Screening of genes related with intervertebral disc disease by dynamic differential interaction network analysis

K. JIANG¹, Y. LI², G.-Y. CAO³, D. LIU¹, D.-F. LIAO¹, K. GONG¹, O.-Y. XIE¹, Z.-H. MA¹, X.-M. PAN¹

Abstract. – AIM: Gene expression profiles for intervertebral disc (IVD) cells treated with different osmolarities were compared to identify key genes associated with intervertebral disc diseases.

MATERIALS AND METHODS: Microarray data was downloaded from Gene Expression Omnibus (GEO) database and pre-processed using package of R. Gene co-expression was determined with Pearson correlation coefficient. Interaction networks were established with the protein-protein interaction (PPI) information obtained from Human Protein Reference Database (HPRD database) for the two conditions: isosmoticity and hyperosmosis, and then a comparative analysis was done to identify disease-related genes. The functional annotation was performed for these genes using network ontology analysis (NOA), which also confirmed the effectiveness of this method.

RESULTS: A total of 45 feature genes were obtained through comparing 7 samples treated under isosmotic conditions and 9 high osmotic conditions. Biological processes and molecular functions were then revealed by NOA.

CONCLUSIONS: A range of disease-related genes were obtained, which might serve as the potential biomarkers or drug targets. More works are needed to further elucidate their roles in the development of intervertebral disc diseases like intervertebral disc herniation.

Key Words:

Intervertebral disc, Differential co-expressed genes, Co-expressed network, Disease-related genes.

Introduction

Intervertebral disc (IVD) is located between vertebrae of the human spine, and comprised of cartilage, annulus fibrosus and nucleus pulposus. And the nucleus pulposus contains mucopolysac-

charide protein complexes, chondroitin sulfate and water (60%-90% of total weight)¹. Alterations occur in IVD in response to various external stimuli, especially altered osmotic pressure, which leads to hydration in IVD. And long-term exposure to high osmotic pressure results in intervertebral disc herniation (IDH).

Changes in a series of genes and proteins rise up in response to hyperosmotic stimuli²⁻⁶. Previous study has indicated that vitamin D receptor is associated with IDH7. The polymorphisms of this gene is linked with a variety of disease, such as osteoporosis, osteoarthritis, cancer, and cardiovascular disease8. Sox9 gene therapy was also proposed to treat intervertebral disc disease9. However, generally, there was few genes related with IDH have been revealed. Therefore, microarray technology was adopted to observe gene expression in intervertebral disc cells under isosmotic conditions and high osmotic conditions were compared in present study to identify feature genes implicated in the IDH, which may be developed into biomarkers or drug targets.

As we know, interactions in multiple genes or pathways are necessary to fulfill biological functions and diseases rise from alterations in a range of genes or pathways, which impose challenges to identification of disease-related genes ¹⁰⁻¹¹. Several methods have been developed ¹²⁻¹³, but these methods focus on differential expression analysis and ignore the dynamic interactions between proteins. Comparative analysis about interaction networks reflecting disease state and normal state takes advantages in disclosing the mechanisms. Therefore, such method was set up in present study and several IDH-related genes were identified from a previously collected microarray data set.

¹Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, China

²Department of Oncology, Chengdu Military General Hospital, Chengdu, China

³Department of Orthopaedics, Chongqing Municipal Corps Hospital, Chinese People's Armed Police Forces, Chongqing, China

Materials and Methods

Microarray Data and Protein-Protein Interaction

Microarray data set GSE1648¹⁴ including IVD samples under different osmotic pressures was downloaded from DEO database (http://www.ncbi.nlm.nih.gov/geo/). Human Genome U133A array (Affymetrix, Santa Clara, CA, USA) was used to obtain gene expression profile. A total of 11 samples were contained in the data set, 4 isosmoticity and 7 hyperosmosis. Package Robust Multiarray Average (RMA)¹⁵ of *R* was chosen for data normalization.

Information about protein-protein interactions (PPI) in Homo sapiens were downloaded from Human Protein Reference Database (HPRD) database (http://www.hprd.org)¹⁶⁻¹⁷. Self-interactions and duplicate one were removed and finally 37080 interactions among 9465 proteins were retained.

