: MiR-132 promotes proliferation and inhibits apoptosis of pancreatic cancer cells through Hh signaling pathway.

Key Words:

MiR-132, Hedgehog signaling pathway, Pancreatic cancer, Cell proliferation and apoptosis.

Introduction

Pancreatic cancer is a disease with strong lethality all over the world. According to relevant data, there were 36,800 new deaths from pancreatic cancer in the United States in 2010¹. Since the 21st century, the scientific community has carried out more in-depth research on pancreatic cancer. However, no effective treatment regimens have been developed. Meanwhile, the therapeutic efficacy of traditional chemotherapy and radiotherapy is far from satisfactory. Resection is the only attempt to cure pancreatic cancer. Less than 25% of patients meet the conditions for surgery when first diagnosed. The 5-year survival rate of pancreatic cancer is only about 20%². Therefore, it is of great practical significance to study the molecular pathogenesis of pancreas. Micro ribonucleic acids (miRNAs) are a type of small non-coding RNAs. They can regulate protein expression at post-transcriptional level by binding to the 3'-untranslated re-

¹Department of Gastrointestinal Surgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China

²Department of Gastroenterology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China

³Department of Hepatobiliary Surgery, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China

gion (3'-UTR) of target messenger RNAs (mR-NAs)³. MiRNAs are differentially expressed in many solid tumors, which often create unique features for each type of malignancy⁴. Studies have proved that miRNAs are closely related to pancreatic cancer^{5,6}. It is predicted that miR-132 may be closely correlated with carcinogenesis. Previous studies have indicated that the expression of miR-132 is significantly increased in lung cancer, endocrine pancreatic tumor, squamous cell carcinoma of tongue, breast cancer and colorectal cancer, whereas declined in osteosarcoma⁷⁻¹¹. The different expression levels of miRNA in various cancers highlight its diverse functions in cells. Hedgehog (Hh) protein is a precursor protein automatically catalyzing, cleaving and attaching to cell surface. Hh pathway is a typical signaling pathway associated with embryonic development and differentiation. Meanwhile, it involves Hh ligands (Shh, Dhh and Ihh), membrane proteins, transcription factors (Gli1, Gli2 and Gli3) and target genes¹². Shh, the best-studied ligand in Hh pathway, plays a vital role in ectoderm development. Abnormal activation of Shh leads to up-regulation of Myc, Ptch and Cyclin-D, thereby promoting the division of tumor cells^{13,14}. Furthermore, the activation of Hh signaling pathway and sustained activation of target genes are associated with multiple malignant tumors¹⁵⁻¹⁸. Excessively activated Hh signaling pathway results in the development and progression of tumors¹⁹. In this study, the effects of miR-132 on proliferation and apoptosis of pancreatic cancer cells through Hh signaling pathway were explored. Moreover, we investigate the possible intrinsic mechanism of action.

Materials and Methods

Main Experimental Reagents

TaqMan miRNA Assays and SYBR® Green polymerase chain reaction (PCR) Master Mix (purchased from Applied Biosystems, Foster City, CA, USA), CelLyticTM (Sigma-Aldrich St. Louis, MO, USA), bicinchoninic acid (BCA) protein assay kits (Pierce, Rockford, IL, USA), Shh, Cyclin-D1, cleaved Caspase-3 and cleaved Caspase-9 antibodies (Abclone, Wuhan, China), miR-132 mimics and inhibitors (RiboBio, Guangzhou, China), Cell Counting Kit-8 (CCK-8) (NeoBioscience, Shenzhen, China), Annexin-V and propidium iodide (PI) (BD Biosciences, Franklin Lakes, NJ, USA).

Sample Sources and Cell Lines

A total of 76 pancreatic specimens (including 25 normal pancreatic specimens, 18 adjacent benign pancreatic specimens and 23 pancreatic adenocarcinomas) analyzed in this study were obtained from the Affiliated Yantai Yuhuangding Hospital of Qingdao University. This study was approved by the Ethics Committee of the Affiliated Yantai Yuhuangding Hospital of Qingdao University. Signed written informed consents were obtained from all participants before the study. Tissues were fixed with 4% paraformaldehyde, embedded in paraffin and cut into sections for subsequent analysis. Human pancreatic cancer cell line MiaPaCe-2a and normal pancreas cell line HPDE6-C7 were purchased from Shanghai Guandao Biological Engineering Co., Ltd. (Shanghai, China).

Ouantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA in tissues and cells was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Next, gene-specific circular primers were used to amplify total RNA of miR-132. Then, TaqMan miRNA assays was utilized to quantify complementary deoxyribonucleic acid (cDNA). The total RNA (1 µg) was synthesized into cDNA using random primers. Gene expression analysis was performed via qRT-PCR in accordance with the instructions of SYBR® Green PCR Master Mix. 18S rRNA was used as an internal reference. Data were analyzed using the comparative CT method. Primers used in this study were as follows: Shh: forward: CTCGCTGCTGGTATGCTCG, reverse: ATCGCTCGGAGTTTCTGGAGA, miR-132: forward: GGCAACCGTGGCTTTGGA, reverse: TTTGGCACTAGCACATT.

Western Blotting

Live tissue cells were lysed with CelLyticTM M lysis buffer. Total protein was obtained through addition of protease and phosphatase inhibitors. The concentration of extracted protein was measured using the BCA protein assay kit (Beyotime, Shanghai, China). Protein sample was separated by 10% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Western blotting was carried out for Shh, Cyclin-Dl, cleaved Caspase-3 and cleaved Caspase-9. β-actin was used as a loading control. Enhanced chemiluminescence (ECL) Western blotting analysis system was utilized for detection (Thermo Fisher Scientific, Waltham, MA, USA).

Cell Transfection

MiR-132 mimics and inhibitor were stored in freeze-dried powder at -20°C. Subsequently, they were diluted to solution at a concentration of 20 µm with sterile ribonuclease (RNase)-free H₂O. MIAPaCa-2a cells were transfected with specific RNA oligonucleotides according to the manufacturer's protocol Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA). After 6 h, the medium containing miR-132 mimics (50 nm) and miR-132 inhibitor (100 nm) was replaced with new medium, followed by culture for another 48 h.

Cell Proliferation by CCK-8

After cells were confluent in a single layer at the bottom of the well, they were re-suspended and adjusted to the concentration of 1×10⁵ cells/mL. Then, cells were inoculated into 96-well plates and cultured for 24 h. Next, the medium was changed and starvation medium was added for 6 h of culture. After discarding the medium, cells in experimental group were added with serum-free starvation medium of miR-132 mimic or inhibitor. Meanwhile, serum-free starvation medium blank controls and mimics or inhibitor controls were set. After incubation for 24 h, 48 h and 72 h, respectively, CCK-8 reagent was added in cells. Optical density (OD) value was measured using a microplate reader.

Cell Cycle and Apoptosis

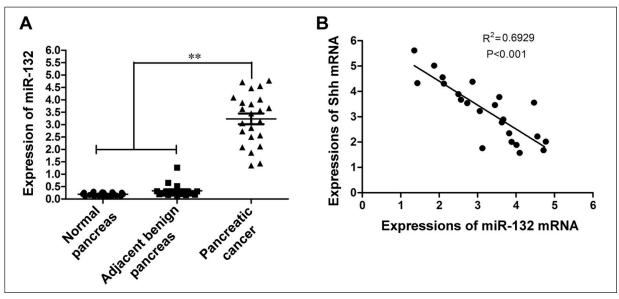
For cell cycle: cells were suspended in absolute ethanol and stored at -20°C. Subsequently, binding buffer containing PI, NP-40 and RNaseA was added, followed by incubation at room temperature for 15 min. For cell apoptosis: cells were stained with Annexin-V and PI at 4°C for 15 min. Cell cycle distribution and apoptosis were determined *via* flow cytometry. Experimental results were analyzed using Kaluza software (Miami, FL, USA).

Statistical Analysis

GraphPad Prism 6 (La Jolla, CA, USA) was utilized for all statistical analysis. The relationship between miR-132 expression and Shh expression was detected by regression analysis. One-way analysis of variance was employed to compare the differences among different groups, followed by Post-Hoc Test LSD (Least Significant Difference). t-test was used to compare the differences between two groups. Each experiment was repeated for at least three times. p < 0.05 was considered statistically significant.

