The clinical research of off-pump coronary artery bypass grafting by small incision at the left chest

L.-B. XIAO¹, Y.-H. ZHANG¹, J.-W. ZHOU¹, M. YANG¹, Y.-P. LING², Z.-S. GAO³, Y.-S. WANG³

Abstract. – OBJECTIVE: To explore the clinical value of off-pump coronary artery bypass grafting by small incision at the left chest, and develop a better surgical regimen for coronary heart disease patients.

PATIENTS AND METHODS: 201 coronary heart disease patients who need coronary artery bypass grafting were required and randomly divided into 2 groups including a control group and an observation group. There were 107 cases in the control group who received coronary bypass grafting by extracorporeal circulation; there were 103 cases in the observation group who received off-pump coronary bypass grafting by small incision at the left chest. The duration of the mechanism ventilation, length of stay in ICU, hospitalization time, postoperative drainage volume, and the occurrence rate of complications were recorded and compared.

RESULTS: The duration of mechanism ventilation, length of stay in ICU, hospitalization time and postoperative drainage volume in the control group were (19.21 \pm 1.33) hours, (5.08 \pm 0.57) days, (21.20 ± 2.34) days and (997.68 ± 96.35) mL, which were (7.73 ± 0.74) hours, (2.83 ± 0.16) days, (15.67 ± 1.18) days and (901.53 ± 89.32) mL in the observation group respectively, with statistical difference between the two groups (p<0.05). The occurrence rates of renal insufficiency and arrhythmia were both 6.54% and 0.97% in the control group and the observation group, respectively. The occurrence rates of postoperative renal insufficiency and arrhythmia in the observation group were both significantly lower than those in the control group, with statistical significance analysis (p < 0.05). Postoperative low cardiac output, second thoracotomy, cerebrovascular disease, pulmonary infection, perioperative cardiac infarction and mortality did not display a significant difference between the two groups (p > 0.05).

CONCLUSIONS: Off-pump coronary artery bypass grafting by small incision at the left chest is a surgical method with less injury and fast recovery, which can be used as the preferred therapeutical method for the coronary heart disease patients who need coronary artery bypass grafting.

Key Words:

Small incision, Off-pump, Coronary artery bypass grafting.

Introduction

As the aging of the society, the morbidity of coronary heart disease becomes higher, and there are more and more elder patients who need coronary artery bypass grafting 1-4. The coronary artery bypass grafting by extracorporeal circulation is a comparatively mature surgical method. However, it can cause physical injury 5-9, such as hemodilution anemia 10,11. As the development of minimally invasive technology, the off-pump coronary artery bypass grafting by small incision at the left chest has become the new trend of coronary artery surgery 12-14.

Patients and Methods

Clinical Data

210 coronary heart disease patients, who need coronary artery bypass grafting admitted during April 2011 to March 2014, were selected and randomly divided into 2 groups. There were 107 cases in the control group and 103 cases in the observation group. All patients were at grade III-IV according to the angina grading published by CCS (Canadian Cardiovascular Society) and conformed to the surgical indications of coronary artery bypass grafting according to ECG and

¹Cardio-Thoracic Surgery Department, Cangzhou Center Hospital, Cangzhou, China

²Cardiac Surgery Department Peking University People's Hospital, Beijing China

³Department of Cardiology, Cangzhou Center Hospital, Cangzhou, China

coronary arteriography. The gender, age, preoperative ejection fraction (EF), diseased vessels and preoperative risk factors were not statistically different, which were comparable (p > 0.05), as shown in Table I.

