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Abstract.  – The world is currently facing the 
COVID-19 pandemic, caused by the novel Severe 
Acute Respiratory Syndrome Coronavirus-2 
(SARS-CoV-2). Due to a lack of specific treatment 
and prophylaxis, protective health measures 
that can reduce infection severity and COVID-19 
mortality are urgently required. Clinical and epi-
demiological studies have shown that vitamin D 
deficiency can be linked to an increased risk of 
viral infection, including COVID-19. Therefore, in 
this review, we looked at various possible roles 
of vitamin D in reducing the risk of COVID-19 in-
fection and severity. We describe in this arti-
cle that individuals at high risk of vitamin D de-
ficiency should consider taking vitamin D sup-
plements to keep optimal concentrations. More-
over, we discuss different possible mechanisms 
by which vitamin D can efficiently reduce the 
risk of infections through modulation of innate 
and adaptive immunity against various types 
of infections. It is advisable to perform further 
studies addressing the observed influence of vi-
tamin D levels to reduce the risk of COVID-19 in-
fection and mortality.
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Introduction

The 2019 Coronavirus (COVID-19) is a dis-
ease caused by the novel emerging Severe Acute 
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Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2), which has negatively affected the entire 
world. This is the third pathogenic human CoV in 
the last two decades. Before SARS-CoV-2 emer-
gence, Severe Acute Respiratory Coronavirus 
Syndrome (SARS-CoV) emerged in Guangdong, 
China, in 2002, resulting in over 8000 infections 
and 774 deaths in 37 countries. In addition, the 
Middle East Respiratory Coronavirus Syndrome 
(MERS-CoV) was also identified in Saudi Arabia 
in 20121,2. In March 2020, the World Health Orga-
nization (WHO) declared that SARS-CoV-2 out-
break is a pandemic3. As of 04 December 2020, 
this global outbreak has caused over 64,350,473 
confirmed cases and more than 1,490,000 deaths 
worldwide4. Currently, social distancing, wearing 
masks, and washing hands are only the only pro-
tective measures we can take while waiting for an 
effective drug against COVID-19.

Vitamin D deficiency is considered a world-
wide health problem that has an impact on a wide 
range of diseases; one of these involves viral in-
fections5-9. The underlying mechanisms describ-
ing the effect of poor vitamin D status on viral 
infections are still not completely understood. 
However, some of the mechanisms could be im-
munomodulatory, anti-inflammatory, including 
some cellular and viral factors affecting viral 
replication10-12. Additionally, the protective effects 
of vitamin D have been shown in infections with 
pneumonia, cytokine storm, and Acute Respi-
ratory Disease Syndrome (ARDS)9. Moreover, 
vitamin D has recently been a repurposed drug 
against influenza A H5N113. 

Interestingly, several epidemiological scholars14 
show a potential link between vitamin D status 
and the risk of COVID-19 infection, severity, and 
mortality. Accordingly, a complete understanding 
of the biological effects of vitamin D could give 
its rationale in the management of COVID-19. In 
this review, we focus on the potential role of vita-
min D in decreasing the risk of COVID-19 infec-
tion, severity, and death.

Coronaviruses, Epidemiology, 
and Transmission 

Coronaviruses (CoVs) are the largest sin-
gle-stranded, enveloped positive-sense RNA vi-
ruses. This family includes 4 genera: Alpha-CoV, 
Beta-CoV, Gamma-CoV, and Delta-CoV. Al-
pha-CoVs and Beta-CoVs primarily infect mam-
mals and, until now, seven human CoVs have 
been identified15-17. Four human CoVs (HCoV 
229E, NL63, OC43, and HKU1) were globally en-

demic and contributed to infections of the upper 
respiratory tract. Moreover, severe human CoVs 
are SARS-CoV, MERS-CoV, and SARS-CoV-2, 
which can be life-threatening15,18. 

