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Abstract. - OBJECTIVE: Etiology of Autism
Spectrum Disorders (ASD) is insufficiently
known. It is suggested that genes play a crucial
role in ASD but additional environmental factors
to exacerbate the syndrome are needed. Recent-
ly, the inflammatory factors in ASD that may pre-
dispose to the disorder attract a great attention.
Therefore, the aim of this article was to review
the literature on the possible association of the
immune system malfunctions with the risk of
developing ASD.

MATERIALS AND METHODS: Available arti-
cles from PubMed and Google Scholar were ana-
lyzed using time descriptors: 1996-2015 and key
words: autism spectrum disorder, cytokines and
immune system.

RESULTS: Individuals with ASD demonstrate
aberrant immune response in central nervous sys-
tem, peripheral blood and gastrointestinal tract.

CONCLUSIONS: Immune malfunctions may
play a role in developing ASD.
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Introduction

Autism spectrum disorder (ASD) is a disabling
neurodevelopmental disorder with social and
communication deficits and stereotypic beha-
viours'. The etiology of ASD is unclear but evi-
dence suggests multifactorial background. Onore
et al> suggest that genes plays a crucial role in
ASD, while additional environmental factors are
needed to exacerbate the syndrome. Of note, it
was shown that defects in immunity play a role in
brain development and synaptic functions thus in
the pathogenesis of ASD".
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Individuals with ASD demonstrate an aber-
rant immune response in central nervous system
(CNS)*, peripheral blood®® and the gastrointe-
stinal tract'®!*. Overactivation within microglia
and astrocytes was proved in post-mortem brain
bioptates and biomarker studies'*'*. Increased
autoimmunity mainly due to maternal anti-fe-
tal brain antibodies crossing the placenta during
pregnancy was found'®. Inflammatory cytokines
concentration was found to be altered in serum,
placenta and cerebral spinal fluid in children with
autism and their relatives*'>!7. Moreover, skewed
production of immunoglobulins or B- and T-cell
dysfunction confirmed that humoral and cellular
response is altered in individuals with ASD'.
Additionally, the presence of gastritis, lymphoid
nodular hyperplasia, colonic lymphoid nodular
hyperplasia, eosinophilic infiltration and others'
confirmed that these inflammatory alterations af-
fect the digestive system as well.

The immune and CNS communicate extensi-
vely. While lymphoid organs are hardwired by
autonomic nervous system and neuroendocrine
hormones serve as a regulator of cytokines balan-
ce, the immune homeostasis is critical for proper
neurodevelopment and thereby behavior'*2'. The-
se brain-to-imumune interactions may be respon-
sible developing immune-mediated diseases.

Cytokine proteins impact directly on neurons
activity. They are involved in neurodevelopment,
as well in prenatal as in postnatal period*. The-
re is also a body of evidence linking cytokines
to higher order neurological functions, including
cognition and memory*-**. Therefore, disruption
within cytokine homeostasis may be responsible
for a variety of neurological consequences rele-
vant to ASD.
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Interleukin 1B (IL-1B) is present in the ner-
vous system during neurogenesis, migration, dif-
ferentiation, synapse formation, plasticity, and
responses to injury®. It was proved that perma-
nent expression of II-1B in hippocampus impairs
spatial memory*. The protein was found to be
involved in neural progenitor cell proliferation
in particular CNS regions which contribute to re-
gion-specific growth in autistic brains**’. IL-1B
is responsible for the formation of excitatory sy-
napses®. Moreover, this protein has been associa-
ted with altering sleep patterns and together with
other cytokines responsible for so called sickness
behaviour characterized by lethargy, depression,
anxiety, and difficulties in ability to focus and
express social skills®.

Interleukin 6 (IL-6) is involved in neuronal
precursors self-renewing, neuronal migrating and
promoting cell survival®’. The cytokine was found
to be responsible for regulating neurite outgrowth,
as well*!, The protein and its receptors are expres-
sed in brain of healthy and disease states, however
a low expression is needed for proper neurodeve-
lopment*. It was proved that permanent IL-6 ove-
rexpression results in reducing expression of glu-
tamate receptors and L-type calcium channels®.
IL-6 also promotes the predominance of excita-
tory to inhibitory synapses®* and the development
of proper recognition memory*°.