Experimental Procedure

- 1. Control group. The coronary bypass grafting by extracorporeal circulation was applied. First of all, patients received general anesthesia, then the middle incision was selected and the sternum was opened. The heart rate and blood pressure were controlled by the anesthetist, and the left anterior descending branch was exposed, Guidant or Octopus3 fixator (Medtronic, Inc., Minneapolis, MN, USA) was used to stabilize local myocardium. During anastomosis, the intraluminal shunt was used to assist the operation on the anastomotic stoma. The injection syringe was used to inject distilled water to keep the infusion without blood.
- **2. Observation group.** The off-pump coronary artery bypass grafting by small incision at left chest was applied. Firstly, patients received general anesthesia and double-lumen endotracheal intubation. Patients were at supine position, whose left chests were lifted by 30 degrees. The electrode slices were placed on the right front and left posterior chest and connected with a defibrillator in vitro. The incision in 4th intercostal space at left anterior chest was 6 cm, and the one-lung ventilation was applied after entering the chest. Suspensory internal mammary artery distractor (Fehling, Acworth, GA, USA) (Medicon Co., Ltd., Essen, Germany) was placed, and the chest wall was pulled when opening ribs to provide a good direct operation field. Left internal mammary artery (LIMA) was obtained under direct vision, which was up to the superior border of the 1st rib and down to the 5th rib. LIMA branch was clipped by pen type titanium clamp (Fehling) (Medicon Co., Ltd., Essen, Germany). Cardiac Tissue Slices (CTS) heart surface tissue fixation equipment (Medtronic, Inc., Minneapolis, MN, USA) was used for local fixation, and then the coronary artery was opened, and intra-coronary artery shunt was put in for vascular anastomosis. The activated blood clotting time was kept at 300-400 seconds. After completing the operation, protamine was used to neutralize heparin with a proportion of 1:2. After confirming that

Table 1. The comparison of general data in two groups.

	>	
	Renal	13 (12.15) 13 (12.62) 1.019 0.869
	Hyper- lipidemia history	53 (49.53) 51 (49.51) 0.028 0.983
	Hyper- tension history	58 (54.21) 56 (54.37) 0.792 0.936
ors	Cerebrovas cular disease history	11 (10.28) 11 (10.68) 0.811
Preoperative risk factors	Diabetes mellitus history	27 (25.23) 26 (25.24) 0.019 0.992
Preopera	Remote cardiac infarction	33 (30.84) 32 (31.07) 0.808 0.922
	Acute cardiac infarction	21 (19.63) 20 (19.42) 0.844 0.918
	Unstable angina	98 (91.59) 94 (91.26) 0.935 0.884
	Amount of diseased vessels	2.83 ± 0.26 0.26 2.85 ± 0.27 0.110 0.958
	Pre- operative) EF (%)	58.32 ± 5.67 5.846 ± 5.38 0.382 0.534
	Age (year)	62.01 ± 6.32 62.11 ± 6.74 0.196 0.683
Gender	Age Male Female (year)	16 (14.95) 15 (14.56) 33
Ger	Male	91 (85.05) 88 (85.44) 0
	Z	107
	Group	Control group 107 Observation 103 group $tt\chi^2$

there was no hemorrhagic spot, the drainage tube was placed in the 6th intercostal space and the chest was closed.

Observation Indexes

The duration of mechanical ventilation, the length of stay in ICU, hospitalization time and postoperative drainage volume were recorded and compared. The postoperative low cardiac output, renal insufficient, second thoracotomy, cerebrovascular disease, pulmonary infection, perioperative cardiac infarction and mortality were recorded.

Statistical Analysis

SPSS13.0 software (SPSS Inc., Chicago, IL USA) was used for analysis, measurement data were analyzed by t-test, enumeration data were analyzed by χ^2 test, p < 0.05 was considered as statistically significant.

Results

Treatment Conditions

The duration of mechanism ventilation, length of stay in ICU, hospitalization time and postoperative drainage volume in the control group were (19.21 \pm 1.33) hours, (5.08 \pm 0.57) days, (21.20 \pm 2.34) days and (997.68 \pm 96.35) mL, which were (7.73 \pm 0.74) hours, (2.83 \pm 0.16) days, (15.67 \pm 1.18) days and (901.53 \pm 89.32) mL in the observational group, there was statistical difference between the two groups (p < 0.05), as shown in Table II.

