Long non-coding RNA PVT1 regulates glioma proliferation, invasion, and aerobic glycolysis *via* miR-140-5p

Y. SHAO¹, H.-T. CHEN², Q.-R. MA¹, Y.-W. ZHANG¹, Y.-Q. HE¹, J. LIU¹

Yu Shao and Hongtao Chen contributed equally to this study

Abstract. – OBJECTIVE: To investigate the regulation of long non-coding RNA plasmacytoma variant translocation 1 (LncRNA PVT1) on proliferation, invasion, and aerobic glycolysis in glioma cells via miR-140-5p.

PATIENTS AND METHODS: Sixty with glioma treated in our hospital were TULL ed. The expression of PVT1 in tissues an lls was determined by quantitative Real Time merase Chain Reaction (qRT-PCR), and the fects on the prognosis were obe cell lines U87 and T98MG we stably transiently transfected with er-e sion o iting kit (CCK-8), inhibition vectors. Cell g transwell, glucose, and te det employed to measu ce sion, and aerobic olysis ransfection. een PVT1 The correlation by iR-140-5p al-Luciferas was determine rter assay. RNA pull ώ'n. RNA immun recipitation (RIP) test were ad to indicate the cor-R-140-5p. relation b een PVT1 a

RESU : PVT1 was his expressed and rior diagnostic value in gliomas, and had ion of PVT1 resulted in poor the pro nents. Over-expressing PVT1 innvasion, and aerobic roliferat crease e in ing PVT1 yielded oppoolysi utcon Luciferase reporter assay 1 could target miR-140-5p. onal analysis showed that over-expres-140-5p inhibited proliferation, invabic glycolysis in glioma cells. Rese experiment found that the inhibitory effect R-140-5p could be eliminated by up-regulat-1 expression.

invasion, and aerobic glycolysis in glioma cells by regulating miR-140-5p.

Words:

ncRNA PVT1, 140-5p, Glioma, Proliferation, Invalidad Aerobic gly ysis.

Introduction

as, one of the most common malignant tumors in the nervous system, not only have high morbidity and mortality, but also pose a serious threat to human life and health¹. Due to its strong invasiveness, tumor tissues cannot be completely removed by surgery, even after radiotherapy and chemotherapy, the 5-year survival rate of patients is still less than 30%^{2,3}. However, the advancement of molecular biology provides new ideas for the treatment of gliomas, and effective molecular gene markers are the focus of glioma research⁴.

Long non-coding RNAs (LncRNAs) are about 200 nucleotides in length and act as transcription regulators to regulate target genes at a transcription level, thus affecting cell functions⁵. Although the study of lncRNA function is still at its infancy compared with miRNAs, increasing reports^{6,7} have indicated the key role of lncRNA in cell proliferation, invasion, and metabolism. Plasmacytoma variant translocation 1 (PVT1, also known as PVT1 oncogene) encodes a lncRNA and has been found to be closely related to the development and progression of various tumors. It inhibits colorectal cancer by down-regulating miR-216a-5p8. Besides, PVT1 has been reported to be associated with malignant behavior of glioma cells. Moreover, knocking down the expression of PVT1 reg-

¹Department of Anatomy, Histology and Embryology, School of Basic Med C. Sciences, Nings Medical University, Yinchuan, Ningxia, P.R. China

²School of Nursing, Hunan University of Chinese Medicine, Changsha, Chinese Medicine, Ch

³Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ning, P.R.

ulates the expression of miR-424 and inhibits the progression of gliomas⁹.

Aerobic glycolysis is a unique phenotype of cancer cells, which can accelerate tumor development by increasing glucose uptake and lactate production¹⁰. Part of lncRNAs are able to regulate aerobic glycolysis in glioma cells. Likewise, lncRNA LINC00174 promotes aerobic glycolysis and tumor progression by regulating miR-152-3p/SLC2A1 axis in gliomas¹¹. However, we found for the first time that PVT1 could affect the aerobic glycolysis in glioma cells by regulating miR-140-5p.