Interleukin 4 (IL-4) being expressed in the brain
is responsible for promoting oligodendrogenesis
of neuronal progenitor cells*. The cytokine was
also found to be involved in regulating progenitor
cell proliferation and differentiation’” and synapse
formation, particularly of GABAergic type®®. IL-4
also plays a neuroprotective role and promotes the
development of higher order cognitive processes
and the absence of the protein is associated with
loss of T-cell function in CNS*.

Interferon gamma (IFN-y) was found to be re-
sponsible for neuronal differentiation of neural
progenitor cells®®. The protein serves as a regulator
of dendritic morphology and synapses formation
and activity®. It was proved that overexpressing
IFN-y leads to elevated concentration of major
histocompatibility complex I (MHCI) proteins
in the brain*' and these proteins have been lately
found to be expressed in CNS to regulate synaptic
scaling®.

Tumor necrosis factor-o (TNF-o) may induce
cell death on neurons and prune synapses®. Tran-
sforming growth factor B (TGF-B1) acts as a regu-
lator of neuronal migration, neural cells survival
and synapse formation. The lack of the expression

of the protein results in altered CNS development
as extracellular matrix is disintegrated and defici-
ts in glutamatergic and GABAergic synapses fun-
ction occur*** leading to seizures, motor incoor-
dination and severe behavioral abnormalities***”.
In the light of these facts, the aim of this report
was to review the literature on the links between
the immune-related factors and developing ASD.

Materials and Methods

Available articles from PubMed and Google
Scholar were analyzed using time descriptors:
1996-2015 and key words: autism spectrum disor-
der, cytokines, immune system, immunity.

In order to present the analyzed issues in the
clearest and most comprehensive way, the article
is divided into the following subsections:

* Altered immune function in ASD patients in
prenatal period
 Altered immune function in postnatal period

— Neuroinflammation

— Cytokine and chemokine profile

— Imunoglobulin levels

— Cellular response

— Gastrointestinal malfunctions

— Sensitivity toward environmental toxicants

Results

Altered Immune Function in Asd Patients
in Prenatal Period

Growing evidence indicates that maternal au-
toantibodies influence harmfully to fetus brain
development*#°. These are IgG class immunoglo-
bulins providing passive immunity to the fetus as
they are able to transplacental transmission, ne-
vertheless pathogenic autoantibodies are devoid
of those advantageous properties'’. In animal stu-
dies it was shown that they alter socially the beha-
vior of the offspring. Moreover, it was proved that
specific neural antibody are induced during gesta-
tion and the offspring demonstrates histological
abnormalities in the brain and cognitive declines
in later life*'.

The direct properties of these molecules, ei-
ther in terms of pathogenicity or targets of anti-
bodies, have not been fully identified. Neverthe-
less in 2008, Braunschweig et al characterized
those molecules and showed significantly higher
autoreactivity toward a protein at 37 and 73kDa
in mothers of ASD children'®*. The researchers
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have now identified 7 specific target antigens:
lactate dehydrogenase A and B (LDH), cypin,
stress-induced phosphoprotein 1 (STIP1), collap-
sin response mediator proteins 1 and 2 (CRMP1,
CRMP2), and Y-box-binding protein and have
coined the term “maternal autoantibody-related,”
or MAR, autism for these cases. Exclusive reacti-
vity to specific antigen combinations was noted in
23% of mothers of children with ASD and in only
1% of mothers of normally developing children®.
The putative antigens are thought to be present on
GABAenergic interneurons in the brain->>.