SARS-CoV-2 is 30 Kb in size and is genetically 
similar to the 2002 CoV (SARS-CoV)1. A multi-
tude of other CoVs trigger the common cold and 
may become infectious after reaching the animal 
reservoirs that provide a suitable cellular environ-
ment, where the virus can multiply and acquire 
a series of beneficial genetic mutations. These 
beneficial mutations allow the virus to cross spe-
cies, infect humans, and effectively multiply19,20. 
The genome structure of SARSCoV-2 is similar 
to the other CoVs containing open reading frames 
(ORF1a/b) located at the 5`end encoding polypro-
tein1a and 1b (pp1a, pp1b). The other ORFs lo-
cated on the 3`end encode 6 accessory proteins 
and four structural proteins, which are spike (S), 
envelope (E), membrane (M), and nucleocapsid N 
proteins (Figure 1)1,13,21-27. Spike (S) glycoprotein, 
which is expressed on the virus surface, consists 
of three S1-S2 heterodimers binding to the angio-
tensin-converting enzyme 2 (ACE2) type I and 
type II pneumocyte receptors25-28. 

Early studies showed that 49-66% of COVID-19 
patients had a history of visiting the Huanan sea-
food market (Wuhan, China) where different 
types of live wild animals, including poultry, bats, 
and marmots, are sold29-31. The environmental 
samples taken from the Huanan seafood market 
have been positively checked for SARS-CoV-2, 
according to the WHO32. However, the particu-
lar animals linked to the virus were not known 
during early studies. We now know that bats are 
the host of more than 30 different CoVs, includ-
ing SARS-CoV, MERS-CoV, and SARS-CoV-2; 
however, the intermediate host of SARS-CoV-2, 
which allows the virus to be spread to humans, is 
still unknown33-36.

The most important mode of transmission for 
COVID-19 is through direct contact and droplet 
transmission (Figure 1). Airborne transmission is 
also possible due to the persistence of the virus 
in aerosol droplets in an infectious form37,38. The 
infected droplets can spread 1 to 2 meters and de-
posit on the surface39. Other modes of transmis-
sion were reported, including fecal, oral, conjunc-
tiva, and fomites40-42. Importantly, considerations 
must be taken regarding the residence time of the 
virus on the surface; the half-life of SARS-CoV-2 
in plastic aerosol, copper, cardboard, and stainless 
steel is 6.8 hrs, 1.5 hrs, 1 hr, 3.4 hrs, and 5.6 hrs, 
respectively. The virion is stabilized at lower tem-
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peratures39,43. Patients infected with SARS-CoV-2 
can spread the virus before and during the symp-
tomatic course and even in the recovery time.

Symptoms and Pathogenesis 
of SARS-CoV-2

SARS-CoV-2 binds to angiotensin converting 
enzyme 2(ACE2) receptors on the surface of host 
cells and enters through endocytosis to multiply 
in the cytoplasm44. The ACE2 receptors are wide-
ly distributed in human organs such as the lungs, 
heart, kidney, and liver34,45-48. ACE2 Type II pneu-
mocytes are the primary target of CoVs, because 
these cells have highly expressed ACE2 recep-
tors on their surface. Additionally, Hamming et 
al47 have reported that ACE2 is commonly ex-
pressed in endothelial, arterial and venous cells 
and smooth arterial muscle cells. Impaired type 
II pneumocyte function decreases the surfactant 
level and increases COVID-19 surface tension 50. 
This provides the virus with the potential to in-
vade and destroy blood vessels, followed by in-
creased blood clotting and platelet accumulation, 
which ultimately results in thrombus formation. 
Accumulating data indicate coagulopathy as a 
major pathological mechanism in COVID-19. Ex-
tensive coagulopathy can explain the phenome-
non such as ischemic skin lesions, increased risk 
of stroke, and hypoxemia even without breathing 
problems in some severely ill patients51. 

The first line of defense against viral infection 
is a rapid and well-coordinated innate immune 

response. In addition, SARS-CoV-2 RNA acts as 
a pathogen-associated molecular pattern (PAMP) 
to be recognized by receptor pattern recognition 
receptors such as Toll-like receptors. This results 
in a burst of chemokines that triggers the migra-
tion and activation of neutrophils20. The proin-
flammatory condition may result in ARDS and 
cytokine storm syndrome (CSS), possibly mediat-
ed by interleukin-6 (IL-6), dysregulated immune 
response, tumor necrosis factor-alpha (TNF-α), 
interferon gamma (IFN-α), interleukin-1 beta 
(IL-1β), and other inflammatory signaling mole-
cules52. This leads to the destruction of the capil-
lary alveolar walls, which in turn cause loss of the 
interface between the intra-alveolar space and the 
surrounding stroma at a microscopic level. Thus, 
the fluid leaks and fills into the alveolar sac20. 