Results

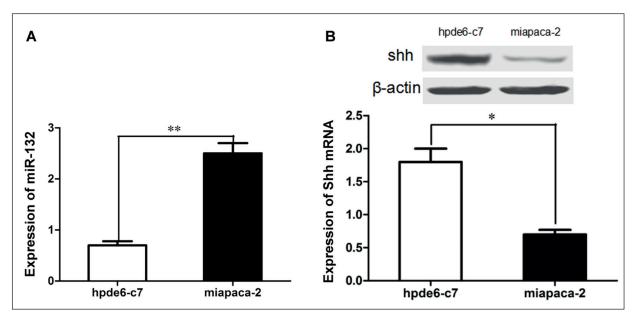
Expression of miR-132 in Clinical Pancreatic Cancer Tissues, as Well as Its Relationship With Shh

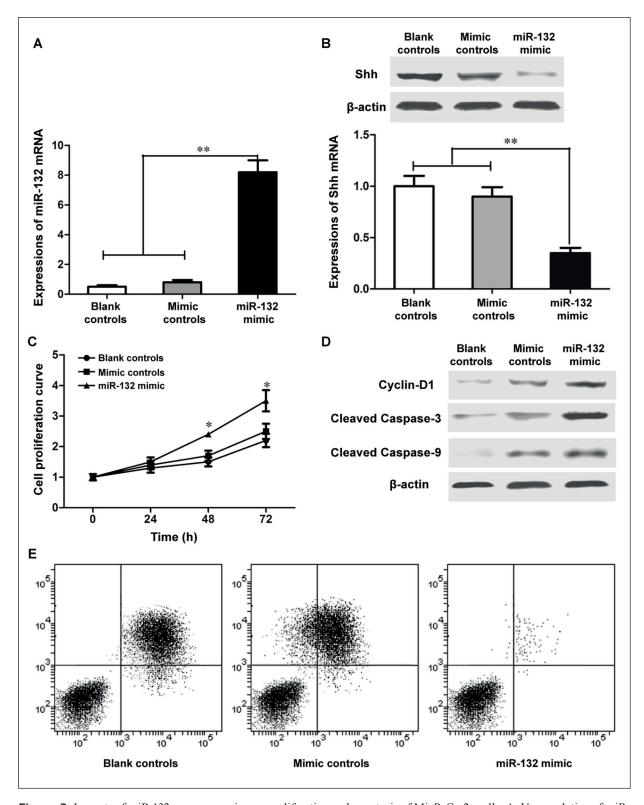

Firstly, qRT-PCR was performed to analyze the expressions of mature miR-132 and Shh in 76 clinical pancreatic specimens (25 normal pancreatic specimens, 18 adjacent benign pancreatic specimens and 23 pancreatic adenocarcinomas). The results (Figure 1A) revealed that compared with normal pancreatic tissues and adjacent benign pancreatic tissues, miR-132 expression was significantly upregulated in pancreatic cancer tissues (*p* < 0.001). Meanwhile, miR-132 expression was negatively correlated with Shh expression (Figure 1B).

Expression of miR-132 and Shh in Pancreatic Cancer Cells

In addition, the expressions of miR-132 and Shh in pancreatic cancer cell lines were detected *in vitro*. QRT-PCR and Western blotting assay were carried out to measure the expression levels of miR-132 and Shh in pancreatic cancer cell line MIAPaCa-2a and normal pancreas cell line HPDE6-C7. It was found that the mRNA expression of miR-132 in pancreatic cancer cell line MIAPaCa-2a was evidently increased. Moreover, both the mRNA and protein expression levels of Shh in pancreatic cancer cell line MIAPaCa-2a were significantly increased when compared with those of normal cell line (p < 0.05) (Figure 2A and 2B).

Impacts of miR-132 Over-Expression on Proliferation and Apoptosis of Pancreatic Cancer Cells


MiaPaCe-2a cells were transfected with miR-132 mimics, and the effects of miR-132 on the proliferation and apoptosis of pancreatic cancer cells were verified. Transfection efficiency of miR-132 mimics was first verified. Meanwhile, the effects of miR-132 on the mRNA and protein expressions of Shh were determined. CCK8 assay was used to determine the role of miR-132 mimics in proliferation of MiaPaCe-2a cells, and the changes in apoptosis-related proteins (Cyclin-D1, cleaved Caspase-3 and cleaved Caspase-9). Flow cytometry was employed to analyze the impact of miR-132 mimics on apoptosis of pancreatic cancer MiaPaCe-2a cells. As shown in Figure 3A, miR-132 mimics transfection significantly increased the mRNA expression of miR-132 (p <0.01). This proved that miR-132 mimics promoted


Figure 1. Expression of miR-132 in pancreatic cancer tissues as well as its correlation with Shh. A, Expression of miR-132 in normal pancreas, adjacent benign pancreas and pancreatic cancer. B, Linear correlation analysis between miR-132 and Shh. *p < 0.05, **p < 0.01.