Patients and Methods

Clinical Specimens

Sixty patients with an average age of (59.42±4.15) who underwent glioma resection in the Second Affiliated Hospital of Ningxia Medical University (the First People's Hospital of Yinchuan) from March 2016 to March 2018 were enrolled. With the consent of the patients, 60 samples of each glioma tissue and peritumoral edematous brain tissue were obtained respe ly during surgery and stored in a liquid ith tank. Inclusion criteria: patients diagnose glioma by pathological diagnosis. Exclusion teria: patients receiving radiotherapy and motherapy before the study; par with oth malignant tumors, severe re ction, d serious infectious diseases tients v refused families to offer samples. All par and th agreed to participate in dy has been signed an informed sent. approved by the dical Ethica mittee of the Second Aff a Medospital of N ical Universit People's Hospital of Yinchuan)

Reag ts and Materials

es U87, U251, HS683, T98MG, and an cell he HEB (American Type tion, A Culture C; Manassas, VA, USA); olymerase chain reaction titativ rse transcription kit (Transiotech, Beying, China); Roswell Park Me-Ge te-1640 (RPMI-1640) medium (In-Asbad, CA, USA); Lipofectamine (Invitrogen, Carlsbad, CA, USA); lncRNA and miR-140-5p lentiviral vectors (BioRad. ey, CA, USA); methyl-thiazolyl-tetrazolium (MTT) kit (Beyotime Biotechnology Co., Ltd., C0009); TRIzol reagent (Invitrogen Co.,

Ltd., 10296010); Dual-Luciferase reporter gene assay kit (Solarbio, Beijing, China); Transwell kit, phosphate-buffered saline (PBS), fetal bovine serum (FBS) (Gibco, Grand Island, NY, L immunoprecipitation assay (RIPA; Jing Bic (BCA) prologics Co., Ltd.); bicinchoninic a tein kit (Thermo Fisher Scientifi tham, MA, USA), Annexin V-FITC/PI apopto. Meilun Biology Co., Ltd., China Jatrigel ghai Huiying Biotechnology Ltd.). Glucos . Kokinas porter type 1 (Glut1) 2 (HK2), tate dehydrogenase PHand glyceraldehyde-3-phosph nase (PDH) ologi antibodies (Cel gnaling o., Ltd, SA); goat al immuno-Danvers, M. globulin econdary an ody (Boster Biological Technol Co., Ltd., Wuhan, China); enhanced chemilum nce (ECL) developer isher Scientin (T altham, MA, USA); Cinstrument (ABI, Foster City, CA, USA). All mers were designed and synthesized by Shangneering Co., Ltd., (China). Sangon Bioe

Centrure d Transfection

The cell lines U87, U251, HS683, T08MG, and normal cell line HEB were trans-RPMI-1640 medium containing 10% 100 IU/mL penicillin and 100 µg/mL streptomycin, then incubated at 37°C and 5% CO₂. When reaching 85% confluence, the cells were digested with 25% pancreatin and then cultured to complete passage. U87 and T98MG cells were transfected using Lipofectamine 2000. Suppression and over-expression plasmids were constructed with pcDNA3.1 vector, and blank vector was used as negative control (NC). The cells were seeded in a 96-well plate and transfected for 48 h for further determination.

ORT-PCR

Total RNAs were extracted from the collected cells and tissues by TRIzol. The purity, concentration, and integrity of the RNAs were measured by an ultraviolet spectrophotometer and agarose gel electrophoresis. Reverse transcription was performed with a TaqMan Reverse Transcription Reagents kit in strict accordance with instructions. SYBR_Premix ExTaq II and ABI 7500PCR were used for amplification. The amplification was carried out with a 20- μ L reaction volume containing 10 μ L of SYBR Premix Ex Taq II (2X), 2 μ L of cDNA, 0.8 μ L of each upstream and downstream primers, and made up to the final volume with sterile purified water. The amplifi-

cation condition: pre-denaturation at 95°C for 30 s, denaturation at 95°C for 5 s, annealing and extension at 60°C for 30 s, for a total of 40 cycles. Each sample was tested in 3 repeated wells, and the experiment was carried out 3 times. U6 was used as a miR internal reference, GAPDH as a gene internal reference, and 2-AAct was used to analyze the data. Primer sequence: PVT1: upstream 5'-ATAGATCCTGCCCTGTTTGC-3', downstream primer: 5'-CATTTCCTGCTGC-CGTTTTC-3'; miR-140-5p: upstream primer: 5'-GCTTAA CTGTAAACGCCCTTG-3', downstream primer: 5'-GGGCATCGTCGAG GGTT-3'; GAPDH: upstream primer: 5'-AGAAGGCT-GGGGCTC ATTTG-3', downstream primer: 5'-AGGGG CCTCCACAGTCTTC-3'.

