Meta-analyses on intra-aortic balloon pump in cardiogenic shock complicating acute myocardial infarction may provide biased results

M.C. ACCONCIA¹, Q. CARETTA², F. ROMEO³, M. BORZI³, M.A. PERRONE³, D. SERGI³, F. CHIAROTTI⁴, C.M. CALABRESE¹, A. SILI SCAVALLI⁵, C. GAUDIO¹

Abstract. – OBJECTIVE: Intra-aortic balloon pump (IABP) is the device most commonly investigated in patients with cardiogenic shock (CS) complicating acute myocardial infarction (AMI). Recently meta-analyses on this topic showed opposite results: some complied with the actual guideline recommendations, while others did not, due to the presence of bias. We investigated the reasons for the discrepancy among meta-analyses and strategies employed to avoid the potential source of bias.

MATERIALS AND METHODS: Scientific databases were searched for meta-analyses of IABP support in AMI complicated by CS. The presence of clinical diversity, methodological diversity and statistical heterogeneity were analyzed. When we found clinical or methodological diversity, we reanalyzed the data by comparing the patients selected for homogeneous groups. When the fixed effect model was employed despite the presence of statistical heterogeneity, the meta-analysis was repeated adopting the random effect model, with the same estimator used in the original meta-analysis.

RESULTS: Twelve meta-analysis were selected. Six meta-analyses of randomized controlled trials (RCTs) were inconclusive because underpowered to detect the IABP effect. Five included RCTs and observational studies (Obs) and one only Obs. Some meta-analyses on RCTs and Obs had biased results due to presence of clinical and/or methodological diversity. The reanalysis of data reallocated for homogeneous groups was no more in contrast with guidelines recommendations.

CONCLUSIONS: Meta-analyses performed without controlling for clinical and/or methodological diversity, represent a confounding message against a good clinical practice. The reanalysis of data demonstrates the validity of the current guidelines recommendations in ad-

dressing clinical decision making in providing IABP support in AMI complicated by CS.

Key Words:

Cardiogenic shock, Intra-aortic balloon pump, Percutaneous coronary intervention, Myocardial infarction, Meta-analysis.

Introduction

Intra-aortic balloon pump (IABP) is the device most commonly investigated in patients (pts) with cardiogenic shock (CS) complicating acute myocardial infarction (AMI), despite it provides only a modest hemodynamic support to the failing heart¹⁻³. In 2009 Sjauw et al⁴ showed that there was insufficient evidence endorsing the current guideline recommendation (GR) for the use of IABP therapy in the setting of ST-elevation myocardial infarction (STEMI) complicated by CS. Moreover, they emphasized that the effectiveness of IABP support was related to the primary therapeutic strategy adopted in the treatment of AMI: it was useful when the thrombolysis (TT) was primary clinical treatment (PCT), while it was harmful when percutaneous coronary interventions (PCI) was the first choice for the treatment of AMI. Furthermore, Thiele et al^{5,6} failed to demonstrate a benefit from IABP support in CS complicating AMI in pts undergoing PCI. In 2013 and in 2015 ACCF/AHA^{7,8} and in 2014 and in 2015 ESC^{9,10} released an updated guidelines for pts with CS complicating AMI and recommend IABP support in pts undergoing TT (Class I, level of evidence: A); on the contrary, when

¹Department of Cardiovascular Disease, University of Rome "Sapienza", Rome, Italy

²Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy

³Department of Cardiovascular Disease, University of Rome - Tor Vergata, Rome, Italy

⁴Department of Cell Biology and Neuroscience, Italian National Institute of Health, Rome, Italy

⁵Department of Internal Medicine, University of Rome "Sapienza", Rome, Italy

myocardial revascularization was achieved with PCI, routine use of IABP was not recommended (Class III, level of evidence: C). However, recent meta-analyses^{4,11,12}, with exception of some¹³⁻²¹, are compliant with the current GR. We aimed at investigating the reasons for discrepancy among meta-analyses published from 2009 to (June 30) 2017 and the strategies employed to avoid the potential source of bias.

Materials and Methods

Search Strategy and Data Sources

We collected the meta-analyses of IABP support in AMI complicated by CS published from January 2009 until (June 30) 2017 from a literature search of the PubMed computerized database and the Cochrane Library, using the standard Medical Subject Heading terms "IABP" or "IABC," "AMI," and "CS". We conducted and reported this review and meta-analysis in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement²².

Data Extraction and Inclusion Criteria

Two investigators independently examined the design, patient populations, and the PCT for AMI complicated by CS in the meta-analyses comparing the effect of IABP support vs. standard treatment on early mortality (in-hospital or 30-day mortality). The search was restricted to English-language journals. Discrepancy in data extraction was resolved in discussion with a third author, until consensus was achieved.

Exclusion Criteria

We established as exclusion criteria meta-analyses in which coronary artery bypass grafting (CABG) was the method of myocardial reperfusion, mechanical support other than IABP and meta-analyses on this issue performed by any author of the present paper.

Risk of Bias Across Studies Included in the Meta-Analyses

We focused our attention on the effect of any kind of heterogeneity among studies included in meta-analyses. Specifically, we checked for: (i) variability in the participants, interventions and outcomes, termed as clinical diversity, (ii) variability in the study design and risk of bias, termed as methodological diversity and (iii) the variability in the effects of intervention among the studies,

caused by clinical and/or methodological diversity, termed as statistical heterogeneity^{23,24}.

Clinical and methodological diversity were investigated by revising the original studies and checking both the design and the intervention, besides to the demographic and clinical characteristics of pts enrolled.