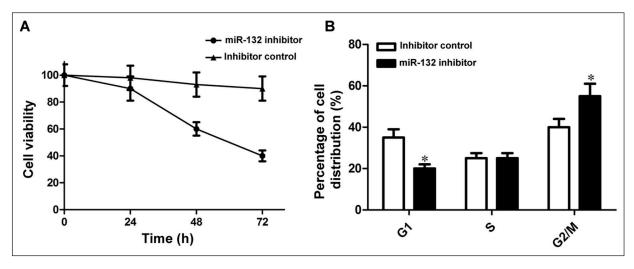
the expression of miR-132. In addition, miR-132 mimics significantly reduced the mRNA and protein expressions of Shh (p < 0.01). Results of CCK-8 assay showed that miR-132 over-expression significantly promoted the proliferation of pancreatic cancer MiaPaCe-2a cells when compared with blank controls and mimics controls (p

< 0.05) (Figure 3C). However, miR-132 mimics down-regulated the expressions of Cyclin-D1, cleaved Caspase-3 and cleaved Caspase-9 at the protein level (Figure 3D). The effect of miR-132 mimics on the apoptosis was analyzed through flow cytometry. Results indicated that miR-132 over-expression significantly reduced the per-

Figure 2. Expressions of miR-132 and Shh in pancreatic cancer cell lines. *A*, MRNA expression of miR-132 in MIAPaCa-2a and HPDE6-C7 cell lines detected *via* qRT-PCR. *B*, Expression of Shh in MIAPaCa-2a and HPDE6-C7 cell lines determined through qRT-PCR and Western blotting. *p < 0.05, **p < 0.01.

Figure 3. Impacts of miR-132 over-expression on proliferation and apoptosis of MiaPaCe-2a cells. A, Up-regulation of miR-132 on the mRNA expression of miR-132. **B,** Effect of miR-132 on Shh mRNA and protein expression. **C,** Proliferation of cells detected *via* CCK8. **D,** Effect of miR-132 mimics on apoptosis-related proteins determined *via* Western blotting. **E,** Apoptosis of MiaPaCe-2a cells determined through flow cytometry. *p < 0.05, **p < 0.01.

centage of apoptotic cells when compared with that of blank controls and mimics controls. These findings confirmed that miR-132 over-expression facilitated proliferation and repressed apoptosis of pancreatic cancer cells.


Influences of miR-132 Inhibitor on Proliferation and Apoptosis of MiaPaCe-2a Cells

The effects of miR-132 inhibitor on proliferation and apoptosis of pancreatic cancer cells were investigated as well. CCK8 assay and flow cytometry were performed to analyze the influences of miR-132 inhibitor on proliferation and apoptosis of pancreatic cancer cells, respectively. It was discovered that miR-132 inhibitor significantly suppressed the proliferative capacity of pancreatic cancer MiaPaCe-2a cells (p < 0.05) (Figure 4A). Results of cell cycle determination *via* flow cytometry indicated that miR-132 inhibition resulted in an obvious increase in MiaPaCe-2a cells to 42.2% from 18.5% in G2/M phase, and a significant decrease in MiaPaCe-2a cells to 17.5% in G1 phase (Figure 4B).

Discussion

In recent years, miRNAs have been extensively studied, which has also become the focus of researches on malignant tumors. Moreover, much progress has been made to improve the knowledge and understanding of miRNAs. In this study, it was