Complications

The occurrence rates of renal insufficiency and arrhythmia were both 6.54% and 0.97% in the control group and the observational group respectively. The occurrence rates of postoperative renal insufficiency and arrhythmia in the obser-

vational group were both lower than those of the control group, with statistical significance (p < 0.05). Postoperative low cardiac output, second thoracotomy, cerebrovascular disease, pulmonary infection, perioperative cardiac infarction and mortality displayed no significant difference between the two groups (p > 0.05), as shown in Table III.

Discussion

Coronary heart disease is a clinically common disease in elderly people, in which the stenosis or obstruction of coronary artery are caused by atherosclerosis¹⁵⁻¹⁸. It significantly affects the blood supply of heart to cause myocardial ischemia, even cardiac infarction to cause the death of patients^{19,20}. Coronary artery bypass grafting is an effective surgical method to treat coronary heart disease at present^{1,21-23}. The theory is that there is new bypass between the proximal terminal and distal terminal of coronary artery stenosis, which make sure that the blood can reach the distal terminal to provide oxygen and nutrient for myocardium and improve the function of the heart^{24,25}. It serves as a bridge; thus, it is called bypass operation.

Extracorporeal circulation is needed in the conventional coronary artery bypass grafting, which is completed under the condition of cardiac arrest. However, due to the application of extracorporeal circulation, the production and release of inflammatory factors are increased, which can cause systemic inflammatory response syndrome to damage the organs and tissue²⁶⁻²⁹. Besides, the reperfusion after blocking aorta can cause ischemia-reperfusion injury of the myocardium, which causes arrhythmia and accelerate the necrosis of myocardial cells³⁰⁻³².

In this study, patients received off-pump coronary artery bypass grafting. As the perfusion

Table II. The comparison of treatment conditions in two groups.

Group	n	Postoperative duration of mechanism ventilation (h)	Postoperative length of stay in ICU (d)	Postoperative hospitalization time (d)	Postoperative drainage volume (ml)
Control group Observation group t p	107 103 6.138 0.028	19.21 ± 1.33 7.73 ± 0.74 5.227 0.033	5.08 ± 0.57 2.83 ± 0.16 4.963 0.046	21.20 ± 2.34 15.67 ± 1.18 1.328 0.182	997.68 ± 96.35 901.53 ± 89.32

Fable III. The comparison of treatment conditions in two groups.

	1	Low	Postoperative renal	Perioperative cardiac	Second	Postoperative	Postoperative cerebrovascular	Pulmonary	4
dnos	C	output	insurficiency	Intarction	thoracotomy	arrnytnmia	alsease	Inrection	Death
Control groups	107	2 (1.50)	7 (6.54)	0 (0)	5 (4.67)	7 (6.54)	10 (9.35)	20 (18.69)	5 (4.67)
Observation group	103	2 (1.94)	1 (0.97)	1 (0.97)	1 (0.97)	1 (0.97)	7 (6.80)	16 (15.53)	4 (3.88)
χ^2		1.128	7.305	2.038	5.034	7.305	4.110	3.024	1.928
p		0.864	0.036	0.716	0.068	0.036	0.168	0.238	0.733

pressure of coronary artery has to be maintained during the whole surgery, and the drug administrated by anesthetist only has assistant effect^{33,34}. Thus, the blood distribution of the heart during operation is not significantly different from preoperation distribution, and the non-ischemic endocardium is not ischemic which is similar to the physiological status. During the operation, the proximal terminal can be anastomosed according to the demand, and there is no concern about the extension of coronary artery blocking time³⁵. As the medical mode transverses, minimally invasive operation is more and more accepted by patients, and the application in clinical is increased³⁶⁻³⁸. Dissociating left internal mammary artery to make an anterior descending branch by small incision at left chest is a classic minimally invasive coronary artery bypass grafting, and the sternum is not necessary to be opened, the postoperative pain is alleviated, and the occurrence of sternum infection and disability are avoided; thus, the patients can do mild physical activity in the early stage after surgery, due to the fact that its effect on lung function is small and the recovery is fast.