Statistical heterogeneity was investigated by the visual inspection of the reported Forest plot and/or by the reported results of the Cochrane Q and the P statistics. We checked if the adopted estimator (risk ratio (RR), risk difference (RD) and Odd's ratio (OR)) and the model (Fixed or Random effect), were the most appropriate to deal with the heterogeneity among studies, if any.

Data Analysis

When we found clinical and/or methodological diversity, we reanalyzed the data by grouping pts into homogeneous groups.

In case of statistical heterogeneity, when all the dispersion in the observed effects could not be attributed to sampling error, but to the real difference in effect size across studies^{23,24} and the original analysis was performed using the fixed effect model, we reanalyzed the data adopting the random effect model, with the same estimator of the original meta-analysis.

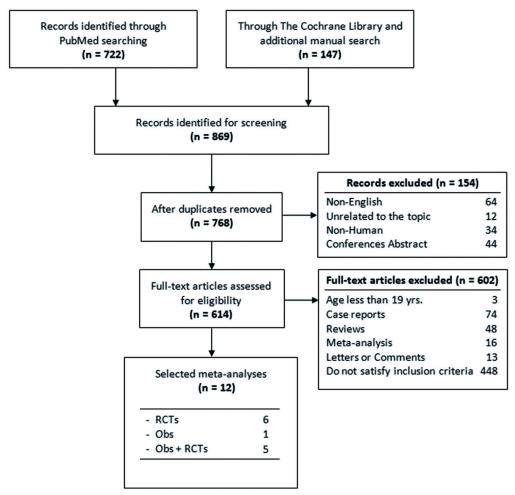
The revision process was performed with the Review Manager [Computer program] Version 5.3. (Copenhagen, Denmark)²⁵. Forest plots were examined to detect homogeneity/heterogeneity among studies. Homogeneity/heterogeneity were quantified with the Cochrane Q-test and I^2 statistics. When subgroups were introduced, the test of subgroup difference was also performed to investigate the inconsistency among subgroups. Bidirectional, α error <0.05 was considered for statistical significance. Our results were then compared with those reported in the original meta-analyses.

Results

Twelve meta-analyses met the search criteria^{4,11-21}. The selection strategy is reported in the Figure 1. Six of 12 selected articles analyzed the effect of IABP on AMI complicated or not by CS^{15,16,18-21}. In the evaluation of CS complicating AMI, 6 meta-analyses included only randomized controlled trials (RCTs)^{13,14,17,18,20,21}, 5 included RCTs and observational studies (Obs)^{11,12,15,16,19} and 1 only Obs⁴. Following, we report the design and the potential source of bias of the selected me-

ta-analyses grouping them into: meta-analyses of RCTs alone, Obs alone and Obs plus RCTs. Details of the studies and pts enclosed, the estimator, the model employed and the agreement with the current GR are reported in Table I. With respect to the meta-analyses by Romeo et al^{11,12}, we report in Table I only the design without any comment, due to contribution provided by authors of the present article.

Meta-Analyses of RCTs


Even if globally only 4 RCTs (1 not in English) were on pts with AMI complicated by CS (3 on pts treated with PCI, 1 on pts treated with TT alone)^{5,26-28}, the 6 selected meta-analyses include a different number of studies according to their design as follows:

1-2. Unverzagt et al¹³ in their meta-analysis included only pts with AMI complicated by CS and compare the IABP effect both *vs.* control

- (3 RCTs) and vs. pLVADs (3 RCTs). Potential source of bias: we found clinical diversity in the analysis of 30-day mortality because pts were grouped regardless PCT for AMI²⁶⁻²⁸. Clinical diversity persisted in up-to-date meta-analysis¹⁴.
- 3. Altayyar et al¹⁷ in a meta-analysis of 4 RCTs assessed the effect of IABP on short-term mortality (in-hospital mortality and 30-day mortality) according to PCT for AMI. Potential source of bias: we found clinical diversity when they did not excluded pts affected by AMI not complicated by CS²⁶.
- 4. Su et al¹⁸ in their meta-analysis of 17 RCTs, in 14 RCTs evaluated the effect of IABP support on short-term mortality in AMI complicated or not by CS.

 Potential source of bias: we found clinical discourse of bias: we found the bias: we found t

Potential source of bias: we found clinical diversity in the subgroup of pts with AMI complicated by CS with regard to PCT for AMI

Figure 1. Flowchart of the study selection process. CS: cardiogenic shock; Obs: Observational studies; RCTs: Randomized controlled trials.

Table I. IABP effect vs control on early mortality in the meta-analyses of AMI complicated by CS.