While vitamin D acts as a neuroactive mole-
cule it participates in neuron differentiation and
synapses action®. Link between vitamin D defi-
ciency in pregnant women and their child deve-
loping ASD exists. Autistic characteristics seem
to disapear after administering the vitamin®’, and
conception during low UVB penetration favors
ASD children deliveries®®. Pioggia et al*’ in their
systematic review concluded that vitamin D, defi-
ciency is associated with ASD especially in dark
skinned children and the effect of the lack of vita-
min D, in pregnant mothers is transmitted to the
offspring. Few animal model experiments proved
the impact of proper vitamin D level during gesta-
tion on brain and ventricles sizes, often enlarged
in autistic subjects®. In general, there is still no
conclusive evidence for an association between
the mother having vitamin D deficiency and the
offspring developing ASD as few studies lacking
such evidence exist®' ¢,

Exposure to various infections (viral and bacte-
rial) in prenatal life increases the risk for developing
ASD. Particularly rubella, herpes simplex, cytome-
galovirus, measles or viral meningitis in the first
pregnancy trimester or bacterial infection during the
second trimester are associated with ASD behaviour
in their offspring®. Maternal infection alters specific
cytokine levels as well in maternal body as in pla-
centa and fetal brain. It was proved that cord blo-
od concentration of IL1-B facilitates neurological
outcome in infants exposed to neonatal hypoxia® .
Other study showed no association between mild
common infections or febrile episodes and ASD in
offspring, but reported increased risk for ASD child
delivery after maternal influenza infection or pro-
longed fever and antibiotics administration®, In fact
when influenza virus was intranasaly infused shortly
after fertilization in mice, the offspring’s social beha-
viour was altered”’. Intraperitoneal administration
of poly (I:C) mimicking viral infection, at different
times of gestional days resulted in various behavio-
ral phenotypes. High anxiety and decreased social
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interaction was observed when infection factor was
administered at gestational day (GD) 12.5 while per-
severant behaviour was noted in case of GD17 and
additionally unobserved when inflammogen was
infected at GD9**%. It proves that a critical period
for the development of certain pro-social behaviors
exists and that susceptibility to the development of
ASD increases during GD177°. Furthermore rodent
experiments suggested that maternal immune acti-
vation can result in spatially restricted deficit in Pur-
kinje cells™.

Additionally, maternal history of any autoim-
mune disease shows increased risk for ASD%. The
association was confirmed in epidemiological stu-
dies in 40% of studied patients’*"*. The significant
association was reported for autoimmune thyroidi-
tis or hypothyroidism, rheumatic fever, rheumatoid
arthritis, celiac disease, ulcerative colitis, psoriasis
and Type 1 diabetes™. Also, epigenetic regulation
of transcription is believed to be associated with
autoimmune diseases, therefore immunogenetical
components of ASD may play a crucial role in de-
veloping ASD”. Variations in MET proto-oncoge-
ne tyrosine kinase pathway or serine and threonine
kinase C genes can be inherited by ASD children
and should be considered as they are involved in
innate and adaptive immunity’®”’. Other genes that
should take attention are those related to NK cells,
macrophage inhibitory factor, reelin or mitochon-
drial respiratory chain disease™.

Altered Immune Function in Asd Patients
in Postnatal Period

Neuroinflammation

Ongoing neuroinflammation in post-mortem
brain bioptates and in biomarker studies is a pro-
of of dysregulated immunity in ASD'*", Increased
cell packing and small neuronal size in limbic sy-
stem and paucity of Purkinje and granular cells in
cerebellum can partially explain the inflammation,
either systemic or local in ASD’®, however the in-
flammatory response within CNS has been linked
to mast cells and microglia/astrocyte activation”.

Microglia cells, present particularly in dien-
cephalon, are mononuclear cells possessing pha-
gocytic activity within CNS¥. They are respon-
sible for cytokine and reactive oxygene species
production within CNS. In addition they regulate
synaptogenesis and neurogenesis®'*2, Multiple
studies reported that microglia cells were pro-
minently activated in ASD brains thereby acted
neurodestructively. It was suggested that the
activation disrupts brain blood barrier (BBB) in



Immune related factors in pathogenesis of autism spectrum disorders

ASD via secretion of vascular endothelial growth
factor®*. Moreover, cytokines and chemokines
production were highly increased in brain spe-
cimens and cerebral spinal fluid (CSF). These
were: [FN-y, IL-1B, IL-6, IL-12p40, TNF-a and
chemokine CCL-2*'*!5, The inflammation was di-
scovered particularly in areas with white matter
overgrowth shortly after the collapse of the deve-
lopment'*+!'>%_ It was shown that neuron-specific
reaction is associated with microglial activation
in dorsolateral cortex and the neuronal pattern
organization may be disrupted in later ASD li-
fe'. In other post-mortem study it was reported
that microglial activation was widespread in the
fronto-insular and visual cortices in subjects with
ASD. Because of the anatomical distinct of these
parts it was discussed whether density of micro-
glia in autistic brains is higher throughout the ce-
rebral cortex®’.

