2017; 21: 3253-3261

Can procalcitonin be used to diagnose Gram-negative bloodstream infection? Evidence based on a meta-analysis

C. HE¹, B. WANG², Y.-F. WANG¹, Y.-C. SHEN³

Chao He and Bo Wang contributed equally to this work

Abstract. – OBJECTIVE: Procalcitonin (PCT) is a useful biomarker for systemic bacterial infection, and many studies have described the correlation between high serum PCT level and Gram-negative bloodstream infection (BSI), whereas the diagnostic accuracy of PCT for this kind of episode has not been summarized. This study aimed to estimate the overall accuracy of serum PCT for diagnosing Gram-negative BSI through a meta-analysis.

MATERIALS AND METHODS: We searched PubMed, EMBASE, Web of Science, and Scopus database for studies those met the inclusion criteria. The pooled sensitivity, specificity, positive/negative likelihood ratio (PLR/NLR), and diagnostic odds ratio (DOR) were calculated using bivariate random-effects models. Summary receiver operating characteristic (SROC) curve and area under the curve (AUC) were used to summarize overall diagnostic accuracy.

RESULTS: Our meta-analysis included 13 studies involving 4,513 subjects. Summary estimates for PCT in diagnosing Gram-negative BSI were as follows: sensitivity, 0.73 (95% CI 0.68 to 0.78); specificity, 0.74 (95% CI 0.64 to 0.81); PLR, 2.77 (95% CI 2.07 to 3.70); NLR, 0.37 (95% CI 0.31 to 0.42); DOR, 7.59 (95% CI 5.31 to 10.85); AUC, 0.79 (95% CI 0.75 to 0.82). The corresponding summary performance estimates for using PCT in differentiating Gram-negative BSI from gram-positive BSI were as follows: sensitivity, 0.73 (95% CI 0.66 to 0.78); specificity, 0.70 (95% CI 0.59 to 0.78); PLR, 2.40 (95% CI, 1.83 to 3.15); NLR, 0.39 (95% CI 0.33 to 0.46); DOR, 6.15 (95% CI 4.40 to 8.60); AUC, 0.77 (95% CI 0.73 to 0.81).

CONCLUSIONS: PCT may have a limited diagnostic value for Gram-negative BSI.

Key Words:

Procalcitonin, Bloodstream infection, Gram-negative bacteria, Diagnosis, Meta-analysis.

Introduction

Bloodstream infection (BSI) is a life-threatening situation resulting from the presence of organisms in the blood. Gram-negative bacteria have emerged as the prevalent pathogens causing BSI¹⁻⁴. Gram-negative BSI is associated with longer length of hospital stay and high mortality (36.0%-47.9%)⁵⁻⁸. Moreover, ineffective initial antimicrobial therapy for such kind of episode was associated with poor outcome^{7,9,10}. In practice, it is hard to diagnose BSI alone based on clinical manifestations. So, a reliable laboratory diagnostic method, which can guide early and accurate diagnosis of Gram-negative BSI, is crucial for patients.

Blood culture is regarded as the gold standard for laboratory diagnosis of bacterial BSI. Usually, 1-2 day is required to obtain Gram-stain result by direct smear from positive blood culture bottles. Sometimes, the result of direct smear method is not available because of its low sensitivity and specificity, and another 1-2 day is needed for obtaining the stain results from bacterial colony on the culture plate. Moreover, sensitivity of blood culture method for diagnosing BSI is relatively low¹¹ and sample contamination issue is also a challenge¹². So biomarkers, which can help to early and accurately diagnose Gram-negative BSI, are useful for appropriate initial antibiotic therapy of the patients.

Procalcitonin (PCT) is a 116-amino-acid peptide synthesized by the C cells in the thyroid gland. Elevated serum levels of PCT are strongly associated with systemic bacterial infections¹³. Recently, higher serum PCT level was found to be associated with Gram-negative BSI, which

¹Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China

²Intensive Care Unit, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China ³Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, Sichuan Province, China

suggested PCT may be a promising biomarker for diagnosing Gram-negative BSI¹⁴⁻¹⁷. Therefore, we conducted a meta-analysis to evaluate the overall diagnostic accuracy of serum PCT for Gram-negative BSI.

Materials and Methods

Study Selection

Two investigators (YCS and CH) conducted an independent literature search to identify relevant studies among the articles published up to January 2017 in PubMed, EMBASE, Web of Science, and Scopus database. The following search syntax was used as Medical Headings and/or text words: "procalcitonin or PCT" and "bacteremia or bloodstream infection or sepsis" and "sensitivity or specificity or accuracy". Reference lists of the included studies or related review articles were also checked to identify potentially eligible studies. The following inclusion criteria were applied: (1) studies were original research articles and published in English; (2) studies evaluated the accuracy of serum PCT level for diagnosing Gram-negative BSI in adults (>18 years old); (3) studies reported sufficient data for calculating the value of true positive (TP), false positive (FP), false negative (FN) and true negative (TN). Conference proceedings and studies published only as abstracts and studies involving fewer than 20 patients were excluded. Discrepancies between these two investigators were resolved by consultation with a third researcher (BW).