Western Blot

The cells were lysed using RIPA lysis buffer to extract total proteins, and the concentration was detected with BCA method and adjusted to 4 µg/ μL. The proteins were separated by 12% sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), transferred to a polyvinylidene difluoride (PVDF) membrane, then blocked 5% skimmed milk powder for 2 h. Glut (1: HK2 (1:500), LDH-A (1:500), and GAP 1000) primary antibodies were added to se membrane overnight at 4°C. After washin remove the primary antibodies orserad peroxidase (HRP)-labeled g use sed ondary antibody (1:1000) y added 1 h incubation at 37°C. Next, to as rinsed mbran 3 times with PBS, for 5 min. liquid was dried wit filter the development was perform with ECL in room.

Cell Prolifer Ion

Ceration of ce The pro determined using CCK-8. as transfected in h were collected, di d to 3*10⁴ cells/mL, then inoculated in a 96 plate 🛭 µL/well) and cultured at 37°C ach well was added with 10 µL and 24 h, 48 h, and 72 h of tion at / of CCK ndrtured another 2 h at 37°C dhere fical density (OD) value was red at 450 m using a microplate reader to me integration and plot a growth curve. nt was repeated 3 times.

nvasion

invasion of cells was measured by transwell. First, 200 μL Dulbecco's Modified Eagle's Medium (DMEM) containing 1x10⁵ cells and 500

mL DMEM containing 20% FBS were added to the upper and lower chambers, respectively. After culture at 37°C for 48 h, the matrix and cells not penetrating the membrane in the uppe were wiped off. The remaining cells re rinse rmaldehyde 3 times with PBS, fixed with pa for 10 min, rinsed 3 times with le distilled water, then air dried and stained to in with 0.1% crystal violet. Cell sion wa ved under a microscope.

Glucose Consumpand and Cotate Content

ells wer The collecte 6-well plate at a de of 3*10⁵ cell and cultured at 3 6 CO, for 40 Afterwards, the culture mediu. used to measure glucose consumption and lact oduction. The glucose levels were a ined in strict accore with the operation instructions of the deternation kits.

Luciferas Reporter Assay

was en, to search for candidate miRNAs but can bind to PVT1. Oligonucleotide containing seet sequence was amplified and cloned to AGLO plasmid (WT). PmirGLO-PVT1-3'UTR wild type (Wt) and mutant (Mut) were respectively established and transferred to downstream of luciferase reporter gene to sequence and identify the constructed plasmids. The luciferase reporter plasmid and miR-140-5p-Mimic or miR-NC were co-transfected into U87 cells with Lipofectamine 2000. After 48 h, luciferase reporter assay system.

RNA Pull-Down

A magnetic RNA-protein pull-down kit (Pierce, Rockford, IL, USA) was applied in our study. Biotin-labeled PVT1 (1 μ g) was placed in an Eppendorf (EP) tube, 500 μ L of buffer was added, and the mixture was bathed at 95°C for 2 min, followed by an ice bath for 3 min. Fully resuspended beads (50 μ L) was incubated in the EP tube overnight at 4°C. The beads were then centrifuged at 3500 rpm for 3 min, the supernatant was discarded, and the pellet was washed 3 times with 500 μ L of RNA-binding protein immunoprecipitation (RIP) wash buffer. Afterwards, 10 μ L of lysis buffer was added, left at room temperature for 1 h. The cultured bead-RNA-protein mixture was centrifuged at low speed, the supernatant was collect-

ed and washed 3 times with 500 μL of RIP wash buffer. Next, 10 μL of the lyses was used as Input protein sample. After the protein concentration was determined, Western blot was performed to measure the expression. The experiment was repeated three times.