The probable reason for microglia activation may
be linked to perturbations in complement production
in ASD individuals. The complement component
Clq seems to be a key factor which influences neu-
rodevelopment in humans. The protein Clq is the
largest component of the complement system to
activate the classical complement pathway, by bin-
ding of C1 to initiate the given activator for intense
antigen-antibody immune complex. Clq has been
found to play a key role in microglia-mediated sy-
naptic pruning in typical developing human brain
where it can activate the complement cascade and
produce C3/CR3 signaling®. This signaling in turn
further activates and promotes microglia phagocyto-
sis. Inflammatory insults which result in chronic
elevation in serum Clq inhibiting factor leading to
relative C1q dysfunction®® .

Astrocytes play role in repairing brain tissue
after injury, lining the BBB, balancing extracel-
lular ion concentration and transporting nutrients
to neurons®. They are involved in synaptogenesis
during development, as well. When permanently
activated gliosis occurs brain damage develops.
Astrocyte markers concentration, for instan-
ce, glial fibrillary acidic protein, are elevated as
well in the CSF as in post-mortem ASD brain tis-
sues’”?. Other astrocyte markers concentration,
such as aquaporin 4 and connexin 43 have also
been found to be increased in autistic brains®.

Cytokine and Chemokine Profile

The cytokine profile, as well pro- as anti-in-
flammatory, in ASD patients is altered. Few stu-
dies reported decreased concentration of TNF-3
in serum samples from subjects with ASD and

its linkage with autism severity was proved. In-
sufficient amount of TGF-f is critical for inflam-
mation control as the molecule is related to cell
migration, apoptosis and regulation within im-
mune system and CNS. Lower concentration of
TGF-p were found to be associated with lower
adaptive behaviours®%. Increased TNF-a con-
centration in ASD brain, cerebrospinal fluid or
blood cells is able to block synaptic communica-
tion””. Plasma level of leptin functionally mimi-
cking IL-6 and IL-12 is also increased and able
to pass the BBB®. The observation was critical-
ly made in children with early onset autism®.
Elevated levels of macrophage inhibitory factor
(MIF) was additionally observed in individuals
with ASD. As the molecule is responsible for
maintaining neural and endocrine systems, the
highest concentration of MIF was marked in
children with the most severe autism®'®. The
findings of recent meta-analysis identified signi-
ficantly altered concentrations of cytokines as
IL-1B, IL-6, IL-8, IFN-y, eotaxin and monocyte
chemotactic protein-1 in ASD, strengthening
evidence of an abnormal cytokine profile in
ASD where inflammatory signals dominate'®'.
Cytokines are overexpressed upon toll like re-
ceptor 2 (TLR2) and TLR4 but not TLRY sti-
mulation. The overproduction of cytokines has
been associated with altered behaviour and
nonverbal communication'®?. Increased plasma
concentrations of platelet derived growth factor
(PDGF) have been reported in autistic patients
with more impaired communicative and beha-
vioral skills as well as restricted stereotypic
activities”!%,

On the other hand, it should be noted that peri-
pheral blood mononuclear cells from ASD patien-
ts were find to secrete more IL1RN, sTNFRI and
sTNFRII, limiting the inflammatory response, in
company with higher production of anti-inflam-
matory IL-10'"419 ]t was shown that during a
fever, when pro-inflammatory proteins concen-
tration is heightened and T lymphocyte subsets
activated, hyperactivity and stereotypia or spee-
ch impairment are reduced'®. Taken together, the
data indicates that the aforementioned cytokines
milieu can influence behaviour and increase risk
of developing ASD.