Most of the critically ill and deceased patients 
in the early stages of the disease did not develop 
severe clinical manifestations. Some of the pa-
tients exhibited only mild fever, cough, or muscle 
soreness. Those patients’ conditions deteriorat-
ed suddenly in the later stages of the disease or 
during the recovery process. ARDS and multior-
gan failure occur quickly, leading to death within 
a short period53.

ARDS is the number one cause of death in 
patients with SARS-CoV or MERS-CoV infec-
tion54,55. It is now known that several proinflam-
matory cytokines (IL-6, IL-8, IL-1β, colony-stim-
ulating factor, granulocytes, macrophages, and 
reactive oxygen species) and chemokines (such as 

Figure 1. Coronavirus structure and modes of transmission.
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CCL-2, CCL-5, IFN α-induced protein 10 (IP-10), 
and CCL-3) contribute to the development of AR-
DS56-58. Cytokine storm is a major cause of ARDS 
and multiple organ failure59 identified in critical 
COVID-19 patients and plays an important role in 
the disease worsening process60. Therefore sup-
pressing the cytokine storm can be an important 
way to cure and prevent disease severity61. Cyto-
kines have long been known to play a major role 
in immunopathology during viral infection. Dys-
regulated and excessive immune reactions can, 
however, cause damage to the human body62-64. In 
vitro cell experiments show that delayed cytokine 
and chemokine release occurs at the early stage 
of SARS-CoV infection in respiratory epithelial 
cells, dendritic cells (DCs), and macrophages. 
The cells then secrete low levels of IFNs and high 
levels of proinflammatory cytokines IL-1β, IL-6, 
and TNF and chemokines (C-C structure chemo-
kine ligand (CCL)-2, CCL-3, and CCL-5)65-67. In 
animal models, it was found that the excessive in-
flammatory response is more relevant to the death 
of old nonhuman primates than the virus titer68. 
Similarly, disease severity in old mice in BALB/c 
mice infected with SARS-CoV is associated with 
an early and disproportionately strong upregula-
tion of ARDS-related inflammatory gene signal69. 
The accumulated mononuclear macrophages re-
ceive activating signals on their surface through 
the IFN-α/β receptors, and produce more mono-
cyte chemo-attractants (such as CCL-2, CCL-7, 
and CCL-12), resulting in further mononuclear 
macrophage accumulation. These mononuclear 
macrophages produce high levels of proinflam-
matory cytokines (TNF, IL-6, IL1-β, and induc-
ible synthase of nitric oxide), thus increasing the 
severity of the illness. Depleting inflammatory 
monocyte-macrophages or neutralizing the in-
flammatory cytokine TNF protected mice from 
fatal SARS-CoV infection62. 

Induction of apoptosis in lung epithelial and 
endothelial cells is another consequence of rapid 
viral replication and vigorous proinflammatory 
cytokine/chemokine response. Mechanisms in-
volving Fas-Fas ligand (FasL) or TRAIL-death 
receptor 5 (DR5) induce inflammatory cell in-
filtration and cause apoptosis of the airway and 
alveolar epithelial cells70-72. Endothelial cell and 
epithelial cell apoptosis damages the barriers of 
the pulmonary microvascular and alveolar epithe-
lial cells, causing vascular leakage and alveolar 
edema, eventually leading to hypoxia in the body. 
Inflammatory mediators thus play a vital function 
in the pathogenesis of ARDS. ARDS is the num-
ber one cause of death in patients with SARS-
CoV and MERS-CoV infection54,55. It is now 
known that several proinflammatory cytokines 
(IL-6, IL-8, IL-1β, colony-stimulating factor, 
granulocyte, macrophages, and reactive oxygen 
species) and chemokines (such as CCL-2, CCL-
5, IFN α-induced protein 10 (IP-10), and CCL-3) 
contribute to the development of ARDS56-58.