RIP Analysis

RIP analysis was performed with a Magna RIP RNA-Binding Protein Immunoprecipitation Kit (Millipore, Billerica, MA, USA). Cells were washed with pre-cooled PBS, and RIP lysis buffer was added. The suspension was then centrifuged to extract the supernatant. One part of the extract was removed as Input, and another part was incubated with antibodies for co-precipitation. In each co-precipitation reaction system, 50 µL of beads were washed and resuspended in 100 µL of RIP wash buffer. Five micrograms of antibody were added to each group. The magnetic bead-antibody complex was washed and resuspended in 900 µL of RIP wash buffer, and then incubated overnight at 4°C with 100 µL of cell extract. The sample was placed on a magnetic substrate to collect magnetic bead-protein complexes. Then, the Input sample was treated with prot K to digest the protein, RNA was extra then analyzed by Western blot. The 30-fold uted Argonaute2 (AGO2) antibody (1:2000, A MA, USA) was used for RIP determination and (1:100, Abcam, MA, USA) was us IC. The periment was repeated three ti

Statistical Analysis

SPSS 20.0 package (IBN was used for statist analy he collected data, and the Gra ead 7 packa building graphs. Inter-g nparison wa nducted multi-group comparwith independ -way analys ison with a ariance (ANOVA). The pos oc comparison conducted with Fisher east significant difference-t-test, the exat mul e time points was analyzed with ement MOVA, and the post hoc repe d out w Bonferroni. A value of p test was stical difference. 5 ind

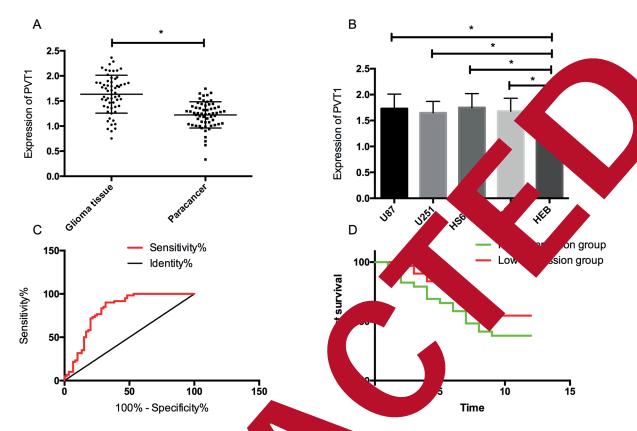
Results

T1 Is Up-Regulated in Glioma Tissues Cells

ma tissues and cells, with an area under the curve (AUC) of 0.815 by the receiver operating character-

istic (ROC) curve. According to the median value of PVT1, patients were divided into high and low expression groups (29/31). The 1-year survival rate in high PVT1 expression was signification that in low expression (p<0.05; Page 1).

Effects of PVT1 on Glioma Seration, Invasion, and Aerobic Glycoly


U87 and T98MG cells ansfecte PVT1 showed significan lower PVT1 ed with Si-NC. E. sion than those trans ining the biological ells in the two ns oliferati groups, it was for d the inva-PVT sion, and aerobi rycolysis ansfectnificantly de ed cells wer compared with Si-N ted cells, and e expression of Glut1, 1, 1, 2 and LA proteins was also significantly decreased (25). The expression of nd Sh-PVT1-trans-PV n-NC-transfe ed cells was significantly up-regulated. The liferation, invation, and aerobic glycolysis in d cells were significantly re-PVT1-transf ith Si-NC -transfected cells, compared of Glut1, HK2, and LDH-A vnres proteins gnificantly up-regulated (p < 0.05; gure 2).