Author	Period of interest	Number of studies included in the analysis of primary endpoint											Clinical characteristics						Meta-analysis					
			With C			Vithout			h/Witho		Overall	Studies		Number of pts	PCT for AMI	Pts without CS incuded in the analysis	Subgroup analysis (with CS; without CS)	Subgroup analysis according to PCT	Simultaneous control for both confounders: CS and PCT	Estimator	Model		Results against actual guidelines recommendation	Results agains guidelines afte reanalysis
Unverzagt et al ¹³	1968 to January 2010	-	3a	3	-	-	•	-	-	-	3	RCTs	No	102	- TT - PCI	No	Only CS	No	===	OR	Random effect	No	Insufficient datas	
Unverzagt et al ¹⁴	1968 to October 2013	-	4 a	4	-	-	-	-	-	-	4	RCTs	No	700	- TT - PCI	No	Only CS	No	===	OR	Random effect	No	Insufficient datas	
Altayyar et al ¹⁷	From inception to November 2014	-	3	3	-	-	-	-	1 ^b	1	4	RCTs	Yes	735	- TT - PCI	Yes	No	Yes	No	RR	Fixed effect	No	Insufficient datas	
Su et al ¹⁸	1966 - 2014	-	3°	3	-	9	9	-	2 ^b	2	14	RCTs	Yes	863	- TT - PCI	Yes	Yes	No	No	RR	Not reported	No	Insufficient datas	
Wan et al ²¹	From inception to May 2015	-	2	2	-	3	3	-	-		5	RCTs	Yes	638	- PCI (- CABG) [†]	Yes	Yes, in the analysis restricted to PCI studies. No, when considering also CABG studies	Only PCI	===	RR	Random effect	No	Insufficient datas	
Zheng et al ²⁰	Until December 2015	-	2	2	-	4e	4	-	-	-	6	RCTs	Yes	640	- PCI	Yes	Yes	Only PCI	===	OR	Random effect	No	Insufficient datas	
Sjauw et al ⁴	1966 to December 2007	9d	-	9	-	-	-	-	-	-	9	Obs	Yes	10,529	- No reperfusion - TT - PCI	Yes	Yes	Yes	Yes	RD	Fixed effect	Yes	No	No
Bahekar et al ¹⁵	1966 - 2009	6°	-	6	2	7	9	-	-	-	15	RCTs plus Obs	Yes	Not reported	- No reperfusion - TT - PCI	Yes	No	No	None	RR	Random effect	No	Yes	No
Romeo et al ¹¹	1986 - 2012	13 ^d	3ª	16	-	-	•	-	-	-	16	RCTs plus Obs	Yes	14,186	- No reperfusion - TT - PCI		Only CS	Yes	===	RR, RD	Random effect	Yes	No	
Ahmad et al ¹⁶	1950 -2014	12°	2	14	2	9	11	1	16	2	27	RCTs plus Obs	Yes	13,880	- No reperfusion - TT - PCI	Yes	Yes (irrespective for PCT)	Yes (irrespective for CS)	No	OR	Random effect	No	Yes	No
Romeo et al ¹²	1997 - 2015	11	2	13	-	-	-	-	-	-	13	RCTs plus Obs	Yes	8791	- PCI	No	Only CS	Only PCI	===	RR	Random effect	Yes	No	
Fan et al ¹⁹	From inception to May 2015	11°	3	14	3	6	9	-	-	-	23	RCTs plus Obs	Yes	Not reported	- No reperfusion - TT - PCI	Yes	Yes	No	None	OR	Random effect	No	Yes	No

AMI, acute myocardial infarction; CABG, coronary artery bypass grafting; CS, cardiogenic shock; IABP, intra-aortic balloon pump; Obs, observational studies; PCI, percutaneous coronary intervention; PCT, primary clinical treatment; pts, patients; RCTs, randomized controlled trials; OR, odds ratio; RD, risk difference; RR, risk ratio; TT, thrombolysis. apts by TACTICS Trial without CS were excluded. bpts by TACTICS Trial without CS were not excluded. cThe study by Waksman et al was incorrectly classified as RCT. dThe study by Waksman et al was correctly classified as Obs. eInclude 2 studies on high risk PCI without CS. fStudies on CABG were excluded. gLow sample size related to the observed Relative Risk Reduction.

- and the inclusion of pts with heart failure (Killip class ≥2). Furthermore, Obs by Waksman et al²⁹ was incorrectly classified as RCT.
- 5. Wan et al²¹ in a meta-analysis of 12 RCTs evaluated the effects of IABP on short-term mortality in pts undergoing high-risk coronary revascularization with either CABG or PCI. Of the 5 RCTs on PCI, only 2 included pts with CS^{5,28}. Potential source of bias: we found clinical diversity when pts with AMI undergoing PCI were grouped regardless the presence or the absence of CS.
- 6. Zheng et al²⁰ in a meta-analysis of 7 RCTs evaluated the effect of IABP support in pts undergoing PCI. In 6 RCTs was assessed the effect of IABP on 30-day mortality in the subgroups: (*I*) high risk-PCI without CS^{30,31}, (*2*) AMI complicated by CS^{5,28} and (*3*) AMI uncomplicated^{32,33}. Potential source of bias: we found clinical diversity in the sensitivity analysis performed in all 6 RCTs, using the leave-one-out approach, regardless to the clinical features of the subgroups.

Meta-Analysis of Obs

Sjauw et al⁴ in meta-analysis of IABP in STEMI assessed the effect of IABP support in STEMI complicated by CS in 9 Obs. Pts were subgrouped according to PCTs for AMI in: no-reperfusion, TT and PCI. The analysis was performed using RD and fixed effect model.

Moreover, as previously described¹¹, pts by Sanborn et al³⁴ and Anderson et al³⁵ were all allocated in the TT subgroup, despite PCT of some of them was no-reperfusion or PCI.

Potential source of bias: the fixed effect model seems not appropriate because of the high heterogeneity observed into PCI subgroup (Chi²=5.02, df=1 (p=0.03), I²=80%).

Meta-Analyses of RCTs plus Obs

As listed below, the 5 meta-analyses^{11,12,15,16,19} included a different number of studies according to their design:

1. Bahekar et al¹⁵ in a meta-analysis of 6 RCTs and 9 Obs assessed the effect of IABP on in-hospital mortality in AMI complicated or not by CS. Potential source of bias: we found clinical diversity because the overall analysis was irrespective of the presence/absence of CS. However, PCT for AMI was never take into account and the numbers of pts/events analyzed were not reported. Furthermore, the Obs by Waksman et al²⁹ was incorrectly classified as RCT.