Vitamin D and Viral Infections
Vitamin D is a steroid hormone produced en-

dogenously with ultraviolet B (UVB) radiation or 
exogenously from food and dietary supplements. 
During exposure to UVB radiation from the sun, 
vitamin D3 is synthesized non-enzymatically 
in the skin, followed by enzymatic activation of 
vitamin D3 in the liver and in the kidney using 
25-hydroxylase and 1-α-hydroxylase (CYP27B1) 
(Figure 2). 

There are three mechanisms by which vita-
min D decreases the risk of infection: providing 
a physical barrier, cellular natural innate im-
munity and immunity and adaptive immunity73. 
Interestingly, the role of vitamin D in immunity 
was identified due to the expression of a vitamin 
D receptor (VDR) in immune cells (monocytes/

Figure 2. Vitamin D synthesis. In the layers of the skin, vitamin D3 is formed non-enzymatically by ultraviolet light. Then, 
vitamin D3 is enzymatically activated in the liver and kidney. 
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tor (TLR) ligands in the respiratory tract, induce 
the enzyme 1-α-hydroxylase (CYP27B1), which 
is necessary for vitamin D activation. However, 
sufficient serum levels of 25OHD are required to 
increase the levels of 1,25(OH)2D3 and thus im-
prove the immune response to respiratory virus 
infection79. 

Recently, Liu et al80 indicated that a severe de-
ficiency of vitamin D (< 25 nmol/L) is associat-
ed with progression of the disease and increased 
mortality in patients with autoimmune liver dis-
ease. This attribute has brought about an interest 
in vitamin D as a pathogenic factor that can be 
assessed, tracked, and manipulated81. Recent-
ly, Hughes and Norton82 indicate that vitamin D 
deficiency is related to increased levels of IL-6 
in patients with HIV infection, and there is also 
evidence that supplementation with vitamin D 
can reduce excess IL-6 levels in diabetic mice83. 
Insufficiency of vitamin D was linked to overex-
pression of Th1 cytokines84.

Vitamin D is known to mitigate the immunity 
gained and to regenerate the endothelial lining. 

macrophages, T cells, B cells, natural killer cells 
(NK), and dendritic cells (DCs)). Immune cells 
are able to metabolize circulating 25-hydroxy-
cholecalciferol (25(OH)D), producing 1,25-dihy-
droxycholecalciferol [1,25-dihydroxy vitamin D3, 
1,25(OH)2D3] (Figure 2)74. The binding of vitamin 
D to VDR is tightly linked to modulation of in-
nate and adaptive immunity against various types 
of infection75.

Epidemiological studies have shown that vi-
tamin D deficiency is related to infections in the 
respiratory tract and acute lung injury76. Calcitriol 
(the active form of vitamin D) has exhibited pro-
tective effects against acute lung injury by modu-
lating the expression of renin-angiotensin system 
members such as ACE2 in lung tissue77. Vitamin 
D receptors (VDRs) are distributed extensively in 
respiratory epithelial and immune cells (B cells, 
T cells, macrophages, and monocytes). 25(OH)
D, the major circulating form of vitamin D in the 
bronchial epithelium and immune cells, is con-
verted to the active form (1,25(OH)2D3)

78. Diverse 
stimuli, including cytokines and toll-like recep-

Figure 3. Schematic representation of vitamin D effects on the immune system.
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This may help to minimize the alveolar damage 
caused by ARDS. Level I evidence (N = 11,321) 
shows that vitamin D supplementation has a 12% 
overall protective impact against bacterial and vi-
ral acute respiratory tract infection (adjusted OD 
= 0.88, p < 0.001)85. These protective effects in 
those individuals increased to 19% on the daily 
or weekly vitamin D regimen compared to those 
on a monthly vitamin D bolus (adjusted OD = 
0.81, p < 0.001). In addition, when vitamin D de-
ficiency is treated with supplementation, there is 
a protective effect of 70% (adjusted OD = 0.30, p 
= 0.006)85. 