Data Extraction and Quality Assessment of the Studies

Two investigators (BW and YFW) independently extracted data from the eligible studies and conducted 2 × 2 tables for calculating TP, FP, FN and TN values. The following data were also extracted: name of first author, publication year, country, study setting, study design, PCT assay method, and cut-off value. The quality of these studies was assessed using Quality Assessment of Diagnostic Accuracy Studies (QUADAS)¹⁸.

Statistical Analysis

Using bivariate regression model, we calculated pooled estimates of sensitivity and specificity, positive likelihood ratios (PLR), negative likelihood ratios (NLR), diagnostic odds ratios (DOR) and constructed summary receiver op-

erating characteristic (SROC) curves¹⁸. The area under the curve (AUC) was calculated to assess the overall diagnostic performance. Heterogeneity was assessed using the I^2 inconsistency test. Possible causes of heterogeneity among studies were explored through subgroup analyses: study site (European vs. Asian), sample size (< 100 subjects vs. \geq 100 subjects), study population/setting (multi-departments vs. other), study design (prospective vs. other), assay method (immunofluorescent assay vs. other), serum PCT cut-off value (< 1 ng/mL vs. \geq 1 ng/mL), and QUADAS score (< 10 vs. \geq 10). Deeks's funnel plot was used to detect publication bias¹⁹.

Statistical Analysis

Statistical analysis was conducted by software STATA 12.0 (Stata Corporation, Lakeway Drive College Station, TX, USA) and Meta-Disc XI for Windows (Cochrane Colloquium, Barcelona, Spain). All statistical tests were two-sided, with *p* < 0.05 as the threshold for statistical significance.

Results

Characteristics of Included Studies

In our present meta-analysis, we included 13 studies²⁰⁻³², involving 4,513 subjects (2,298 BSI cases and 2,215 controls), according to the inclusion and exclusion criteria. The process of selecting studies was shown in Figure 1. All the

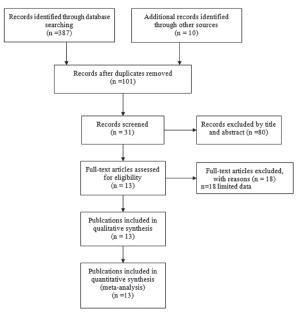


Figure 1. Flow diagram of study selection.

included studies have examined the ability of serum PCT to diagnose Gram-negative BSI²⁰⁻³², and 8 of them determined the ability of serum PCT to differentiate Gram-negative BSI from Gram-positive BSI^{20,22,25-27,29,30,32}. The diagnosis of Gram-negative BSI was all based on the results of blood culture. The characteristics of included studies were summarized in Tables I-II.

Diagnostic Accuracy of Serum PCT

The overall sensitivity and specificity of PCT to diagnose Gram-negative BSI were 0.73 and 0.74, respectively (Figure 2a), and AUC of SROC curve was 0.79 (95% CI: 0.75-0.82) (Figure 3a). The corresponding values of PCT to differentiate Gram-negative BSI from Gram-positive BSI were 0.73, 0.70 and 0.77, respectively (Figure 2b, 3b). The pooled parameters calculated over studies examining serum PCT to diagnose Gram-negative BSI were listed in Table III.

Heterogeneity Examination and Publication Bias of the Studies

High I^2 values of sensitivity and specificity suggest substantial heterogeneity among included studies (Figure 2, all p < 0.05), so we performed a meta-regression to investigate the possible sources of heterogeneity. The results of meta-regression based on 7 covariates were summarized in Table IV, which indicated none of them was the source of heterogeneity (all p > 0.05). The slope coefficient of Deeks' funnel plot asymmetry test was associated with p-values of 0.07 and 0.53, suggesting symmetry in the data and low likelihood of such bias (Figure 4).

Discussion

The early and accurate diagnosis of Gram-negative BSI was associated with better clinical outcome³³⁻³⁵. Serum PCT is biomarker for diagnosing systematic bacterial infection³⁶, while its overall accuracy in differential diagnosis of Gram-negative BSI remains unclear. In our study, we summarized the overall diagnostic performance of PCT for Gram-negative BSI through a meta-analysis, and our results suggested that the value of PCT in diagnosing Gram-negative BSI may be limited.