found that over-expression of miR-132 evidently promoted the proliferation of pancreatic cancer cells through Hh signaling pathway. The signal transduction mechanism of pancreatic cancer development remains unclear. More and more studies have revealed that Hh signaling pathway plays an important role in the progression and prognosis of pancreatic cancer. Shh is the best-studied ligand in Hh pathway. Therefore, it was used as a marker for Hh signaling pathway in this study. Moreover, the expressions of miR-132 and Shh in clinical pancreatic cancer specimens, and the relationship between the two molecules were firstly analyzed in this study. Results revealed that there was an obvious negative correlation between high expression of miR-132 and low expression of Shh. As a cancer-related miRNA, miR-132 is upregulated in many cell carcinomas. Research by Liu et al²⁰ has manifested that miR-132 is lowly expressed in hepatocellular carcinoma (HCC) tissues compared with adjacent non-cancerous liver tissues. Meanwhile, miR-132 expression is negatively related to HBV-related HCC. This is contrary to the results of this study. Furthermore, miR-132 mimics were utilized in this study to verify the direct interaction between miR-132 with Shh. It was discovered that up-regulation of miR-132 significantly inhibited the expression of Shh. These results suggested that miR-132 contained a sequence complementary to the 3'-UTR of Shh. Moreover, its binding led to Shh mRNA degradation or translational suppression²¹. These findings fully clarified the relationship between miR-132 and Shh. Previous studies

Figure 4. Effects of miR-132 inhibitors on proliferation and apoptosis of MiaPaCe-2a cells. *A*, Impact of miR-132 inhibitor on the proliferative activity of pancreatic cancer MiaPaCe-2a cells determined *via* CCK8. *B*, Influence of miR-132 inhibitor on cell cycle distribution of MiaPaCe-2a cells examined through flow cytometry. *p < 0.05, **p < 0.01.

have indicated miR-132 is closely correlated with the development and progression of pancreatic cancer. According to this research, miR-132 mimics transfection significantly promoted the proliferation of pancreatic cancer cells. However, miR-132 over-expression inhibited Shh expression, decreased the expressions of apoptotic proteins, and ultimately suppressed apoptosis of pancreatic cancer cells. These results implied that miR-132 might facilitate tumor cell growth by increasing the expressions of cell cycle regulatory genes. Moreover, it was also interestingly found in this study that inhibition of miR-132 induced G2/M arrest. Shh may affect the transition of G1/S and G2/M of cell cycle²². Therefore, G2/M arrest may be due to the targeting of miR-132 to Hh signaling pathway. Moreover, G2/M arrest is aggravated via Hh signaling pathway²³. It is hypothesized that miR-132 may be involved in DNA damage and cell cycle arrest by targeting ATM and ATR. The mechanism by which miR-132 is up-regulated in pancreatic cancer remains unclear. However, a study by Park et al²⁴ has demonstrated that beta-2 adrenergic receptor (B2AR) agonists increase the expression of miR-132. B2AR induces transactivation of cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) via cAMP-protein kinase A (PKA) pathway. Transcription is induced by phosphorylation of CREB induced by PKA and recruitment of coactivator CREB-binding protein (CBP) or its paralog p300. MiR-132 is activated by CREB transcription in neurons²⁵. It has been proved that miR-132 is a part of the feedback loop in the antiviral innate immunologic process. Furthermore, p300 induces miR-132, while miR-132 expression inhibits p300. DNA synthesis of pancreatic cell lines MiaPaCe-2a and BXPC-3 is stimulated by \(\beta \) adrenergic signaling pathway. B2AR agonists promote the proliferation of pancreatic cancer cells by activating PKA, arachidonic acid and MAPK pathways. In addition, B2AR antagonists inhibit the activation of CREB^{26, 27}.

