European Review for Medical and Pharmacological Sciences

2014; 18: 2401-2402

Lefter to the Editor

One friend among foes; anti-malarial drug aretesunate as a novel addition to anti-psoriasis weaponry

Dear Editor,

Psoriasis is chronic autoimmune hyper-proliferative skin disorder occurred due to the overproduction of some cytokines secreted by infiltrating CD4 (+) and CD8 (+) T cells and natural killer cells¹. Although anti-malarial is one of the most common medications known to trigger or worsen existing psoriasis² by various mechanisms such as break in the epidermal barrier by inhibiting epidermal transglutaminase activity and enhancing hyper proliferation and irregular keratinization¹, but we hypothesized in this paper that anti-malarial drug artesunate by various molecular mechanisms and special biochemical properties may attenuate psoriasis. This manuscript aimed to enlighten our colleagues regarding the potential therapeutic value of artesunate in the treatment of psoriasis to encourage the research on this agent.

Psoriasis is a common chronic recurring proliferating inflammatory disease usually involves extensor surfaces which is characterized by T helper cell type 1 cytokine pattern⁴. In the other word, T helper-1 (Th1) cytokines are elevated in psoriatic lesions⁵. Importantly, Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)- α have a crucial role in the pathophysiology of psoriasis⁴. Additionally, IL-6, IL-8 and IL-17 are cytokines involved in its pathogenesis⁶. IL-33 play a role in psoriasis-like plaque inflammation and its targeting may provide a new treatment strategy for psoriasis⁷. Notably, Vascular Endothelial Growth Factor (VEGF) mediates angiogenesis and it is responsible for new blood vessels formation in psoriatic lesions^{8,9}. There is also association between psoriasis activity and serum VEGF concentrations, which can be an indicator of the disease severity⁸. Accordingly, many VEGF antagonists have the potential to treat psoriasis⁹.

The most important new class of antimalarial agents are artemisinins (chemical products from Artemisia annua L.) Although the mechanisms of action of artemisinins are not well known, they may include free-radical production in the parasite food vacuole and inhibition of a parasite calcium ATPase¹⁰. Artesunate and its derivatives for their anti-inflammatory and immunomodulatory effects have been proven in the treatment of systemic lupus erythematosus, rheumatoid arthritis and allergic contact dermtitis with low adverse-effects^{11,12} Artesunate suppresses TNF- α expression *in vitro* and *in vivo* as well as T-helper (Th)1/Th17 responses in rat colitis model. Furthermore, artesunate treatment is significantly inhibited TNF- α production by LPS-activated macrophages¹³. Notably, it attenuates eosinophilia, IL-17 and IL-33 in lung tissues and ameliorates experimental allergic airway inflammation, probably via down regulation of NF- κ B activity¹². Interestingly artesunate directly inhibits endothelial cell proliferation by VEGF inhibition and decreasing the VEGF receptors and induction of apoptosis in endothelial cells¹⁴. Additionally it decreases the secretion of IL-6 and IL-8 from TNF-a stimulated fibroblast – like synoviocytes in a dose – dependent manner¹⁵ and diminishes mitogen-induced lymphocyte proliferation and activation¹⁶.