Proliferation, Invasion, and Aerobic Glycolysis

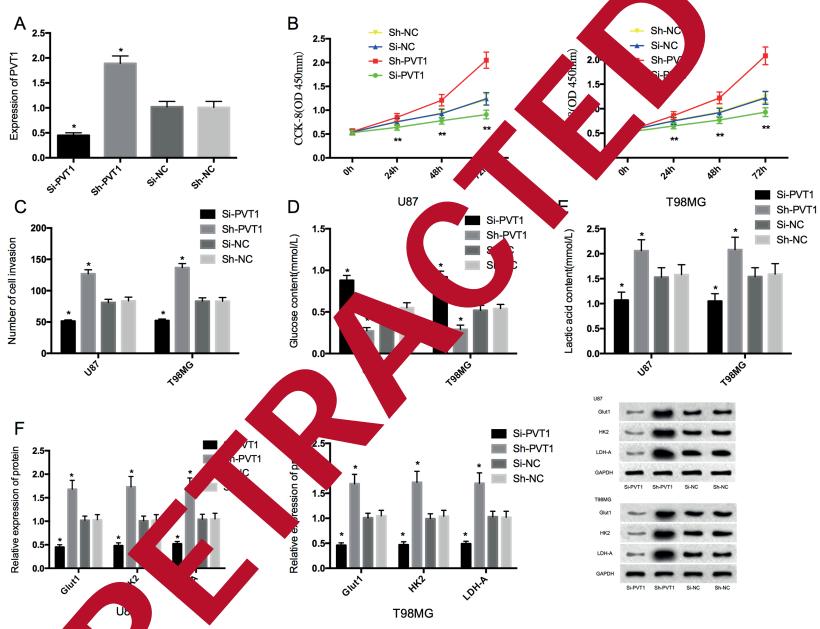
U87 and T98MG cells transfected with miR-140-5p-mimics showed significantly higher miR-140-5p expression than those transfected with miR-NC. Examining the biological functions of cells in the two groups, it was found that the proliferation, invasion, and aerobic glycolysis in miR-140-5p-mimics-transfected cells were significantly inhibited, and the expression of Glut1, HK2, and LDH-A proteins were also significantly down-regulated (p<0.05). The expression of PVT1 was significantly up-regulated in cells transfected with miR-140-5p-inhibitor. The proliferation, invasion, and aerobic glycolysis in miR-140-5p-inhibitor-transfected cells were significantly enhanced, and the expression of Glut1, HK2 and LDH-A proteins was also significantly up-regulated (p < 0.05; Figure 3).

LncRNA PVT1 Directly Targets MiR-140-5p

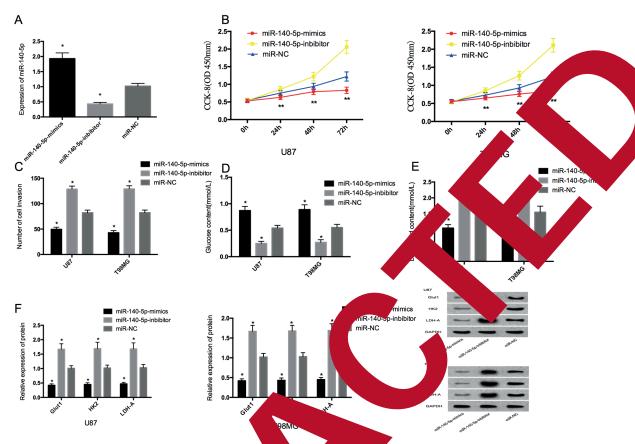
Targeted binding sites were found between ln-cRNA PVT1 and miR-140-5p through online software starBase 3.0. Further, Dual-Luciferase reporter assay showed that luciferase activity of miR-140-5p in PVT1-Wt was significantly lower than that of

Figure 1. Expression and clinical significance of 1 in Systems of PVT1 in glioma tissues; **B**, Expression of PVT1 in glioma cells; **C**, ROC curve analysis; **D**, and a survival patients.

miR-NC. RNA pull-down test the enrichment of PVT1 in AGC increase with that in IgG, indicating the PVT1 in bind to AGO2. RIP test revealed that in miR-140-5p-Wt was algher to the in miR-NC and miR-140-5p-M arigure 4).


Rescue Exp. men.

feration, inv and aerobic gly-The pro colvsis ells transfected Si-PVT1+miRnibitor were not diverent from those 140-5 niR-NC, and transfecting with trar ed the effects of miR-140-5p-in-Si-P omotion cell proliferation, inhibitor ysis and up-regulation of H-A proteins. The proliferae invasion, and aerobic glycolysis in cells atio with Sh-PVT1+miR-140-5p-mimics erent from those transfected with R-NC cells, and transfecting with Sh-PVT1 d the effects of miR-140-5p-mimics on inn of cell proliferation, invasion, and aerobic glycolysis and the down-regulation of Glut1, HK2, and LDH-A proteins (Figure 5).