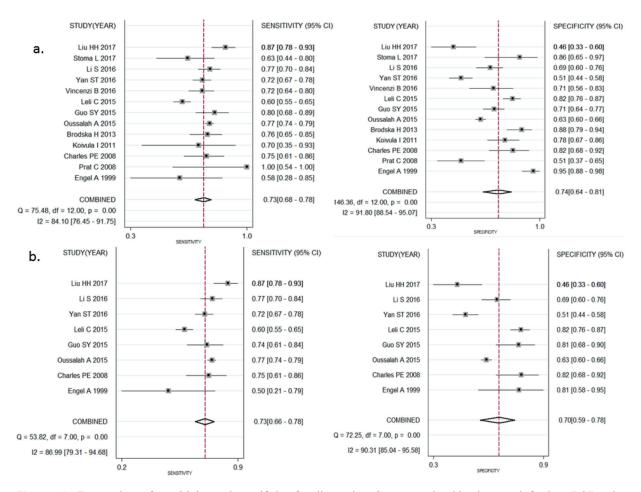
The sensitivity and specificity of PCT in diagnosing Gram-negative BSI were 0.73 and 0.74, respectively, suggesting a relatively high rate of missed diagnoses (27%) and misdiagnoses

 Table I. Characteristics of included studies using procalcitonin to diagnose Gram-negative bloodstream infection.

וויכון ובמו	Year Country	Episodes	Study population/ Setting	Study design	Assay	Cutoff (ng/mL)	Cases	Cases Controls	TP	FP	Z Z	Z	OUADAS
Engel ²⁰ 1999 Prat ²¹ 2008 Charles ²² 2008 Koivula ²³ 2011 Brodska ²⁴ 2013 Oussalah ²⁵ 2015 Guo ²⁶ 2015 Vincenzi ²⁸ 2016 Yan ²⁹ 2016 Stoma ³¹ 2017 Lii ³² 2016	Germany Spain France Finland Czech Republic France China Italy Italy China China China China China China	103 57 97 90 166 2042 262 262 562 181 456 298 52	Oncology Hematologic malignancy ICU Hematology ICU Multi-departments Multi-departments Multi-departments Multi-departments Multi-departments Multi-departments Multi-departments Multi-departments	Prospective Prospective Retrospective Prospective Retrospective Cross-sectional Retrospective Prospective Retrospective Retrospective Retrospective Retrospective Retrospective Retrospective Retrospective Retrospective	IFA IFA ICA ICA IFA IFA IFA IFA IFA IFA IFA IFA IFA	1.1 0.3 16 0.0 0.015 0.06 3.39 10.8 1.52 0.495 2.44	12 6 52 10 78 1067 65 345 130 254 158 30	91 45 48 88 88 975 197 217 217 210 217 51 51 52 52 56	7 6 39 7 7 7 820 52 52 207 184 1122 119	5 8 8 8 11 11 363 57 57 57 57 39 99 44	5 0 0 13 3 247 13 13 13 36 70 11	86 256 337 62 77 77 612 140 178 36 96 103	0001020200010

ICU: intensive care unit; ED: Emergency Department; BMT: Bone Marrow Transplantation; IFA: immunofluorescent assay; ICA, immunochromatographic assay; ECLIA: true electrochemiluminescence immunoassay; CLEI, chemiluminescent enzyme immunoassay; NA: not available; TP: True positive; FP: False positive; FN: False negative; TN: true negative; QUADAS: Quality Assessment of Diagnostic Accuracy Studies.

Table II. Characteristics of included studies using procalcitonin to differentiate gram-negative bloodstream infection from Gram-positive bloodstream infection


Author (Ref)	Year	Country	Episodes	Study population/ Setting	Study design	Assay	Cutoff (ng/mL)	Cases	Controls	TP	日	Z Z	Z	QUADAS
Engel^{20}	1999	Germany	33	Oncology	Prospective	IFA	10	12	21	9	4	9	17	10
Charles ²²	2008	France	76	ICU	Retrospective	IFA	16	52	45	39	∞	13	37	10
Oussalah ²⁵	2015	France	2042	Multi-departments	Cross-sectional	IFA	9.0	1067	975	821	363	246	612	12
Guo^{26}	2015	China	122	Multi-departments	Retrospective	CLEI	6.47	65	57	48	11	17	46	10
Lel^{27}	2015	Italy	562	Multi-departments	Prospective	IFA	10.8	345	217	207	39	138	178	12
Yan ²⁹	2016	China	456	ICU, ED	Retrospective	IFA	0.495	254	202	184	66	70	103	6
Li^{30}	2016	China	298	Multi-departments	Retrospective	IFA	2.44	158	140	122	44	36	96	6
Liu ³²	2017	China	147	Multi-departments	Retrospective	ECLIA	2.1	91	99	79	30	12	26	6

ICU: intensive care unit; ED: Emergency Department; IFA: immunofluorescent assay; CLEI, chemiluminescent enzyme immunoassay; NA: not available; ECLIA: electrochemiluminescence immunoassay; TP: True positive; FP: False positive; FN: False negative; TN: true negative; QUADAS: Quality Assessment of Diagnostic Accuracy