In this study, the duration of mechanism ventilation, the length of stay in ICU, the hospitalization time, the postoperative drainage volume in the control group were (19.21 ± 1.33) hours, (5.08 ± 0.57) days, (21.20 ± 2.34) days and (997.68 ± 96.35) mL. The occurrence rates of renal insufficiency and arrhythmia were 24.30% and 58.88%, which were (7.73 ± 0.74) hours, (2.83 ± 0.16) days, (15.67 ± 1.18) days and (901.53 ± 89.32) mL, 12.62% and 40.78% in the observation group, respectively. In off-pump coronary artery bypass grafting by small incision at the left chest, these data suggest that the treatment time is shorter, the recovery is faster, the injury is less, and the occurrence rate of postoperative complications is lower respect to the coronary bypass grafting by extracorporeal circulation.

Conclusions

Off-pump coronary artery bypass grafting by small incision at left chest is a surgical method of less injury and fast recovery, which can be considered as the preferred therapeutical method for the coronary heart disease patients who need coronary artery bypass grafting.

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

- BAIRAKOVA IU V, KAZACHEK IA V, GRUZDEVA OV, SERGEE-VA T, GRIGOR'EV AM, IVANOV SV. The dynamics of Creactive protein in the process of coronary artery bypass grafting in patients with ischemic heart disease. Klin Lab Diagn 2013; (3): 3-6.
- MA XC, Ou SL, ZHANG ZT, Hu YS, SONG FQ. [Outcomes of combined pulmonary resection and off-pump coronary artery bypass grafting for patients with lung tumor and concurrent coronary heart disease]. Zhonghua Yi Xue Za Zhi 2012; 92: 3134-3136.
- MOLLER CH, PENNINGA L, WETTERSLEV J, STEINBRUCHEL DA, GLUUD C. Off-pump versus on-pump coronary artery bypass grafting for ischaemic heart disease. Cochrane Database Syst Rev 2012; 3: CD007224.
- KORZHENEVSKAIA KV, GAVRISHEVA NA, PANOV AV, SES TP, ALEKSEEVA GV, KOZLOV VV. [Content of tumor necrosis factor- and growth transforming factorin patients with ischemic heart disease after coronary artery bypass grafting]. Kardiologiia 2011; 51: 16-20.
- REUTHEBUCH O, KOECHLIN L, GAHL B, MATT P, SCHURR U, GRAPOW M, ECKSTEIN F. Off-pump compared to minimal extracorporeal circulation surgery in coronary artery bypass grafting. Swiss Med Wkly 2014; 144: w13978.
- ANASTASIADIS K, FRAGOULAKIS V, ANTONITSIS P, MANI-ADAKIS N. Coronary artery bypass grafting with minimal versus conventional extracorporeal circulation; an economic analysis. Int J Cardiol 2013; 168: 5336-5343.
- ASTERIOU C, ANTONITSIS P, ARGIRIADOU H, DELIOPOULOS A, KONSTANTINOU D, FOROULIS C, PAPAKONSTANTINOU C, ANASTASIADIS K. Minimal extracorporeal circulation reduces the incidence of postoperative major adverse events after elective coronary artery bypass grafting in high-risk patients. A single-institutional prospective randomized study. Perfusion 2013; 28: 350-356.
- ZEITANI J, BUCCISANO F, NARDELLA S, FLAMINIO M, PRATI P, CHIARIELLO G, VENDITTI A, CHIARIELLO L. Mini-extracorporeal circulation minimizes coagulation abnormalities and ameliorates pulmonary outcome in coronary artery bypass grafting surgery. Perfusion 2013; 28: 298-305.
- WIESENACK C, KERSCHBAUM G, KEYSER A, KOBUCH R, TAEGER K. [Acute Leriche's syndrome in a patient undergoing coronary artery bypass grafting with extracorporeal circulation]. Anaesthesist 2001; 50: 32-36
- STAMOPOULOS D, BAKIRTZI N, MANIOS E, GRAPSA E. Does the extracorporeal circulation worsen anemia in hemodialysis patients? Investigation with