A large number of well-established data have 
shown antiviral effects of vitamin D that can di-
rectly interfere with viral replication but can also 
act in an immunomodulatory and anti-inflamma-
tory manner86. The protective effect of vitamin 
D has been reported in many pneumonias, cyto-
kine hyper-production and ARDS-related condi-
tions9,87,88 and vitamin D was recently proposed 
as a repurposed drug for lung injury caused by 
influenza A H5N1 virus89. Deficiency of vitamin 
D is a risk factor and/or driver of exaggerated and 
persistent inflammation90,91. An increased risk of 
respiratory infections such as respiratory syncy-
tial virus infection, tuberculosis, and influenza 
was associated with vitamin D deficiency92,93. 
Winter influenza incidence is strongly associated 
with seasonal serum levels of vitamin D94. Berg-
man et al93 demonstrated in a meta-analysis of 
randomized controlled clinical trials that prophy-
lactic vitamin D reduced the risk of developing 
respiratory tract infections (OR, 0.64; 95%; CI, 
0.49 to 0.84)95. The optimal dose used in the study 
was between 1,000 IU to 4,000 IU/day and the 

benefit in those living at latitudes greater than 40o 
was greatest. Grant and Giovannucci94 reported a 
clear inverse association of UVB dose and case 
fatalities during the influenza pandemic in 1918-
191996. As vitamin D deficiency enhances the cy-
tokine storm97,98, it may be particularly lethal in 
patients with SARS-CoV-2 infection99.

The high-dose treatment of 250,000–500,000 
IU vitamin D was safe in mechanically ventilat-
ed, critically ill patients and was associated with 
decreased hospital length of stay, enhanced blood 
capacity to carry oxygen and increased levels of 
hemoglobin100,101. The risk of acute respiratory 
tract infection was twice as low if the vitamin D 
serum levels were equal to 0.95 nmol/L (hazard 
ratio 0.51; 95 % CI, 0.25 to –0.84; p < 0.0001) and 
five times less (0.80% vs. 3.9% , p = 0.02) than 
patients with levels < 95 nmol/L102. Some studies 
suggest the effectiveness of vitamin D as an adju-
vant therapy in patients infected with HIV, along 
with antiretroviral agents5. Moreover, pretreat-
ment with vitamin D was beneficial in animal 
models of ARDS, reducing lung permeability by 
modulation of the activity of the renin angioten-
sin system and ACE2 expression77. The findings 
of certain vitamin D receptor gene (VDR) alleles 
associated with increased susceptibility to respi-
ratory infections also support the role of vitamin 
D in the context of viral infections103, as well as in 
the progression of HIV infection104. 

Vitamin D and Immunity
Vitamin D affects the immune pathways through 

intracrine (Vitamin D acts inside a cell) and para-
crine (cell-cell communication) mechanisms, with 
the net result of improving mucosal defense while 

Figure 4. The different effects of vitamin D and its deficiency on COVID-19.
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at the same time reducing excessive inflamma-
tion97,98. It has been reported that the proper func-
tion of innate immune cells is strictly associated 
with the synthesis of the active form of vitamin D 
(1,25(OH)2D3) inside monocytes105.

After infection and stimulation of toll-like re-
ceptors (TLRs), the receptor of interferon gamma 
(IFN-γ) or CD40, monocytes/macrophages, and 
DCs upregulate the expression of genes, which 
code for vitamin D receptor (VDR) and 1-α-hy-
droxylase (CYP27B1)105-107. Furthermore, in mono-
cytes/macrophages, VitD-VDR- RXR (retinoid X 
receptor) heterodimers translocate to the nucleus 
and bind to the vitamin D responsive elements 
(promoter DNA sequences, VDREs) of the genes 
for cathelocidin and defensin (antimicrobial pep-
tides (AMPs)), resulting in subsequent transcrip-
tion of these proteins (Figure 3)108. Furthermore, 
1,25(OH)2D3 increases the chemotaxis and phago-
cytosis ability of macrophages109.