Discussion

Although gliomas are the most common malignant tumors in the central system, the pathogenesis has not yet been elaborated¹². However, lncRNA, a long non-coding RNA, has received increasing attention in recent years for its role in tumor¹³. Increasing studies^{14,15} show that it can function as an oncogene or tumor suppressor. PVT1, a classical lncRNA, is found to be highly expressed in gastric cancer, colon cancer, and other tumors and has a significant impact on the biological function of cells¹⁶. After analyzing 60 glioma samples in our study, we found that the expression of PVT1 in glioma tissues was significantly higher than that in normal brain tissues, and was related to the survival and prognosis of patients. The 1-year survival of patients with high PVT1 expression was significantly lower than that of patients with low expression. The high expression of PVT1 was reported to be related to the poor prognosis of various tumors¹⁷.

There have been studies showing that lncRNAs could regulate the function of glioma cells. Like-

Figure 2. Effects of the property of the pro

Figure 3. Effects of miR-140-5p on glioma prolifer glioma cells after transfection; **B**, Effects of miR-140 production in glioma cells; **D**, Effects of miR-140-5p on glucd production in glioma cells; **F**, Effects of miR-140-5p on a glycolysis-related proteins in glioma cells. *indicated p < 0.05.

Figure 4. Correlation between PVT1 and miR-140-5p. **A**, Dual-Luciferase reporter assay confirmed that there were targeted binding sites between PVT1 and miR-140-5p. **B**, Assessment of PVT1 and AGO2 enrichment by RIP assay. C, Assessment of PVT1 and miR-140-5p enrichment by RNA pull-down. *indicated p < 0.05.

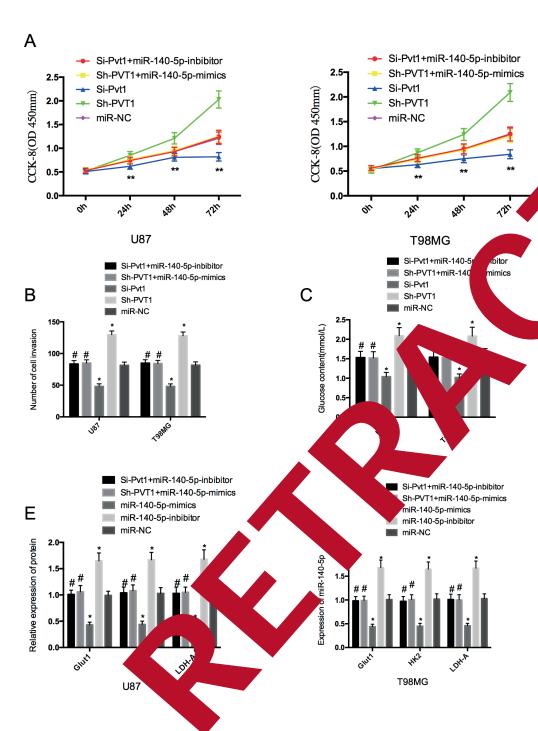
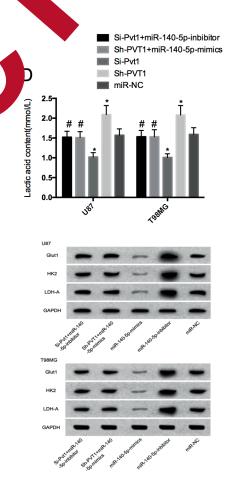



Figure 5. Rescu periment. A, 1 s of Si-Pvt1+miR-140-5p-inhibitor or T1+miR-140imics co-transfection on proliferation of cells; **B**, E ts of co-transfection on o-transfection on glucose s of co-transfection on lacffects invasion of oma cel consum in glioma ce oduction in glioma E, Effects of co-transfection tic aci s-related proceins in glioma cells. *indicated on

wise, Xie et al¹⁸ pointed out that lncRNA CASC15 accelerated the proliferation and metastasis of glioma cells by targeting miR-130b-3p. In our study, we found that up-regulating the expression of PVT1 facilitated the proliferation and invasion of glioma cells, but inhibiting the expression yielded opposite outcome. As one of the main features of tumor, metabolic reprogramming plays a critical role in its development and progression, with aerobic glycolysis as its main phenotype¹⁹. Aerobic glycolysis supplies energy to tumor cells by consuming glucose, which leads to the extracellular secretion of lactate to promote cell invasion and metastasis²⁰. Therefore, it is of great significance to the upstream molecular mechanism in tumors. It was also found for the first time in our study that PVT1 could be used as an oncogene to promote aerobic glycolysis in glioma cells, and that over-expression of PVT1 could up-regulate the expression of Glut1, HK2, and LDH-A. Those proteins were key molecules in the aerobic glycolysis process that affected the glucose uptake and lactate production of tumor cells²¹. All the above conclusions suggested that PVT1 was served as an oncogene in gliomas.