- advanced microscopes of red blood cells drawn at the beginning and end of dialysis. Int J Nanomedicine 2013; 8: 3887-3894.
- 11) HANEYA A, PHILIPP A, VON SUESSKIND-SCHWENDI M, DIEZ C, HIRT SW, KOLAT P, ATTMANN T, SCHOETTLER J, ZAUSIG Y, RIED M, SCHMID C. Impact of minimized extracorporeal circulation on outcome in patients with preoperative anemia undergoing coronary artery bypass surgery. ASAIO J 2013; 59: 269-274.
- 12) HIJAZI EM. Comparative study of traditional long incision vein harvesting and multiple incisions with small skin bridges in patients with coronary artery bypass grafting at King Abdullah University Hospital--Jordan. Rev Bras Cir Cardiovasc 2010; 25: 197-201.
- TERADA Y, SEKII H, ICHIKAWA S, KONDO Y. [Simultaneous operation of off-pump coronary artery bypass grafting and Y-grafting through median laparotomy incision; report of a case]. Kyobu Geka 2010; 63: 486-488.
- 14) ENG JB. Combined repair of aortic arch aneurysm and coronary artery bypass grafting via a modified clamshell incision. Med J Malaysia 2007; 62: 177-178.
- 15) STRANG F, SCHUNKERT H. C-reactive protein and coronary heart disease: all said--is not it? Mediators Inflamm 2014; 2014: 757123.
- 16) VERONESI G, GIANFAGNA F, GIAMPAOLI S, CHAMBLESS LE, MANCIA G, CESANA G, FERRARIO MM. Improving longterm prediction of first cardiovascular event: the contribution of family history of coronary heart disease and social status. Prev Med 2014; 64: 75-80.
- DICKSON VV. How older workers with coronary heart disease perceive the health effects of work. Workplace Health Saf 2013; 61: 486-494.
- 18) CHAOXIN J, DAILI S, YANXIN H, RUWEI G, CHENLONG W, YAOBIN T. The influence of angiotensin-converting enzyme 2 gene polymorphisms on type 2 diabetes mellitus and coronary heart disease. Eur Rev Med Pharmacol Sci 2013; 17: 2654-2650
- WALTERS K, RAIT G, PETERSEN I, WILLIAMS R, NAZARETH I. Panic disorder and risk of new onset coronary heart disease, acute myocardial infarction, and cardiac mortality: cohort study using the general practice research database. Eur Heart J 2008; 29: 2981-2988.
- 20) GOLDENBERG I, GOLDBOURT U, BOYKO V, BEHAR S, REICHER-REISS H. Relation between on-treatment increments in serum high-density lipoprotein cholesterol levels and cardiac mortality in patients with coronary heart disease (from the Bezafibrate Infarction Prevention trial). Am J Cardiol 2006; 97: 466-471.
- STULAK JM, DEARANI JA, BURKHART HM, AMMASH NM, PHILLIPS SD, SCHAFF HV. Coronary artery disease in adult congenital heart disease: outcome after coronary artery bypass grafting. Ann Thorac Surg 2012; 93: 116-122; discussion 122-123.