The intracrine activity of vitamin D inside DCs 
promotes an anti-inflammatory response through 
inhibition of its maturation and differentiation, re-
sulting in a phenotype characterized by the down-
regulation of antigen-presenting molecules (MHC-
class II) and costimulatory molecules (e.g., CD40, 
CD80, and CD86)110. Additionally, 1,25(OH)2D3 
affects the expression and secretion of cytokines 
and chemokines, inhibiting the secretion of IL-12, 
IL-23, TNF-α and IFN-γ, while increasing anti-in-
flammatory cytokines (IL-10) and T cell inhibitory 
molecule (PD-1)111,112. Accordingly, 1,25(OH)2D3 
results in a shift in the T-cell polarization from 
the proinflammatory Th1 and Th17 responses to a 
more tolerogenic Th2 response113-115. 

Similar to other immune cells, neutrophils 
express functional VDR and during vitamin D 
deficiency, neutrophils show low migration abil-
ity, confirming that 1,25(OH)2D3 improves the 
antimicrobial activity of neutrophils116. Interest-
ingly, vitamin D can affect its synthesis through 
inhibition of 1-α-hydroxylase (CYP27B1) and in-
duction of 24-hydroxylase (CYP24A1), which is 
responsible for its degradation117.

Adaptive immune response depends on the 
highly specialized T and B lymphocytes, which 
have the ability to specifically identify foreign 
antigens. B cells independently or via T cells 
help terminally differentiate into plasma cells to 
secrete antibodies required to eliminate the in-
vading pathogens. T cells also activate macro-
phages and kill infected cells. Vitamin D-related 
immunomodulation effect on T and B cells is 
through direct action on cell proliferation, dif-

ferentiation, and apoptosis (Figure 3). Vitamin 
D-related effects like changes in CD4+ T cells 
and decrease in cytokine secretion inhibit B cell 
function118. 

The expression of VDR is upregulated in B 
lymphocytes by activating signals, as well as 
1,25(OH)2D3. B cells express both 1-α-hydroxy-
lase and 24-hydroxylase, thus the vitamin can be 
activated inside the B cells110,119. 1,25(OH)2D3 in-
hibits the proliferation and differentiation of plas-
ma cells (inhibiting the release of IgE), inhibits 
the formation of memory B cells, and enhances 
IL-10 production120-123. 1,25(OH)2D3 enhances 
the anti-inflammatory effect by acting directly 
on T cells. It inhibits the proliferation of T cells 
by IL-2 production124. Moreover, 1,25(OH)2D3 
decreases differentiation of Th1/Th17 cells and 
increases Th2 differentiation125-127. Importantly, 
1,25(OH)2D3 also triggers regulatory T (Treg) cell 
proliferation, inhibiting the proinflammatory re-
sponses of other immune cells128.

Vitamin D and COVID-19
Based on clinical findings, there is growing ev-

idence that vitamin D deficiency increases the risk 
of COVID-19 infection severity and mortality14,129. 
Epidemiological studies showed an ethnicity link 
showing that COVID-19 disproportionately affects 
ethnic black and minority ethnic people, with the 
National Audit and Research Center for Intensive 
Care reporting that one-third of confirmed cases 
admitted to critical care in England are non-white130. 
This compares with the figures from the 2011 Cen-
sus, which show that 14% of the general population 
of England and Wales identify themselves as eth-
nic black and minority people131. Similarly, African 
Americans have observed a pattern of higher risk 
of infection132. The relationship between ethnicity 
and COVID-19 has thus been identified as an ur-
gent priority for public health research133. One po-
tential mediator might be the higher prevalence of 
apparent deficiency of vitamin D in ethnic Black 
and minority populations133. Further, the season-
ality of viral infections, the occurrence of the 
COVID-19 outbreak in winter, where low concen-
trations of 25(OH)D due to low UVB doses, is an-
other evidence supporting the role of vitamin D in 
decreasing the risk of SARS-CoV-2 infection134,135. 
Furthermore, case-fatality rates increase with age 
and chronic diseases, which are accompanied by 
reduced 25(OH)D concentration136.

Vitamin D deficiency can be lethal in COVID-19 
patients97,98 (Figure 4). COVID-19 leads to dysreg-
ulation of the immune system and the forming of a 
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cytokine storm, often involving IL-6, TNF-α, and 
IFN-γ52. From the perspective of the adaptive im-
mune system, vitamin D may be able to prevent 
this severe complication through binding to VDRs, 
leading to gene transcription changes. In particu-
lar, vitamin D leads to a blunting of the Th1 im-
mune response and favors the response of Th2 and 
regulatory T cells129,137,138. This results in a decrease 
in Th1-related proinflammatory cytokines, such as 
IL-6, TNF-α, and IFN-g, and an increase in Th2-re-
lated anti-inflammatory cytokines, such as IL-10 
and IL-2129,137,139. The response to Th2 also serves 
to further dampen the response to Th1, while the 
response to Treg further reduces inflammation. 