- 2. Ahmad et al¹⁶ in a meta-analysis of 12 RCTs and 15 Obs assessed the effect of IABP support in AMI complicated or not by CS. Potential source of bias: the analysis of RCTs was irrespective of PCT for AMI. In the analysis of Obs, pts were grouped (1) according to the presence/absence of CS but neglecting the PCT for AMI, (2) according to the PCT for AMI but ignoring the presence/absence of CS. In the analysis of Obs, we found clinical diversity and statistical heterogeneity because pts by Sanborn et al³⁴ and Anderson et al³⁵ were all allocated in the TT subgroup, despite PCT of some of them was no-reperfusion or PCI. Pts by Brodie et al³⁶ were all allocated in AMI without CS despite 119 pts had CS; moreover, data of the in-hospital mortality were not available for subgroups of pts with and without CS.
- 3. Fan et a¹⁹ evaluated the effect of IABP in AMI with or without CS in a meta-analysis of 15 RCTs and 18 Obs. Potential source of bias: in the analysis of data they did not take into account the presence/absence of CS nor the PCT for AMI, therefore causing clinical diversity. Moreover, the number of pts/events was not reported. Subsequently, when the analysis was restricted to the subgroup of pts with AMI complicated by CS, we found clinical diversity because it was irrespective of the PCT for AMI. In the analysis on midterm mortality, pts were grouped according to PCT for AMI, regardless the presence/absence of CS.

Reanalysis

We reanalyzed only the meta-analyses of Obs alone, or Obs plus RCTs. We did not reanalyze the meta-analyses of RCTs alone, because of the small number of studies and pts enrolled.

Meta-Analysis of Obs

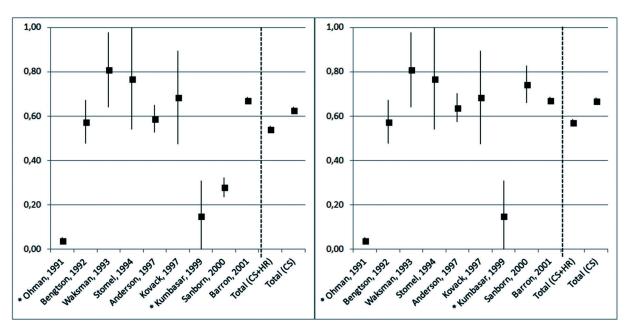
Data by Sjaux et al⁴ were reanalyzed using the random effect model. The results are reported in Table IIa. In TT subgroup the results were unchanged, due to the low heterogeneity. On the contrary, the harmful effect of IABP in PCI subgroup was no more significant.

Meta-analysis of Obs plus RCTs

1. We extracted and reanalyzed data from the 6 Obs included by Bahekar et al¹⁵ in the analysis of AMI complicated by CS. Even if the overall effect is in favor of IABP, the heterogeneity is extremely high, so the result is misleading (Table IIb). Indeed, when taking into account the PCT for AMI,

Table II. Results of reanalysis.

		Orig	inal meta-analysis		After correction					
Meta-analyses	Studies	² (%)	Estimator [95% CI] model	, P	I Studies	2 (%)	Estimator [95% CI], model	P		
A) Sjauw et al ⁴			RD, Mantel-				RD, Mantel-			
N	1	NT A ±	Haenszel fixed	0.0000		01	Haenszel random	0.15		
- No-reperfusion - TT	1 7	NA* 0	-0.29 [-0.47, -0.12] -0.18 [-0.20, -0.16]	0.0009 <0.00001	2 7	81 29	-0.17 [-0.40, -0.06] -0.16 [-0.23, -0.10]	0.15 <0.00001		
- PCI	2	80	0.06 [0.03, 0.10]	0.00001	4	51	0.08 [0.00, 0.16]	0.00001		
Overall	9	9 4	-0.11 [-0.13, -0.09]	<0.0008	9	91	-0.08 [-0.18, 0.01]	0.04		
Test for subgroup										
differences:	Chi ² =	=127.92,	df=2 (p < 0.00001), I ² =98	3.4%	Chi ² = 23.10, df = 2 ($p < 0.00001$), I ² = 91.3%					
B) Bahekar et al ¹⁵			RR, Mantel-				RR, Mantel-			
			Haenszel random				Haenzel random			
- No-reperfusion	-		Not Performed		1	NA*	0.92 [0.81, 1.05]	0.22		
- TT	-		Not Performed		6	43	0.75 [0.64, 0.88]	0.0005		
- PCI	-		Not Performed		2	0	1.12 [1.03, 1.21]	0.009		
Overall	6	58.9	0.72 [-0.60,0.86]	0.0004	6	89	0.86 [0.72, 1.04]	0.12		
Test for subgroup differences:			No subgroups		Chi² =	= 20.55,	$df = 2 (p < 0.0001), I^2 = 9$	90.3%		
C) Ahmad et al ¹⁶			OR, Mantel-				OR, Mantel-			
C) / tillilad et al			Haenszel random				Haenszel random			
-No-reperfusion	1	NA*	0.08 [0.00, 1.38]	0.08	2	55	0.35 [0.05, 2.60]	0.31		
-TT	9	93	0.64 [0.34, 1.21]	0.17	7	0	0.48 [0.43, 0.54]	< 0.00001		
-PCI	6	96	1.96 [1.01, 3.83]	0.05	7	74	1.38 [1.04, 1.83]	0.02		
Overall	15	97	0.98 [0.59, 1.64]	0.95	12	92	0.84 [0.58, 1.21]	0.35		
Test for subgroup										
differences:	Chi² =	= 8.83, di	$f = 2 (p = 0.01), I^2 = 77.39$	%	$Chi^2 = 47.56$, $df = 2$ ($p = 0.004$), $I^2 = 95.8\%$					
D) Fan et al ¹⁹			OR, Mantel-				OR, Mantel-			
			Haenszel random				Haenszel random			
-No-reperfusion	-		Not Performed		2	55	0.35 [0.05, 2.60]	0.31		
-Thrombolysis	-		Not Performed		8	0	0.48 [0.43, 0.53]	< 0.00001		
-PCI	-	000	Not Performed	0.045	8	64	1.33 [1.05, 1.68]	0.02		
Overall	14	90.9	0.68 [0.49, 0.99]	0.045	14	91	0.81 [0.57, 1.15]	0.35		
Test for subgroup differences:			No subgroups		Chi ² =	58.50, d	If = 2 ($p < 0.00001$), $I^2 =$	96.6%		