Chemokines serve chemotactic properties wi-
thin the immune system. Studies confirmed the
elevated levels of MCP-1, RANTES, as well as
CCL-2 and CCL-5 in autistic patients. Chemoki-
ne imbalance was found to be associated with
more impaired developmental and adaptive fun-
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ction, thereby the exact role of these chemokines
in ASD pathogenesis need to be elucidated’™.
The conclusions of the Early Markers for Autism
(EMA) study carried out by Zerbo et al'” are pro-
mising. The authors suggested that measurement
of immune system function, especially chemoki-
nes: MCP-1, RANTES, MIP-1aq, in the first few
days of life may aid in the early identification of
abnormal neurodevelopment.

Immunoglobulin Levels

The role of antibodies in ASD pathogenesis has
been extensively studied. Lower levels of IgM
and IgG classes of immunoglobulin were mar-
ked in ASD children and linkage with impaired
behaviour was proved'®. The later studies revea-
led increased level of neutralizing [gG4 antibo-
dies among IgG subclass!®. Additionally, in ASD
patients alterations in BBB result in inducing
expression of specific autoantibodies of IgM, 1gG
an IgG classes as a consequence of exposure to
neuron-derived antigens. The single specific tar-
get have yet to be identified nevertheless single
studies indicate antibodies against serotonin re-
ceptors, myelin basic protein, heat shock proteins,
various brain tissue proteins. The lack of target
specificity may be a consequence of cellular da-
mage and the emergence/revealing of sequestered
or new epitopes due to antibody generation®. Such
processes promote neuroinflammatory conditions
in ADS patients but studies are still continuing to
confirm this hypothesis'®.

The presence of circulating antibodies directed
toward brain or nuclear proteins® in ASD patients
have been mentioned in a few reports. Wills et al>
examined plasma samples of children with ASD
for antibodies directed against human cerebellar
proteins. Protein analyses revealed that 21% of
subjects with ASD produce antibodies reactive
toward a cerebellar 52kDa protein. Intense im-
munoreactivity was determined morphologically
to be the Golgi cell of the cerebellum™. A signi-
ficantly higher percent seropositivity of anti-nu-
clear antibodies in ASD patients with/without a
family history of autoimmunity in comparison to
healthy children was found. Furthermore, ASD
individuals have marked serum anti-myelin-asso-
ciated glycoprotein antibodies'” and elevated se-
rum levels of anti-ganglioside M1 antibodies than
healthy children''".

Additionally, the presence of anti-nuclear an-
tibodies has been shown to be positively correla-
ted with disease severity, mental retardation and
electroencephalogram abnormalities''2.
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Cellular Response

Several alterations comprising B and T cells, na-
tural killer (NK) cells and monocytes function in
company with autoantibodies production have been
observed in ASD'*!"*, There is evidence indicating
increased response of Thl cells instead of Th2'.
HLA-DR high level in CD3+ T cells was stated pre-
viously as the allele is associated with late cellular
response’®. Moreover, CD26 (dipeptidyl peptida-
se IV) expression was increased on CD8+ T cells.
CD26 being marker associated with effector cell
phenotype in human CNS diseases makes the disco-
very significant’. In vitro stimulation of co-stimula-
tory and activation markers resulted in higher levels
of CD137 and decreased levels of CD134, CD25 on
T cells of children suffering from ASD’. Increased
T lymphocytes activation may be associated with
maintaining activated cells due to decreased apopto-
sis, as seen in Crohn’s disease!'. Additionally, adhe-
sion molecules are known to control the passage of T
cells across endothelium. In high functioning autistic
children, the concentration of such adhesion factors
like SPECAM-1, sP-Selectin and sL-Selectin were
decreased'”!"® and the low selectin level has been
found to be associated with altered social skills''®.

NK cells serving viral response, tumor cyto-
toxity and autoimminity roles have been shown
to be dysregulated in ASD'"1%°, The expression of
few NK cells receptors and effectors were altered
and significantly associated with NK cells fun-
ction. These were perforin, granzyme B, and [FNy
marked under resting conditions in children with
ASD. Precise stimulation of NK cells obtained
from ASD patients showed decreased cytotoxicity
in compare to control cells. It was proposed that
low glutathione, IL-2 and IL-15 may be responsi-
ble'?!. In general, the mechanism behind this low
NK cell activity need to be clarified.