Differential Analysis of Gene Co-Expression Networks

As we know, co-expressed genes are often subject to common regulation and participate in the same or similar biological processes and pathways¹⁸. Thus, information on gene co-expression was extracted with Pearson correlation coefficient from the gene expression data of the samples under isotonic and hyper-osmotic conditions, respectively.

Then PPIs was screened with the co-expression information. Considering that Protein-Protein Interactions (PPIs) with low correlation coefficient don't exist in corresponding samples, those with high correlation coefficient were retained. Therefore, PPINs (PPI Networks) were established for samples under different osmolarites.

The PPIs shared by both networks were eliminated and the altered PPIs were thus uncovered, which indicated the different states of the IVD.

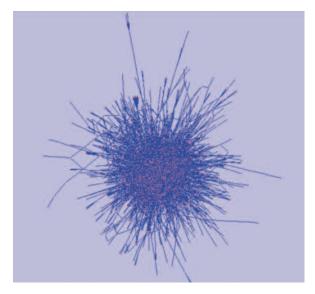
Screening of Genes Related With IDH

Differential PPIs in disease sample and controls were collectively referred to as disease-related interactions, indicating the dynamic changes in regulatory network. Genes in these interactions might play important roles in the development of disease and thus were called potential disease-related genes.

Validation and Functional Annotation For the Potential Disease-Related Genes

Validation of the potential disease-related genes was performed on the basis of the Cancer-

Genes database¹⁹. Then these genes were divided into two groups: up-regulated and down-regulated. NOA (Network Ontology Analysis)²⁰ was adopted for functional annotation.


Results

In the organism, the interactions between multiple proteins or pathways are the basis of biological process. In present study, differential PPIs between disease samples and normal samples were identified. Genes involved in these interactions are potential biomarkers or drug targets, and further studies may pave the way for their applications in diagnosis and treatment of IDH.


Differential PPIs and Potential Disease-Related Genes

PPIN for samples from isotonic conditions is shown in Figure 1 and that for samples from high osmotic conditions is shown in Figure 2. Differential protein-protein interactions were obtained through comparison. Genes included in these interactions and shared in both groups were regarded as potential IDH-related genes.

From Table I, it was clear that the number of gene co-expression decreased obviously in IDV samples under high osmotic conditions compared those under isotonic conditions. Therefore, we speculated that alterations occurred in protein levels and structures due to hyperosmosis, which in-

Figure 1. The PPIN for samples treated with isotonic conditions.

Figure 2. The PPIN for samples treated with high osmotic conditions.

terrupted the biological processed and finally lead to the incidence of IDH.

Screening of IDH-Related Genes

As the differential interactions were acquired, a total of 303 genes shared in both states were screened out. Expression levels for these genes were extracted from the 11 microarray data and normalized. Differential expression analysis was conducted with SAM method and 45 differentially expressed genes (DEGs) were finally revealed, 21 up-regulated and 24 down-regulated (Supplementary Table I).

Functional Annotation for ADH-related Genes

The significantly over-represented molecular functions and biological processes were for the up- and down-regulated genes are shown in Tables II, III.

Discussion

Alterations in a range of genes or pathways occur in the initiation and development of compli-

Table I. The basic information of the PPINs and disease-related genes.

	Isosmoticity		Hyperosmosis
Interactions	5628		451
Nodes	3661		570
Differential interaction	ons	5273	
Overlapped genes		303	
Candidate genes		45	

Supplementary Table I. ADH-related genes.

Down-Regulated Genes
SKP1 APEX1 ID3 ANXA2 ACTG1 SDC2 COL4A2 HNRNPA1 COL1A1 LIMS1 PSMB5 EGFR HDAC2 ZMYND11 POLR2B AIMP2 KHDRBS1 PSMA4 FYN TMED10 TXN
SNAP23 EEF1A1 PFN2

cated disease. Identifying these perturbations with a systematic view is helpful in diagnosis and treatment of corresponding disease²¹. In present study, we proposed a new method based up on differential network analysis, differing from traditional differential expression analysis²²⁻²³. Finally, a range of genes related with IDH were obtained.