CI, confidence interval; CS, cardiogenic shock; OR, Odds ratio; PCI, percutaneous coronary intervention; RD, risk difference; RR, risk ratio; TT, thrombolysis. *Not applicable.

- in TT subgroup the results were in favor of IABP, while an harmful IABP effect was observed into PCI subgroup.
- 2. In the reanalysis of data by Ahmad et al¹⁶, we excluded pts with AMI without CS. The results showed a drastic reduction of heterogeneity within the TT subgroup (I² fall from 93% to 0%) and a significant protective effect of the IABP, which is not evident in the original analysis (Table IIc). On the contrary, IABP was significantly harmful in PCI subgroup, in which the heterogeneity, although reduced, was still high (I² fall from 96% to 74%) (Table IIc). To explain the source of the wide variation in mortality in control group observed by Ahmad et al¹⁶, we plotted the event rate (with 95% confidence intervals) of in-hospital mortality in relation
- to the number of pts: (1) actually included in the meta-analysis, and (2) appropriately reallocated, by excluding those without CS. As expected, the incidence of in-hospital mortality rate among pts with AMI complicated by CS was higher than in those without CS (Figure 2).
- 3. In the meta-analysis by Fan et al¹⁹ we performed the reanalysis by grouping pts according to the PCT for AMI, excluding pts without CS (Table IId). The test for differences among the three subgroups indicated the presence of high heterogeneity. The results showed that the effect of IABP on in-hospital mortality was not significant in the no-reperfusion subgroup, while was significantly in favor of IABP in TT subgroup and significantly in disfavor in PCI subgroup.

Discussion

Some meta-analyses had been performed in the effort to clarify the utility of IABP in CS complicating AMI. However, the results were not always in agreement. In medical research it is undoubtedly that the best evidence comes from RCTs, while Obs are often considered studies of poorer quality. However, in the specific field of research on AMI complicated by CS, the randomization of pts undergoing IABP support is hard to achieve. Moreover, the occurrence of mortality at the baseline can be lower than expected when planning the RCTs, as highlighted by Perera et al³⁷ in a recent published editorial, in which they hypothesized "that the enrolled population was a lower risk cohort than predicted, or may reflect the advances that have been made in the management of cardiogenic shock". This lower basal risk results in a lower benefit that can be produced by the treatment under study^{37,38}. In contrast, the fact that more pts have been studied with Obs shows the benefit of the latter to reflect a real clinical setting. As clearly stated by Anglemyer et al³⁹, factors other than study design *per se*, can account for disagreement between Obs and RCTs. Furthermore, apart from the comprehensiveness of the literature search, the clinical homogeneity/ heterogeneity of the comparisons must be taken into account.

We could not reanalyze meta-analyses including only RCTs due to the low number of pts available. Meta-analyses of Obs either associated or not to RCT, in disagreement with the current GR, had many flaw in the design of the study and/or in the method chosen to analyze the data. Mainly, the effect of the IABP support was investigated without taking into account the PCT for AMI (i.e. no-reperfusion, TT or PCI) and/or the presence/absence of CS (Table I). When we reallocated the data according to PCT and CS status, the results were coherent with current GR. In particular the biased results from the meta-analysis by Bahekar et al¹⁵ after the reanalysis were in favor of IABP only in subgroup treated with TT, while a detrimental IABP effect was evident when PCI was PCT for AMI (Table IIb), that was in accordance with the current GR. Furthermore, the meta-analysis by Ahmad et al¹⁶ did not show any difference in mortality rate between IABP and control group because was affected by clinical diversity. Ahmad et al¹⁶ did not take into account the presence/absence of CS or the PCT for AMI. The heterogeneity in the reanalysis decreased and was found a significant protective effect of IABP when TT was PCT for AMI (Table IIc). On the contrary, IABP was significantly harmful in PCI subgroup. These findings were in agreement with those by Sjauw et al4 and Ro-

Figure 2. Mortality rate (with 95% confidence interval) in thrombolysis control subgroup by Ahmad et al¹⁶ meta-analysis. *A*, original analysis; *B*, after the reanalysis of appropriate data by Sanborn et al³⁴ and Anderson et al³⁵. Mortality rates of patients with CS (*without asterisk*) were higher than those of patients without CS (*with asterisk*), affecting the overall effect.

meo et al^{11,12} and no longer in contrast with the GR (Table I and Table IIc). In addition, "because of the wide variation in event rate in the control groups", Ahmad et al16 adopted OR as expression of study results. The wide variation in event rate in control group can be explained on the basis of the heterogeneity of pts included in the meta-analysis. The results of the reanalysis demonstrate that the basal risk of in-hospital mortality was significantly lower in AMI without CS with respect to AMI with CS, thus affecting the overall effect (Figure 2). Finally, Fan et al¹⁹ chose to evaluate midterm mortality (from 30 day up to two months) arbitrarily, since the window for the definition of in-hospital mortality can exceed 30 days in case of complicated disease course. In addition, the separation between in-hospital and 30-day mortality yielded the reduction of the number of pts included in each analysis and the consequent loss of power in the evaluation of IABP effect. The high heterogeneity we found was caused by a biased analysis. When pts without CS were excluded and pts with AMI complicated by CS were grouped according to PCT for AMI, the results were compliant with the recommendations of the current guidelines (Table I, IId).