Subsequently, biological analysis demo that miR-140-5p could bind to PVT1, whi confirmed by dual-luciferase reporter assay test, and RNA pull-down. MiR-140-5p has reported to play the role of tup pressor gliomas and is regulated by v NAs. Fo example, research found the ncRN OXA11-AS acted as miRNA spe <u>olioma</u> to pror tumorigenesis by tarretin feration and sides, miR-140-5p i ited th invasion of glioma s by regular cular endothelial growth VEGFA)/ma netallopathway²³. All these protein 2 (MI 2) sig studies indicated the imp e of miR-140-5p in our research, n. gliomas 0-5p expression in gli cells was regulated, and the up-regularoliferation and invasion of glibited th tion oma as down regulation reversed. It is regula also fou the expression of miRrobic glycolysis in glioma p also ter whether PVT1 promoted aerycolysis in glioma cells by regulating miRobi experiment was conducted. The d that Si-PVT1 abolished the effects niR-140-5p inhibition on promotion of prolifinvasion, and aerobic glycolysis in glioma as well as on Glut1, HK2, and LDH-A proteins. Similarly, Sh-PVT1 reversed the effects of miR-140-5p over-expression on inhibition of cell

proliferation, invasion, and aerobic glycolysis, as well as on Glut1, HK2, and LDH-A proteins. The above results suggested that PVT1 affected glioma proliferation, invasion, and aerobic by inhibiting the expression of miR-1 sp.

Conclusions

PVT1 is highly expres in gliomas, w the patients. More dicates a poor prognosi it can promote the pro ion asion, and aerobic glycolysis in regulati miRlioma 140-5p. Howey here are ome Itations periments in this study example, in the effects have not b rmed to obs th. Secondly, the possible of PVT1 of tumor mechanisms of miRin gliomas have not fore, we will carry be red in depth. more basic and clinical trials to supplement experimental ata.

Col of Int sts

The Author are that they have no conflict of interests.

Acknowledgements

This study was supported by the Natural Science Foundation of Ningxia (2018AAC02005), the National Natural Science Foundation of China (81460214), and Ningxia High School first-class Disciplines (West China first-class Disciplines Basic Medical Sciences at Ningxia Medical University, NXYLXK2017B07).

References

- BACHE M, HEIN A, PETRENKO M, GÜTTLER A, KESSLER J, WICHMANN H, KAPPLER M, EMMERICH D, PASCHKE R, VORDERMARK D. Evaluation of the betulinic acid-cisplatin conjugate APC and its precursor DE9B for the treatment of human malignant glioma. Chem Biol Interact 2019; 314: 108841.
- 2) D'ARRIGO P, DIGREGORIO M, ROMANO S, TUFANO M, REA A, HAUSCH F, DEDOBBELEER M, VIGORITO V, RUSSO S, BAUDER M, ROGISTER B, ROMANO MF. The splicing FK506-binding protein-51 isoform plays a role in glioblastoma resistance through programmed cell death ligand-1 expression regulation. Cell Death Discov 2019; 5: 137.
- ALINEZHAD A, JAFARI F. Novel management of glioma by molecular therapies, a review article. Eur J Transl Myol 2019; 29: 8209.
- 4) PROLO LM, Li A, OWEN SF, PARKER JJ, FOSHAY K, NITTA RT, MORGENS DW, BOLIN S, WILSON CM, VEGA L JCM,