On the other hand, a deficiency of vitamin D 
plays a role in ARDS and heart failure129. Impor-
tantly, vitamin D contributes to the action of other 
critical regulatory systems; prolonged deficiency 
of vitamin D triggers the renin-angiotensin sys-
tem (RAS), leading to cardiovascular problems 
and decreased lung function. Patients with these 
comorbidities are significantly affected with 
SARS-CoV-2140. Another prominent feature of 
severe COVID-19 is coagulopathy, which is cor-
related with vitamin D deficiency141. Vitamin D 
receptor-knockout mice have coagulation disor-
ders with injury142. Thus, the possible involvement 
of vitamin D in SARS-CoV-2 infection is not only 
due to its influence on innate and adaptive im-
mune responses (as in the case of influenza), but 
also to cardiovascular system effect143. Several 
studies have shown that vitamin D deficiency was 
associated with endothelial dysfunction and vas-
cular system pathological changes144. 1,25(OH)2D3 
has been reported to promote endothelial vascular 
repair by inducing smooth vascular muscle cells 
to produce endothelial growth factor (VEGF)145. 
Moreover, vitamin D can reduce the risk of infec-
tion via maintenance of tight cell junctions, pre-
venting the virus from disturbing the junction in-
tegrity146. A microarray dissection indicated that 
5% of the human genome and the physiological 
operations of 36 different cell types are either di-
rectly or indirectly regulated by vitamin D142.

Supplementation with vitamin D also enhances 
antioxidant-related gene expression (glutathione 
reductase and glutamate – cysteine ligase modi-
fier subunit)147. The increased production of glu-
tathione spares the use of ascorbic acid (vitamin 
C), which has antimicrobial activity148,149, and has 
been proposed for the prevention and treatment 
of COVID-19150. In addition, on 23 March 2020, a 
former head of the Center for Disease Control and 
Prevention, Dr. Tom Frieden, proposed the use 

of vitamin D (https://www.foxnews.com/opin-
ion/former-cdc-chief-tomfrieden-coronavirus-
risk-may-be-reduced-with-vitamin-d) to fight the 
COVID-19 pandemic151. While benefits from vita-
min D may be most pronounced with longer-term 
supplementation, rather than large individual dos-
es of bolus139. Above 30 ng/mL of 25(OH)D is re-
quired daily, especially in the winter, from food 
(and supplementation, if needed)151,152. The min-
imum dosage of Vitamin D reduces the risk and 
severity of COVID-19148,153. Ilie et al14 reported 
that vitamin D has already been shown to be safe 
for acute respiratory infections. Therefore, it is 
advised for further studies to be performed to as-
sess the impact of vitamin D levels on COVID-19 
outcomes.

Conclusions 

The COVID-19 pandemic, which is caused by 
the novel SARS-CoV-2, put the entire world in an 
unprecedented crisis. Due to the lack of available 
and approved treatments or vaccines, only pro-
tective measures can be applied. Vitamin D defi-
ciency is considered as a worldwide health prob-
lem that has an impact on a range of diseases, in 
particular, viral infections. Epidemiological and 
clinical studies shed light on the beneficial role 
of vitamin D in viral infections, revealing that 
high levels of vitamin D have protective effects 
against COVID-19. The most vulnerable individ-
uals for COVID-19 are the ones that have poor 
vitamin D status. The potential contribution of 
vitamin D to viral diseases may be achieved via 
several mechanisms including immunoregulatory 
mechanisms and interaction with viral and cellu-
lar factors. Several studies show that COVID-19 
patients with good Vitamin D levels have reduced 
COVID-19 fatalities due to the effects of vitamin 
D on suppressing the adaptive immune system, 
regulating cytokine levels and thereby improving 
COVID-19 cases. 
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