S-phase kinase-associated protein 1 (SKP1) is a component of SCF complexes²⁴, which are implicated in the regulated ubiquitination of protein substrates and, thus, the degradation by proteosome. Accordingly, proteasome subunit beta 5 (PSMB5) and proteasome subunit alpha 4 (PSMA4) were also up-regulated. Previous studies have reported its roles in cell fate determination²⁵. It up-regulation in samples treated with high osmotic pressure suggested that protein profile

Table II. Functional annotation for up-regulated ADH-related genes biological process.

GO: term	Corrected p-value	Term		
GO:0007160	0.0705	Cell-matrix adhesion		
GO:0031589	0.1256	Cell-substrate adhesion		
GO:0001658	0.3859	Branching involved in ureteric bud morphogenesis		
Molecular function				
GO:0005515	0.0022	protein binding		
GO:0003968	0.1731	RNA-directed RNA polymerase activity		
GO:001512	0.3460	lactate transmembrane transporter activity		
GO:0004365	0.3460	glyceraldehyde-3-phosphate dehydrogenase		
GO:0008943	0.3460	(phosphorylating) activity glyceraldehyde-3-phosphate dehydrogenase activity		

changed greatly in response to this stimulation. APEX nuclease 1 (APEX1) is involved in DNA repair and it was also up-regulated, indicating increased frequency of DNA damage imposed by hyperosmosis. Syndecan 2 (SDC2) is a member of the syndecan proteoglycan family that mediate cell binding, cell signaling, and cytoskeletal organization. The up-regulation implied significant changes in several aspects. Changes in extracellular matrix organization were expectable and confirmed by the up-regulation of annexin A2 (ANXA2), collagen IV alpha 2 (COL4A2) and collagen I alpha 1 (COL1A1). Several proteins associated with protein transport were up-regulated, such as synaptosomal-associated protein (SNAP23) that implicated in vesicular transport²⁶, and transmembrane emp24-like trafficking protein 10 (TMED10) that involved in vesicular protein trafficking²⁷. This might be responsible for changes in extracellular matrix.

A number of down-regulated genes were also obtained. CD44 is a cell-surface glycoprotein involved in cell-cell interactions, cell adhesion and migration²⁸. CD59 is a cell surface glycoprotein that regulates complement-mediated cell lysis, and it is involved in lymphocyte signal transduction. Down-regulation in these genes might be associated with decreased defense response, suggesting that cell under high osmotic pressure pay less "attention" in this function. Cells might exhibit a lower degree in cell adhesion as integrin beta 1 (ITGB1, a subunit of integrin)²⁹ was down-regulated. Integrin-linked kinase (ILK) takes a

Table III. Functional annotation for down-regulated ADH-related genes biological process.

GO: term	Corrected p-value	Term		
GO:0009987	0.0068	cellular process		
GO:0048519	0.0676	negative regulation of		
		biological process		
GO:0051437	0.0913	positive regulation of		
		ubiquitin-protein ligase		
		activity involved in mitotic		
GO:0031324	0.0960	cell cycle negative regulation of cellular		
00.0031324	0.0900	metabolic process		
GO:0006903	0.0981	vesicle targeting		
GO:0051439	0.1044	regulation of ubiquitin-protein		
		ligase activity involved		
CO.0010605	0.1116	in mitotic cell cycle		
GO:0010605	0.1116	negative regulation of macromolecule metabolic		
		process		
GO:0051443	0.1138	positive regulation of		
		ubiquitin-protein ligase		
		activity		
GO:0051351	0.1289	positive regulation of ligase		
CO.0051429	0.1600	activity		
GO:0051438	0.1690	regulation of ubiquitin-protein ligase activity		
		ngase activity		
Moleculair function				
GO:0005515	1.6E-5	protein binding		
GO:0005546	0.0384	phosphatidylinositol-4,5- isphosphate binding		
GO:0004298	0.0668	threonine-type endopeptidase activity		
GO:0070003	0.0668	threonine-type peptidase activity		
GO:0008092	0.1351	cytoskeletal protein binding		
GO:0016564	0.2075	transcription repressor activity		
GO:0004710	0.4441	MAP/ERK kinase kinase		
		activity		
GO:0005006	0.4441	epidermal growth factor		
CO.0042902	0.4520	receptor activity		
GO:0042802	0.4520	identical protein binding		