Conclusions

Controlling for statistical heterogeneity by the adoption of the correct estimator and model in performing a meta-analysis is not di per se sufficient to avoid erroneous results. When planning the meta-analysis, it is crucial to analyze any source of clinical heterogeneity in order to obtain results that help to identify which pts will benefit most, which is least likely to benefit, and who is at greatest risk of experiencing adverse outcomes by a treatment. The importance of accounting for clinical diversity was first demonstrated by Siauw et al⁴ since 2009; thereafter, the guidelines specifically linked the IABP recommendation to the therapeutic context. Therefore, the recent meta-analvses performed without controlling for clinical diversity represent a confounding message against a good clinical practice. The reanalysis performed in the present review, testing the potential bias, may demonstrate the validity of the current guidelines recommendations in addressing clinical decision of provide IABP support in pts with AMI complicate by CS.

Conflict of Interest

The Authors declare that they have no conflict of interest.

References

- THIELE H, OHMAN EM, DESCH S, EITEL I, DE WAHA S. Management of cardiogenic shock. Eur Heart J 2015; 36: 1223-1230.
- VAN NUNEN LX, NOC M, KAPUR NK, PATEL MR, PERE-RA D, PIJLS NH. Usefulness of Intra-aortic Balloon Pump Counterpulsation. Am J Cardiol 2016; 117: 469-476.
- Blumenstein J, de Waha S, Thiele H. Percutaneous ventricular assist devices and extracorporeal life support: current applications. EuroIntervention 2016; 12 Suppl X: X61-X67.
- 4) SJAUW KD, ENGSTRÖM AE, VIS MM, VAN DER SCHAAF RJ, BAAN J JR, KOCH KT, DE WINTER RJ, PIEK JJ, TIJSSEN JG, HENRIQUES JP. A systematic review and meta-analysis of intra-aortic balloon pump therapy in ST-elevation myocardial infarction: should we change the guidelines? Eur Heart J 2009; 30: 459-468.
- 5) THIELE H, ZEYMER U, NEUMANN FJ, FERENC M, OLBRICH HG, HAUSLEITER J, RICHARDT G, HENNERSDORF M, EMPEN K, FUERNAU G, DESCH S, EITEL I, HAMBRECHT R, FUHRMANN J, BÖHM M, Ebelt H, Schneider S, Schuler G, Werdan K; IABP-SHOCK II Trial Investigators. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 2012; 367: 1287-1296.
- 6) THIELE H, ZEYMER U, NEUMANN FJ, FERENC M, OLBRICH HG, HAUSLEITER J, DE WAHA A, RICHARDT G, HENNERSDORF M, EMPEN K, FUERNAU G, DESCH S, EITEL I, HAMBRECHT R, LAUER B, BÖHM M, EBELT H, SCHNEIDER S, WERDAN K, SCHULER G; Intraaortic Balloon Pump in cardiogenic shock II (IABP-SHOCK II) trial investigators. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet 2013; 382: 1638-1645.
- 7) AMERICAN COLLEGE OF EMERGENCY PHYSICIANS; SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY AND INTERVENTIONS, O'GA-RA PT, KUSHNER FG, ASCHEIM DD, CASEY DE JR, CHUNG MK, DE LEMOS JA, ETTINGER SM, FANG JC, FESMIRE FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Ra-DFORD MJ, TAMIS-HOLLAND JE, TOMMASO CL, TRACY CM, WOO YJ, ZHAO DX, ANDERSON JL, JACOBS AK, HALPERIN JL, Albert NM, Brindis RG, Creager MA, DeMets D, GUYTON RA, HOCHMAN JS, KOVACS RJ, KUSHNER FG, OHMAN EM, STEVENSON WG, YANCY CW. 2013 ACCF/ AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013; 61: 485-510.
- 8) LEVINE GN, BATES ER, BLANKENSHIP JC, BAILEY SR, BITTL JA, CERCEK B, CHAMBERS CE, ELLIS SG, GUYTON RA, HOLLENBERG SM, KHOT UN, LANGE RA, MAURI L,