Monocytes identify pathogens via TLRs and
subsequently direct immune response. Dormant,
peripheral blood monocyte life is short but upon
inflammation they tend to escape apoptosis and
via CCL-2 and CCL-7 chemokines are transported
to the inflammation area where they differentiate
into macrophages'**'*. When recruited into CNS
they develop into microglial cells and play crucial
role in CNS inflammation'*. Significant differen-
ces in pro-inflammatory cytokine production by
monocytes from ASD patients were observed un-
der different TLRs stimulation. While TLR-2 and
TLR-4 favoured the condition, TLR-9 stimulation
decreased cytokine production. This altered immu-
nity response in ASD subjects can have a wide ran-
ge impact on neural function in autistic people'®.
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Gastrointestinal Malfunctions

Immune alterations within gastrointestinal tract
have been associated with ASD phenotype as well
as its contribution to the neurodevelopment or au-
tism severity'*. Symptoms of digestive tract dise-
ases was observed in 9-84.1% autistic individuals
depending on study type (retrospective vs pro-
spective) and inclusion criteria'>'#*. Symptoms
such as excessive production of intestinal gases,
flatulence, abdominal pain, diarrhea, belching,
symptoms of gastroesophageal reflux or consti-
pation have been attributed to changes in gut mi-
croflora as well as elevated intestinal permeability
and intestinal inflammation'?*!3°, Interviewing the
parents of ASD patients indicated coexisting se-
vere behavioral symptoms with the ongoing ga-
strointestinal problems.

Intestinal microbiota is an important factor con-
tributing to the organism homeostasis. Intestinal
dysbiosis, being a qualitative-quantitative disor-
der among particular groups of microorganisms,
is considered to be the etiological agent of many
types of diseases, infer alia inflammatory bowel
diseases, obesity and atopic diseases'®!. Gastroin-
testinal tract microbiome and enteric neurons are
directly connected, forming part of the axis of
microbes-small intestine-brain. Therefore, regu-
latory activity of microbiota on the CNS occurs
via neuronal, endocrine, metabolic and immune
pathways'*2. Shaw et al'** attempted to understand
the correlation of intestinal microbiota with the
occurrence of clinical symptoms of autism in a
case study. There were two brothers with ASD in
the study who showed the presence of Krebs cycle
metabolite analoges and high concentrations of
arabinose in the urine. The compounds were not
present in the urine of healthy subjects. The de-
scribed phenomenon is considered as the result of
colonization of the gastrointestinal tract by bacte-
ria and/or yeasts, whose metabolites are inhibitors
of mitochondrial Krebs cycle. Moreover, potential
impact of the microbiota in the initiation/ deterio-
ration of ASD symptoms comes from a significant
improvement in behaviour of children overtre-
ated with vancomycin'**!**, The frequent use of
antibiotics, mainly because of ear infections, was
thought to interfere strongly intestinal ecosystem,
promote the multiplication of pathogenic micro-
organisms, including toxigenic strains of the Clo-
stridium sp. Autistic neurological symptoms may
develop following the direct action of tetanus neu-
rotoxin-tetanospasmin. Accumulation of bacterial
toxins in conjunction with excessive intestinal
permeability observed in children with ASD, le-