part in regulation of integrin-mediated signal transduction³⁰ and it was down-regulated, indicating a less degree of cell communication. Another typical down-regulated protein was discs large homolog 1 (DLG1), which plays a role in junction formation³¹, signal transduction, cell proliferation and lymphocyte activation³². The declining activities in cell adhesion, cell communication and defense reactions are signs of degradation, which is closely related with IDH³³⁻³⁴.

The most significantly over-represented molecular functions for both up- and down-regulated

genes are same as protein binding, in accordance with our speculation that alterations in interaction network are responsible for disease development. In addition, quite a few of proteins are found to be located in extracellular matrix and plasma membrane, not only suggesting their potential key roles, but also showing their promising applications for diagnosis and treatment.

Conclusions

Our study well deciphered the dynamic changes in PPIN and many genes associated with IDH were uncovered. Further researches are necessary to advance their clinical applications. Moreover, interactions between transcription factors and genes, miRNAs and genes, and so on are good points to understanding the regulatory mechanisms.

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

- OEGEMA TR, JR. Biochemistry of the intervertebral disc. Clin Sports Med 1993; 12: 419-439.
- LANG F, BUSCH GL, RITTER M, VOLKL H, WALDEGGER S, GULBINS E, HAUSSINGER D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998; 78: 247-306.
- O'Neill WC. Physiological significance of volumeregulatory transporters. Am J Physiol 1999; 276: C995-C1011.
- WALDEGGER S, LANG F. Cell volume and gene expression. J Membr Biol 1998; 162: 95-100.
- CHEN J, BAER AE, PAIK PY, YAN W, SETTON LA. Matrix protein gene expression in intervertebral disc cells subjected to altered osmolarity. Biochem Biophys Res Commun 2002; 293: 932-938.
- HASCHTMANN D, STOYANOV JV, FERGUSON SJ. Influence of diurnal hyperosmotic loading on the metabolism and matrix gene expression of a whole-organ intervertebral disc model. J Orthop Res 2006; 24: 1957-1966.
- VIDEMAN T, LEPPAVUORI J, KAPRIO J, BATTIE MC, GIBBONS LE, PELTONEN L, KOSKENVUO M. Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine 1998; 23: 2477-2485.
- 8) KALB S, MARTIROSYAN NL, KALANI MY, BROC GG, THEODORE N. Genetics of the degenerated intervertebral disc. World Neurosurg 2012; 77: 491-501.
- 9) PAUL R, HAYDON RC, CHENG H, ISHIKAWA A, NE-NADOVICH N, JIANG W, ZHOU L, BREYER B, FENG T, GUP-