- MEHRAN R, MOUSSA ID, MUKHERJEE D, TING HH, O'GA-RA PT, KUSHNER FG, ASCHEIM DD, BRINDIS RG, CASEY DE JR, CHUNG MK, DE LEMOS JA, DIERCKS DB, FANG JC, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Ra-DFORD MJ, TAMIS-HOLLAND JE, TOMMASO CL, TRACY CM, Woo YJ, ZHAO DX. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of st-elevation myocardial infarction: a report of the American college of cardiology/ american heart association task force on clinical practice guidelines and the society for cardiovascular angiography and interventions. Circulation 2016; 133: 1135-1147.
- 9) WINDECKER S, KOLH P, ALFONSO F, COLLET JP, CREMER J, FALK V, FILIPPATOS G, HAMM C, HEAD SJ, JÜNI P, KAPPETEIN AP, KASTRATI A, KNUUTI J, LANDMESSER U, LAUFER G, NEUMANN FJ, RICHTER DJ, SCHAUERTE P, SOUSA UVA M, STEFANINI GG, TAGGART DP, TORRACCA L, VALGIMIGLI M, WIJNS W, WITKOWSKI A. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2014; 35: 2541-2619.
- 10) ROFFI M, PATRONO C, COLLET JP, MUELLER C, VALGIMIGLI M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, GENCER B, HASENFUSS G, KJELDSEN K, LANCELLOTTI P, LAND-MESSER U, MEHILLI J, MUKHERJEE D, STOREY RF, WINDECKER S, Baumgartner H, Gaemperli O, Achenbach S, Agewall S, BADIMON L, BAIGENT C, BUENO H, BUGIARDINI R, CARERJ S, Casselman F, Cuisset T, Erol Ç, Fitzsimons D, Halle M, HAMM C, HILDICK-SMITH D, HUBER K, ILIODROMITIS E, JAMES S, Lewis BS, Lip GY, Piepoli MF, Richter D, Rosemann T, SECHTEM U, STEG PG, VRINTS C, LUIS ZAMORANO J. Management of acute coronary syndromes in patients presenting without Persistent ST-Segment elevation of the European Society of Cardiology. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2016; 37: 267-315.
- 11) Romeo F, Acconcia MC, Sergi D, Romeo A, Muscoli S, Valente S, Gensini GF, Chiarotti F, Caretta Q. The outcome of intra-aortic balloon pump support in acute myocardial infarction complicated by cardiogenic shock according to the type of revascularization: a comprehensive meta-analysis. Am Heart J 2013; 165: 679-692.
- 12) Romeo F, Acconcia MC, Sergi D, Romeo A, Francioni S, Chiarotti F, Caretta Q. Percutaneous assist devices in acute myocardial infarction with cardiogenic shock: review, meta-analysis. World J Cardiol 2016; 8: 98-111.

- 13) UNVERZAGT S, MACHEMER MT, SOLMS A, THIELE H, BURKHOFF D, SEYFARTH M, DE WAHA A, OHMAN EM, BUERKE M, HAERTING J, WERDAN K, PRONDZINSKY R. Intra-aortic balloon pump counterpulsation (IABP) for myocardial infarction complicated by cardiogenic shock. Cochrane Database Syst Rev 2011; (7): CD007398. doi: 10.1002/14651858.CD007398.pub2.
- 14) UNVERZAGT S, BUERKE M, DE WAHA A, HAERTING J, PIETZNER D, SEYFARTH M, THIELE H, WERDAN K, ZEY-MER U, PRONDZINSKY R. Intra-aortic balloon pump counterpulsation (IABP) for myocardial infarction complicated by cardiogenic shock. Cochrane Database Syst Rev 2015; (3): CD007398. doi: 10.1002/14651858.CD007398.pub3.
- 15) Bahekar A, Singh M, Singh S, Bhuriya R, Ahmad K, Khosla S, Arora R. Cardiovascular outcomes using intra-aortic balloon pump in high-risk acute myocardial infarction with or without cardiogenic shock: a meta-analysis. J Cardiovasc Pharmacol Ther 2012; 17: 44-56.
- 16) Ahmad Y, Sen S, Shun-Shin MJ, Ouyang J, Finegold JA, Al-Lamee RK, Davies JE, Cole GD, Francis DP. Intra-aortic balloon pump therapy for acute myocardial infarction: a meta-analysis. JAMA Intern Med 2015; 175: 931-939.
- 17) ALTAYYAR S, AL-OMARI A, ALOAHTANI AM, ROCHWERG B, ALNASSER S, ALOAHTANI Z, FOX-ROBICHAUD A, ALHAZZANI W. Intraaortic balloon pump in patients with cardiogenic shock complicating myocardial infarction: a systematic review and meta-analysis of randomized trials. Pol Arch Med Wewn 2015; 125: 181-190.
- 18) Su D, Yan B, Guo L, Peng L, Wang X, Zeng L, Ong H, Wang G. Intra-aortic balloon pump may grant no benefit to improve the mortality of patients with acute myocardial infarction in short and long term: an updated meta-analysis. Medicine (Baltimore) 2015; 94: e876. doi: 10.1097/ MD.000000000000000876.
- 19) FAN ZG, GAO XF, CHEN LW, LI XB, SHAO MX, JI Q, ZHU H, REN YZ, CHEN SL, TIAN NL. The outcomes of intra-aortic balloon pump usage in patients with acute myocardial infarction: a comprehensive meta-analysis of 33 clinical trials and 18,889 patients. Patient Prefer Adherence 2016; 10: 297-312. doi:10.2147/PPA.S101945. eCollection 2016.
- 20) ZHENG XY, WANG Y, CHEN Y, WANG X, CHEN L, LI J, ZHENG ZG. The effectiveness of intra-aortic balloon pump for myocardial infarction in patients with or without cardiogenic shock: a meta-analysis and systematic review. BMC Cardiovasc Disord 2016; 16: 148. doi: 10.1186/s12872-016-0323-2
- 21) WAN YD, SUN TW, KAN QC, GUAN FX, LIU ZQ, ZHANG SG. The effects of intra-aortic balloon pumps on mortality in patients undergoing high-risk coronary revascularization: a meta-analysis of randomized controlled trials of coronary artery bypass grafting and stenting era. PLoS One 2016; 11: e0147291. doi: 10.1371/journal.pone.0147291. eCollection 2016.
- Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic

- reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151: 264-269.
- BORENSTEIN M, LV, JPT, HR. Introduction to meta-analysis. John Wiley & Sons, Ltd. 2009; DOI: 10.1002/9780470743386.
- 24) Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from http://handbook.cochrane.org.
- 25) Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.
- 26) OHMAN EM, NANAS J, STOMEL RJ, LEESAR MA, NIELSEN DW, O'DEA D, ROGERS FJ, HARBER D, HUDSON MP, FRAULO E, SHAW LK, LEE KL; TACTICS Trial. Thrombolysis and counterpulsation to improve survival in myocardial infarction complicated by hypotension and suspected cardiogenic shock or heart failure: results of the TACTICS Trial. J Thromb Thrombolysis 2005; 19: 33-39.
- 27) ARIAS EA, GONZÁLEZ-CHON O, GARCÍA-LÓPEZ SM, CHACÓN MA, NORIEGA-IRIONDO F, VEGA RE, CHÁVEZ-TAP-IA NC. Impact of the intra-aortic balloon pump in the mortality due to cardiogenic shock secondary to acute myocardial infarction [Impacto del balón intra-aórtico de contrapulsación en la mortalidad por choque cardiogénico secundario a infarto agudo del miocardio]. Arch Cardiol Mex 2005; 75: 260-266.
- 28) PRONDZINSKY R, LEMM H, SWYTER M, WEGENER N, UN-VERZAGT S, CARTER JM, RUSS M, SCHLITT A, BUERKE U, CHRISTOPH A, SCHMIDT H, WINKLER M, THIERY J, WERDAN K, BUERKE M. Intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: the prospective, randomized IABP SHOCK trial for attenuation of multiorgan dysfunction syndrome. Crit Care Med 2010; 38: 152-160.
- 29) WAKSMAN R, WEISS AT, GOTSMAN MS, HASIN Y. Intra-a-ortic balloon counterpulsation improves survival in cardiogenic shock complicating acute myocardial infarction. Eur Heart J 1993; 14: 71-74.
- Perera D, Stables R, Thomas M, Booth J, PITT M, Blackman D, de Belder A, Redwood S; BCIS-1 Investigators. Elective intra-aortic balloon counterpulsation during high-risk percutaneous coronary intervention: a randomized controlled trial. JAMA 2010; 304: 867-874.
- 31) STONE GW, MARSALESE D, BRODIE BR, GRIFFIN JJ, DONOHUE B, COSTANTINI C, BALESTRINI C, WHARTON T, ESENTE P, SPAIN M, MOSES J, NOBUYOSHI M, AYRES M, JONES D, MASON D, GRINES L, O'NEILL WW, GRINES CL. A prospective, randomized evaluation of

- prophylactic intraaortic balloon counterpulsation in high risk patients with acute myocardial infarction treated with primary angioplasty. Second primary angioplasty in myocardial infarction (PA-MI-II) trial investigators. J Am Coll Cardiol 1997; 29: 1459-1467.
- 32) Gu J, Hu W, XIAO H, FENG X, SONG Z, CHEN Y, ZHANG D. Prophylactic intra-aortic balloon pump reduces C-reactive protein levels and early mortality in high-risk patients undergoing percutaneous coronary intervention. Acta Cardiol 2011; 66: 499-504.
- 33) PATEL MR, SMALLING RW, THIELE H, BARNHART HX, ZHOU Y, CHANDRA P, CHEW D, COHEN M, FRENCH J, PERERA D, OHMAN EM. Intra-aortic balloon counterpulsation and infarct size in patients with acute anterior myocardial infarction without shock: the CRISP AMI randomized trial. JAMA 2011; 306: 1329-1337.
- 34) SANBORN TA, SLEEPER LA, BATES ER, JACOBS AK, BOLAND J, FRENCH JK, DENS J, DZAVIK V, PALMERI ST, WEBB JG, GOLDBERGER M, HOCHMAN JS. Impact of thrombolysis, intra-aortic balloon pump counterpulsation, and their combination in cardiogenic shock complicating acute myocardial infarction: a report from the SHOCK Trial Registry. Should we emergently revascularize occluded coronaries for cardiogenic shock? J Am Coll Cardiol 2000; 36: 1123-1129.
- 35) Anderson RD, Ohman EM, Holmes DR Jr, Col I, Stebbins AL, Bates ER, Stomel RJ, Granger CB, Topol EJ, Califf RM. Use of intraaortic balloon counterpulsation in patients presenting with cardiogenic shock: observations from the GUSTO-I Study. Global utilization of streptokinase and TPA for occluded coronary arteries. J Am Coll Cardiol 1997; 30: 708-715.
- 36) BRODIE BR, STUCKEY TD, HANSEN C, MUNCY D. Intra-aortic balloon counterpulsation before primary percutaneous transluminal coronary angioplasty reduces catheterization laboratory events in high-risk patients with acute myocardial infarction. Am J Cardiol 1999; 84: 18-23.
- Perera D, Lumley M, Puls N, Patel MR. Intra-aortic balloon pump trials: questions, answers, and unresolved issues. Circ Cardiovasc Interv 2013; 6: 317-321.
- ROMEO F, SERGI D, ACCONCIA MC. Mechanical circulatory support and rationale for future research. JAMA Intern Med 2016; 176: 714-715. doi: 10.1001/jamainternmed.2016.0807.
- 39) ANGLEMYER A, HORVATH HT, BERO L. Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials. Cochrane Database Syst Rev 2014; (4): MR000034. doi: 10.1002/14651858. MR000034.pub2.