- Luo EJ, Nwagbo G, Waziri A, Li G, Reimer RJ, Bassik MC, Grant GA. Targeted genomic CRISPR-Cas9 screen identifies MAP4K4 as essential for glioblastoma invasion. Sci Rep 2019; 9: 14020.
- Dong ZQ, Guo ZY, XIE J. The IncRNA EGFR-AS1 is linked to migration, invasion and apoptosis in glioma cells by targeting miR-133b/RACK1. Biomed Pharmacother 2019; 118: 109292.
- XIA H, XIU M, GAO J, JING H. LncRNA PLAC 2 downregulated miR-21 in non-small cell lung cancer and predicted survival. BMC Pulm Med 2019; 19: 172.
- Li C, Liu H, Yang J, Yang J, Yang L, Wang Y, Yan Z, Sun Y, Sun X, Jiao B. Long noncoding RNA LINC00511 induced by SP1 accelerates the glioma progression through targeting miR-124-3p/CCND2 axis. J Cell Mol Med 2019; 23: 4386-4394.
- ZENG X, LIU Y, ZHU H, CHEN D, HU W. Downregulation of miR-216a-5p by long noncoding RNA PVT1 suppresses colorectal cancer progression via modulation of YBX1 expression. Cancer Manag Res 2019; 11: 6981-6993.
- 9) HAN Y, LI X, HE F, YAN J, MA C, ZHENG X, ZHANG J, ZHANG D, MENG C, ZHANG Z, JI X. Knockdown of IncRNA PVT1 inhibits glioma progression by regulating miR-424 expression. Oncol Res 2019; 27: 681-690.
- 10) Miska J, Lee-Chang C, Rashidi A, Muroski ME, Chang AL, Lopez-Rosas A, Zhang P, Panek WK, Cordero A, Han Y, Ahmed AU, Chandel NS, Lesniak MS. His 1g is a metabolic switch between glycolytic migration and oxidative phosphorylation immunosuppression of Tregs in gliobla 1g. Cell Rep 2019; 27: 226-237.e4.
- 11) SHI J, ZHANG Y, QIN B, WANG Y, ZHU X. non-coding RNA LINC00174 proceeds glycoly and tumor progression by research R-152-3, SLC2A1 axis in glioma. PCIII process Research 2019; 38: 395.
- 12) MAURER GD, HELLER S, WA REGER Knockdown of the R53- dapoptosis regul (TIGAH, itizes glioma cells to hypoxic adiation and lomide. Int J Mol Sci 20 ii: E1061
- 13) MALAKAR R. AN I, VI A, WINKLER K, STERN-GI-NOSSAR N. BERGER M, A. E, KARNI R. LONG NON-

- coding RNA MALAT1 regulates cancer glucose metabolism by enhancing mTOR-mediated translation of TCF7L2. Cancer Res 2019; 79: 2480-2493
- 14) Yang X, Yang B. LncRNA PDIA3P reproliferation and invasion in non-cal cell lung cancer. Exp Ther Med 2019; 18: 4-3190.
- 15) OUYANG H, ZHANG L, XIE Z, MA CONTROL MIGRAL MAFG-AS1 promotes proling migration and invasion of her occillulation and cells through downreg on of miR-s. Txr Ther Med 2019; 18: 2 2553.
- 16) OGUNWOBI OO, KU A. Cher esistance diated by ceRNA cociated with the PVT1 locus. For t On the 19:834.
- 17) Cui M, You Y AN X, ZHAO Q, Y. Long non-coding 1A PVT1 with the chem Biophys Page 14, 2016; 471:
- 18) XIE Y, JENG Y, noncoding RNA CASC15 is upregulated in give and facilitates cell proliferand metastasis targeting miR-130b-3p.

 24 Med Pharmaco 21 2019; 23: 7475-7481.
- Tekade RK, Sun X. The Warburg effect and glucose-derived incer theranostics. Drug discovery today 20 2: 1637-1653
- In J. Wu York, Wang H. K. Li M, Sun Y, Wang Y, Wang K. Wang B, Ma X. Long non-coding the Line of the promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in asteosarcoma. Biochem Biophys Res Commun 490: 217-224.
- G, XIE W. Protein kinase C-iota-mediated glycolysis promotes non-small-cell lung cancer progression. Onco Targets Ther 2019; 12: 5835-5848.
- 22) Cui Y, Yi L, Zhao JZ, Jiang YG. Long noncoding RNA HOXA11-AS functions as miRNA sponge to promote the glioma tumorigenesis through targeting miR-140-5p. DNA Cell Biol 2017; 36: 822-828.
- 23) Hu Y, Li Y, Wu C, Zhou L, Han X, Wang Q, Xie X, Zhou Y, Du Z. MicroRNA-140-5p inhibits cell proliferation and invasion by regulating VEGFA/MMP2 signaling in glioma. Tumour Biol 2017; 39: 1010428317697558.