ads to increased blood concentration of toxicants
resulting in systemic symptoms. Further studies
of the intestinal ecosystem in children with ASD
found a significant increase in the number of dif-
ferent species of Clostridium species, in compari-
son to the control group'*®!37. These observations
were confirmed in Parracho et al'** analysis, who
described the population of Clostridium histolyti-
cum to be overgrown in ASD patients. Finegold
et al'¥’, discovered the overgrowth of Clostridium
bolteae in the feces of persons with ASD. In addi-
tion to the best documented Clostridium spp over-
growth in the gastrointestinal tract of ASD indivi-
duals, there are also studies suggesting abnormal
commensal bacteria milieu. It was demonstrated
that in children with severe ASD Bacteroidetes fa-
mily predominates, while Firmicutes were more
often found in healthy children'?’.
Gastrointestinal disruptions in autistic patients
are functional as well as organic disorders. Immu-
ne tissue in gastrointestinal tract is the largest and
most complex immune system in humans. Epithe-
lial cells provide both innate and adaptive immu-
ne responses'®’. Innocuous milieu within intestine
makes proinflammatory Th2-dependent, Thl-de-
pendent delayed-type hypersensitivity, IgG anti-
bodies and Th17-dependent granulocytic respon-
ses to be suppressed. Histopathological findings
such as gastritis, lymphoid nodular hyperplasia,
colonic lymphoid nodular hyperplasia, eosinophi-
lic infiltration and others'? was significantly mo-
re common in children with ASD. Additionally,
many inflammatory transcripts detected within
gastrointestinal tract are common for ASD and
Crohn’s disease or ulcerative colitis'®. Few obser-
ved changes (eosinophilic infiltration) can be par-
tially resolved in children with autism as a result
of dietary intervention as a result of treating non
allergy food hypersensitivity. This is especially
evident due to increased permeability of the ASD
individuals small intestine mucous membrane
which is observed even in patients with nonspeci-
fic inflammatory bowel disease, celiac disease or
cystic fibrosis!>!*?, Homeostasis of intestinal bar-
rier provides selective and preferential absorption
of nutrients from the intestinal lumen, thereby
preventing bloodstream migration of pathogens
and toxicants'*'. Selective loss of intestinal barrier
function is thought to be associated with IgE-in-
dependent food hypersensitivity with delayed
mechanism of reaction. Penetration of undigested
food particles through the gut barrier activates the
immune system, leads to the specific IgG antibo-
dies production, immune complex formation and
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thereby inflammation development'*>. Taking to-
gether the data, the most common practice is re-
strictive dietary elimination especially of gluten
and casein from the diet of ASD patients'. This
is also associated with dipeptyl peptidase IV de-
ficiency described in ASD patients. The enzyme
is a brush border serine peptidase involved in the
digestion of partial decomposition products of
casein and gliadin named gliadomorphins and ca-
somorphin, respectively. The described molecules
have the properties of opioids therefore penetra-
ting CNS may alter the behaviour of autistic pa-
tients'*. So far conducted analyses have shown
a significantly increased levels of IgG antibodies
specific to both gluten and casein in children with
ASD compared with typically developing ones'*.
In the light of these facts, it seems appropriate to
assess all food components penetrating through
the intestinal barrier and implement targeted eli-
mination diet. Nevertheless, there are difficulties
in determining the actual impact of an elimination
diet on the functioning of patients with autism. It
is known that only a certain group of patients clin-
gs to profit from this type of nutrition, while in
the rest of the group diet has no effect on both the
ailments of the gastrointestinal tract, as well as the
level of functioning of the child'+'*.

Sensitivity Toward Environmental Toxicants
Environmental toxicants can disrupt proper
neurodevelopment and immunity. Autistic chil-
dren susceptibility to halogenated aromatic hy-
drocarbons (HAH) is specific as ryanodine re-
ceptor expression in autistics brain is altered®.
All in all HAH generally disrupt immunity by
diminishing cellular response and causing lym-
phoid organs atrophied®. Among few HAH toxi-
cants polybrominated diphenyl ethers (PBDEs)
have been studied. When peripheral mononuclear
blood cells from ASD patients were treated with
PBDE:s followed by bacterial derivative lipopoly-
saccharide stimulation, cytokines and chemokines
production in cell culture was critically increased.
Opposite findings were discovered in control cell
cultures originated in typically developing chil-
dren'¥. The toxicant has been, therefore, con-
sidered as an immune supressor in neurotypical
people. Many other toxicants such as solvents,
phtalates, pesticides or heavy metals have be-
en studied. Mercury and lead may lead to auto-
antibody production'’'* or skewed production
of cytokines’. Organochlorine pesticides disrupt
calcium and sodium channels as well as GABA
receptors thereby induce neuro and immuno-
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toxicity'"*'*!. Organophosphates upregulate Thl
and Th2 cytokines which evolve them into mal-
function of adaptive response’. Pyrethroids were
found to suppress IFN-y and IL-4'*? production
and upregulate production of IL-12 and TNFa'*.

Conclusions
The immune response in individuals with ASD

is altered. These malfunctions may be responsible
for ASD development.
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