Taking all the above facts together, we suggest that due to its potent inhibitory effect on TNF- α , (Th)1/Th17, IL-13, IL-6, IL-8, VEGF expression and receptors and induction of apoptosis, artesunate can be considered as a novel addition to the anti-psoriasis weaponry. As another advantages artesunate has rectal and parenteral forms in addition to the oral form¹⁷ and its inhibition of certain viruses such as HCV and HBV can be very important as the use of immunosuppressives may be hazardous in affected psoriasis patients¹⁸. Our commentary justifies and encourages the conduction of clinical trials on this subject.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- 1) VERGHESE B, BHATNAGAR S, TANWAR R, BHATTACHARJEE J. Serum cytokine profile in psoriasis-a case-control study in a tertiary care hospital from northern India. Indian J Clin Biochem 2011; 26: 373-377.
- 2) MILAVEC-PURETIĆ V, MANCE M, CEOVIĆ R, LIPOZENČIĆ J. Drug induced psoriasis. Acta Dermatovenerol Croat 2011; 19: 39-42.
- 3) WOLF R, SCHIAVO AL, LOMBARDI ML, DE ANGELIS F, RUOCCO V. The in vitro effect of hydroxychloroquine on skin morphology in psoriasis. Int J Dermatol 1999; 38: 154-157.
- 4) Feily A, Namazi MR. Cissampelos sympodialis Eichl (Menispermaceae) leaf extract as a possible novel and safe treatment for psoriasis. Sao Paulo Med J 2009; 127: 241-242.
- 5) FEILY A, PAZYAR N, KHAZANEE A, GHASSEMI MR, RAFIEE E, SAFARPOOR M. Potential advantages of topical phenytoin as a novel anti psoriasis arsenal. Niger J Med 2011; 20: 296-7.
- 6) ARICAN O, ARAL M, SASMAZ S, CIRAGIL P. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005; 2005: 273-279.
- HUEBER AJ, ALVES-FILHO JC, ASQUITH DL, MICHELS C, MILLAR NL, REILLY JH, GRAHAM GJ, LIEW FY, MILLER AM, McInnes IB. L-33 induces skin inflammation with mast cell and neutrophil activation. Eur J Immunol 2011; 41: 2229-2237.
- 8) FLISIAK I, ZANIEWSKI P, ROGALSKA-TARANTA M, CHODYNICKA B. Effect of psoriasis therapy on VEGF and its soluble receptors serum concentrations. J Eur Acad Dermatol Venereol 2012; 26: 302-307.
- 9) CRAWSHAW AA, GRIFFITHS CE, YOUNG HS. Investigational VEGF antagonists for psoriasis. Expert Opin Investig Drugs 2012; 21: 33-43.
- 10) ROSENTHAL PJ. Artesunate for the treatment of severe falciparum malaria. N Engl J Med. 2008 24; 358: 1829-1836.
- 11) Li T1, Chen H, Liu XG, Zhou YX, Bai SF. Immunoregulatory effect of artesunate on allergic contact dermatitis and its mechanism. Immunoregulatory effect of artesunate on allergic contact dermatitis and its mechanism. Yao Xue Xue Bao 2012; 47: 884-889.
- 12) CHENG C, Ho WE, GOH FY, GUAN SP, KONG LR, LAI WQ, LEUNG BP, WONG WS. Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/akt pathway. PLoS One 2011; 6: e20932
- 13) YANG Z, DING J, YANG C, GAO Y, LI X, CHEN X, PENG Y, FANG J, XIAO S. Immunomodulatory and anti-inflammatory properties of artesunate in experimental colitis. Curr Med Chem 2012; 19: 4541-4551.
- 14) Krusche B1, Arend J, Efferth T. Synergistic inhibition of angiogenesis by artesunate and captopril in vitro and in vivo. Evid Based Complement Alternat Med 2013; 2013: 454783.
- 15) Xu H, He Y, Yang X, Liang L, Zhan Z, Ye Y, Yang X, Lian F, Sun L. Anti-malarial agent artesunate inhibits TNF-alpha-induced production of proinflammatory cytokines via inhibition of NF-kappaB and Pl3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology 2007; 46: 920-926.
- 16) VEERASUBRAMANIAN P1, Gosi P, LIMSOMWONG C, WALSH DS. Artesunate and a major metabolite, dihydroartemisinin, diminish mitogen-induced lymphocyte proliferation and activation. Southeast Asian J Trop Med Public Health 2006; 37: 838-847.
- 17) Antiparasitic agents. Mayo Clin Proc 1999; 74: 1161-1175.
- 18) WOHLFARTH C, EFFERTH T. Natural products as promising drug candidates for the treatment of hepatitis B and C. Acta Pharmacol Sin 2009; 30: 25-30.

A. Feily

Department of Dermatology, Jahrom University of Medical Sciences, Jahrom Iran