- TA P, HE TC, PHILLIPS FM. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine 2003; 28: 755-763.
- FUTREAL PA, COIN L, MARSHALL M, DOWN T, HUBBARD T, WOOSTER R, RAHMAN N, STRATTON MR. A census of human cancer genes. Nat Rev Cancer 2004; 4: 177-183.
- 11) POLAGER S, GINSBERG D. p53 and E2f: partners in life and death. Nat Rev Cancer 2009; 9: 738-748.
- CHUANG HY, LEE E, LIU YT, LEE D, IDEKER T. Networkbased classification of breast cancer metastasis. Mol Syst Biol 2007; 3: 140.
- LIU ZP, WANG Y, ZHANG XS, XIA W, CHEN L. Detecting and analyzing differentially activated pathways in brain regions of Alzheimer's disease patients. Mol Biosyst 2011; 7: 1441-1452.
- 14) BOYD LM, RICHARDSON WJ, CHEN J, KRAUS VB, TEWARI A, SETTON LA. Osmolarity regulates gene expression in intervertebral disc cells determined by gene array and real-time quantitative RT-PCR. Ann Biomed Eng 2005; 33: 1071-1077.
- IRIZARRY RA, BOLSTAD BM, COLLIN F, COPE LM, HOBBS B, SPEED TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.
- 16) Mathivanan S, Periaswamy B, Gandhi TK, Kandasamy K, Suresh S, Mohmood R, Ramachandra YL, Pandey A. An evaluation of human protein-protein interaction data in the public domain. BMC Bioinformatics 2006; 7(Suppl 5): S19.
- AMANCHY R, PERIASWAMY B, MATHIVANAN S, REDDY R, TATTIKOTA SG, PANDEY A. A curated compendium of phosphorylation motifs. Nat Biotechnol 2007; 25: 285-286.
- ALLOCCO DJ, KOHANE IS, BUTTE AJ. Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinformatics 2004; 5: 18.
- HIGGINS ME, CLAREMONT M, MAJOR JE, SANDER C, LASH AE. CancerGenes: a gene selection resource for cancer genome projects. Nucleic Acids Res 2007; 35: D721-D726.
- WANG J, HUANG Q, LIU ZP, WANG Y, WU LY, CHEN L, ZHANG XS. NOA: a novel Network Ontology Analysis method. Nucleic Acids Res 2011; 39: e87.
- Liu X, Liu ZP, Zhao XM, Chen L. Identifying disease genes and module biomarkers by differential interactions. J Am Med Inform Assoc 2012; 19: 241-248.
- 22) KLENKE C, JANOWSKI S, BORCK D, WIDERA D, EBMEYER J, KALINOWSKI J, LEICHTLE A, HOFESTADT R, UPILE T, KALTSCHMIDT C, KALTSCHMIDT B, SUDHOFF H. Identification of novel cholesteatoma-related gene expression signatures using full-genome microarrays. PloS One 2012; 7: e52718.
- DIAO H, LI X, Hu S, LIU Y. Gene expression profiling combined with bioinformatics analysis identify biomarkers for Parkinson disease. PloS One 2012; 7: e52319.
- 24) SCHULMAN BA, CARRANO AC, JEFFREY PD, BOWEN Z, KINNUCAN ER, FINNIN MS, ELLEDGE SJ, HARPER JW, PAGANO M, PAVLETICH NP. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 2000; 408: 381-386.

- 25) HINDLEY CJ, McDowell GS, Wise H, PHILPOTT A. Regulation of cell fate determination by Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligases. Int J Dev Biol 2011; 55: 249-260.
- 26) RAVICHANDRAN V, CHAWLA A, ROCHE PA. Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J Biol Chem 1996; 271: 13300-13303.
- TAKIDA S, MAEDA Y, KINOSHITA T. Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochem J 2008; 409: 555-562.
- 28) GOODISON S, URQUIDI V, TARIN D. CD44 cell adhesion molecules. Mol Pathol 1999; 52: 189-196.
- 29) CARLSON TR, Hu H, BRAREN R, KIM YH, WANG RA. Cellautonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development 2008; 135: 2193-2202.
- 30) Wu C, Dedhar S. Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling

- of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 2001; 155: 505-510.
- FIRESTEIN BL, RONGO C. DLG-1 is a MAGUK similar to SAP97 and is required for adherens junction formation. Mol Biol Cell 2001; 12: 3465-3475.
- 32) XAVIER R, RABIZADEH S, ISHIGURO K, ANDRE N, ORTIZ JB, WACHTEL H, MORRIS DG, LOPEZ-ILASACA M, SHAW AC, SWAT W, SEED B. Discs large (DIg1) complexes in lymphocyte activation. J Cell Biol 2004; 166: 173-178.
- 33) Hughes SP, Freemont AJ, Hukins DW, McGregor AH, Roberts S. The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain. J Bone Joint Surg Br 2012; 94: 1298-1304.
- 34) LE MAITRE CL, FREEMONT AJ, HOYLAND JA. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther 2007; 9: R45.