- 22) LOPATIN IU M, DRONOVA EP. [Clinical-pharmacoeconomical aspects of ss-adrenoblockers use in patients with ischemic heart disease undergoing coronary artery bypass grafting]. Kardiologiia 2010; 50: 15-22.
- 23) HAUSMANN H, ENNKER J, TOPP H, SCHULER S, SCHIESSLER A, HEMPEL B, FRIEDEL N, HOFMEISTER J, HETZER R. Coronary artery bypass grafting and heart transplantation in end-stage coronary artery disease: a comparison of hemodynamic improvement and ventricular function. J Card Surg 1994; 9: 77-84.
- 24) YAU TM, ZHANG T. In patients with coronary artery disease and heart failure, the addition of coronary-artery bypass grafting to medical therapy has no effect on the overall risk of death from any cause, but assessment of suitability for surgery may predict survival benefit in subgroups. Evid Based Med 2012; 17: 178-179.
- 25) SAVCHENKO AP, AKCHURIN RS, RUDENKO BA, SHIRIAEV AA, CHERKAVSKAIA OV, KOZLOV GV. [Long-term follow-up use of "cypher" sirolimus-eluting stents in patients with coronary heart disease after coronary artery bypass grafting with occlusive lesions of the coronary artery]. Vestn Rentgenol Radiol 2010; 4-12.
- 26) Melek FE, Baroncini LA, Repka JC, Nascimento CS, Precoma DB. Oxidative stress and inflammatory response increase during coronary artery bypass grafting with extracorporeal circulation. Rev Bras Cir Cardiovasc 2012; 27: 61-65.
- 27) HANEYA A, PUEHLER T, PHILIPP A, DIEZ C, RIED M, KOBUCH R, HIRT SW, METTERLEIN T, SCHMID C, LEHLE K. Coronary artery bypass grafting in patients with type 2 diabetes mellitus: a comparison between minimized and conventional extracorporeal circulation. ASAIO J 2011; 57: 501-506.
- 28) LEHR EJ, ODONKOR P, REYES P, BONATTI J. Minimized extracorporeal circulation for the robotic totally endoscopic coronary artery bypass grafting hybrid procedure. Can J Cardiol 2010; 26: e286-287.
- 29) TASDEMIR O, VURAL KM, KARAGOZ H, BAYAZIT K. Coronary artery bypass grafting on the beating heart without the use of extracorporeal circulation: review of 2052 cases. J Thorac Cardiovasc Surg 1998; 116: 68-73.

- 30) Martins GF, Siqueira Filho AG, Santos JB, Assuncao CR, Bottino F, Carvalho KG, Valencia A. Trimetazidine on ischemic injury and reperfusion in coronary artery bypass grafting. Arq Bras Cardiol 2011; 97: 209-216.
- 31) PRABHU A, SUJATHA DI, KANAGARAJAN N, VIJAYALAKSHMI MA, NINAN B. Effect of N-acetylcysteine in attenuating ischemic reperfusion injury in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Ann Vasc Surg 2009; 23: 645-651.
- 32) FONTAN F, MADONNA F, NAFTEL DC, KIRKLIN JW, BLACK-STONE EH, DIGERNESS S. The effect of reperfusion pressure on early outcomes after coronary artery bypass grafting. A randomized trial. J Thorac Cardiovasc Surg 1994; 107: 265-270.
- 33) JUNG JS, CHUNG CH, LEE SH, CHO SH, LEE JH, RYU JG, SONG H, LEE JW, CHOO SJ. Flow characteristics of LIMA radial composite sequential bypass grafting and single LIMA and saphenous vein sequential bypass grafting performed under OPCAB. J Cardiovasc Surg 2012; 53: 537-544.
- 34) Letsou GV, Wu YX, Grunkemeier G, Rampurwala MM, Kaiser L, Salaskar AL. Off-pump coronary artery bypass and avoidance of hypothermic cardiac arrest improves early left ventricular function in patients with systolic dysfunction. Eur J Cardiothorac Surg 2011; 40: 227-232.
- 35) HOULIND K, KJELDSEN BJ, MADSEN SN, RASMUSSEN BS, HOLME SJ, NIELSEN PH, MORTENSEN PE. On-pump versus off-pump coronary artery bypass surgery in elderly patients: results from the Danish on-pump versus off-pump randomization study. Circulation 2012; 125: 2431-2439.
- 36) VOUHE P, RAISKY O. Comment. Coronary lesions after arterial switch operation: Is there a place for minimally invasive direct coronary artery bypass? Interact Cardiovasc Thorac Surg 2013; 17: 1041-1042.
- 37) Shu Q, Shi Z, Xu WZ, Li JH, Zhang ZW, Lin R, Zhu XK, Yu JG. Experience in minimally invasive Nuss operation for 406 children with pectus excavatum. World J Pediatr 2011; 7: 257-261.
- SAKURADA T, KIKUCHI Y, KOUSHIMA R, KUSAJIMA K. [Minimally invasive direct coronary artery bypass grafting (MIDCAB) for re-operation in a 85 year-old patient]. Kyobu Geka 1998; 51: 566-569.