Conclusions

We revealed that miR-132 is over-expressed in pancreatic cancer. Meanwhile, it regulates the proliferation and apoptosis of pancreatic cancer cells *via* Hh signaling pathway. In addition, miR-132 leads to increased proliferative activity of pancreatic cancer cells and arrested apoptosis.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- 1) Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277-300.
- Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, Beger H, Fernandez-Cruz L, Dervenis C, Lacaine F, Falconi M, Pederzoli P, Pap A, Spooner D, Kerr DJ, Buchler MW. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004; 350: 1200-1210.
- 3) BARTEL DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233.
- 4) Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microR-NA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103: 2257-2261.
- BLOOMSTON M, FRANKEL WL, PETROCCA F, VOLINIA S, AL-DER H, HAGAN JP, LIU CG, BHATT D, TACCIOLI C, CROCE CM. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007; 297: 1901-1908.
- 6) XIE J, WEN JT, XUE XJ, ZHANG KP, WANG XZ, CHENG HH. MiR-221 inhibits proliferation of pancreatic cancer cells via down regulation of SOCS3. Eur Rev Med Pharmacol Sci 2018; 22: 1914-1921.
- Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189-198
- 8) Wong TS, Liu XB, Chung-Wai HA, Po-Wing YA, Wai-Man NR, Ignace WW. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microR-NA profiling. Int J Cancer 2008; 123: 251-257.
- 9) ANAND S, MAJETI BK, ACEVEDO LM, MURPHY EA, MUKTHAVARAM R, SCHEPPKE L, HUANG M, SHIELDS DJ, LINDOUIST JN, LAPINSKI PE, KING PD, WEIS SM, CHERESH DA. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 2010; 16: 909-914.
- 10) SCHETTER AJ, LEUNG SY, SOHN JJ, ZANETTI KA, BOWMAN ED, YANAIHARA N, YUEN ST, CHAN TL, KWONG DL, AU GK, LIU CG, CALIN GA, CROCE CM, HARRIS CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299: 425-436.
- CORTE H, MANCEAU G, BLONS H, LAURENT-PUIG P. MicroRNA and colorectal cancer. Dig Liver Dis 2012; 44: 195-200.

- Bangs F, Anderson KV. Primary cilia and mammalian hedgehog signaling. Cold Spring Harb Perspect Biol 2017; 9: a028175.
- 13) ZHAO L, YU Y, DENG C. Protein and mRNA expression of Shh, Smo and Gli1 and inhibition by cyclopamine in hepatocytes of rats with chronic fluorosis. Toxicol Lett 2014; 225: 318-324.
- 14) JUNG Y, McCALL SJ, LI YX, DIEHL AM. Bile ductules and stromal cells express hedgehog ligands and/ or hedgehog target genes in primary biliary cirrhosis. Hepatology 2007; 45: 1091-1096.
- Bouscary D. Rational for targeting the hedgehog signalling pathway in acute myeloid leukemia with FLT3 mutation. Ann Transl Med 2016; 4: S53.
- HABIB JG, O'SHAUGHNESSY JA. The hedgehog pathway in triple-negative breast cancer. Cancer Med 2016; 5: 2989-3006.
- 17) RUCH JM, KIM EJ. Hedgehog signaling pathway and cancer therapeutics: progress to date. Drugs 2013; 73: 613-623.
- ABIDI A. Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian J Pharmacol 2014; 46: 3-12.
- 19) Xu L, Dai W, Li J, He L, Wang F, Xia Y, Chen K, Li S, Liu T, Lu J, Zhou Y, Wang Y, Guo C. Methylation-regulated miR-124-1 suppresses tumorigenesis in hepatocellular carcinoma by targeting CASC3. Oncotarget 2016; 7: 26027-26041.
- LIU K, LI X, CAO Y, GE Y, WANG J, SHI B. MiR-132 inhibits cell proliferation, invasion and migration of

- hepatocellular carcinoma by targeting PIK3R3. Int J Oncol 2015; 47: 1585-1593.
- 21) ZHANG X, TANG W, LI R, HE R, GAN T, LUO Y, CHEN G, RONG M. Downregulation of microRNA-132 indicates progression in hepatocellular carcinoma. Exp Ther Med 2016; 12: 2095-2101.
- 22) FUKAO A, AOYAMA T, FUJIWARA T. The molecular mechanism of translational control via the communication between the microRNA pathway and RNA-binding proteins. RNA Biol 2015; 12: 922-926.
- Semizarov D, Kroeger P, Fesik S. siRNA-mediated gene silencing: a global genome view. Nucleic Acids Res 2004; 32: 3836-3845.
- 24) PARK JK, HENRY JC, JIANG J, ESAU C, GUSEV Y, LERNER MR, POSTIER RG, BRACKETT DJ, SCHMITTGEN TD. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem Biophys Res Commun 2011; 406: 518-523.
- 25) LIU X, YAN S, PEI C, CUI Y. Decreased microR-NA-132 and its function in human non-small cell lung cancer. Mol Med Rep 2015; 11: 3601-3608.
- 26) Schuller HM. Mechanisms of smoking-related lung and pancreatic adenocarcinoma development. Nat Rev Cancer 2002; 2: 455-463.
- 27) ZHANG D, MA QY, Hu HT, ZHANG M. beta2-adrener-gic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFkappaB and AP-1. Cancer Biol Ther 2010; 10: 19-29.