(26%). PLR > 10 and NLR < 0.1 are considered as strong indicators to rule in or rule out a diagnostic test, respectively. In our meta-analysis, PLR was 2.77 and NLR was 0.37, suggesting relatively low ability to diagnose Gram-negative BSI, consistent with the AUC in SROC analysis was 0.79. Additionally, it appears the PCT is not robust enough on its own to diagnose Gram-negative BSI with a low pooled DOR of 7.59, suggesting that the diagnostic accuracy of PCT combination with other biomarkers, such as CRP^{37,38}, presepsin^{37,38}, interleukin-1 receptor 2¹⁵, should be evaluated. It is reported that serial evaluations of PCT seem to be more accurate to diagnose BSI in cancer patients³⁹, which suggested that further work might aim to determine whether continuously monitoring serum PCT level increases the sensitivity and specificity of diagnosing Gram-negative BSI or not. Also, diagnostic performance of PCT for BSI in immunocompromised/neutropenic patients was lower than that in patients without immunosuppression^{31,36}. Studies in different populations (such as patients in intensive care unit, cancer patients, and transplant patients, etc.) should be performed to get a definite conclusion.

It is reported that Gram-negative bacteria and Gram-positive bacteria may activate different Toll-like receptor signaling pathways, resulting in the production of distinct pro-inflammatory cytokines that stimulate PCT release. Gram-negative bacteria can produce endotoxins that can also be released upon cell death, leading to persistently high levels of PCT⁴⁰. Our meta-analysis found that the diagnostic performance of PCT in discriminating Gram-negative BSI from Gram-positive BSI is also not so good, with pooled sensitivity of 0.73, specificity of 0.70, and AUC of 0.77.

Our study has identified significant heterogeneity among included studies, while we didn't find the source of heterogeneity through a meta-regression analysis regarding the study site, sample size, study population/setting, study design, assay method, serum PCT cut-off value, and QUADAS score. Whereas, it is needed to pay attention to that cut-off value of PCT in diagnosing Gram-negative BSI ranged from 0.015 ng/mL to 10.8 ng/mL, such variation in cut-off value partly reflects differences in study context: assay method⁴¹, study populations³¹, bacterial species²⁹, etc. Although we didn't identify cut-off value of PCT as a source of heterogeneity in the meta-regression analysis,

Figure 2. Forest plots of sensitivity and specificity for diagnosing Gram-negative bloodstream infection (BSI) using procalcitonin. **A,** Diagnosing Gram-negative BSI; **B,** Differentiating Gram-negative BSI from Gram-positive BSI.

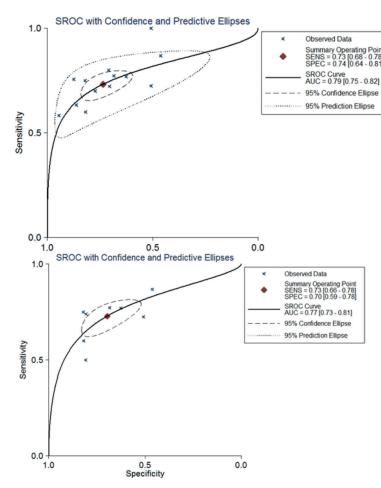
specific cut-off values for different populations and bacterial species might give more useful information for clinical practice.

The findings of this meta-analysis should be interpreted with caution due to a few limitations. First, with our strict inclusion criteria, the number of included studies is limited. Second, we omitted unpublished studies and studies not indexed in our set of databases, which may bias for our results.

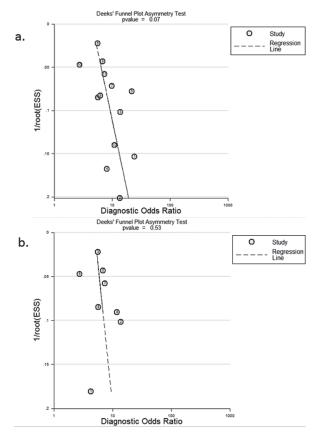
Conclusions

Our present meta-analysis suggests that PCT may play a limited role in diagnosing Gram-negative BSI. Further prospective work related on PCT combination with other biomarkers, dynamic evaluation of PCT, and PCT variation in different populations and species, might obtain a more definite conclusion.

Table III. Accuracy of procalcitonin for diagnosing Gram-negative bloodstream infection (BSI).


Aims	No. of studies	Cases	Controls	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)	PLR (95% CI)	NLR (95% CI)	DOR (95% CI)
1	13	2298	2215	0.79 (0.75-0.82)	0.73 (0.68-0.78)	0.74 (0.64-0.81)	2.77 (2.07-3.70)	0.37 (0.31-0.42)	7.59 (5.31-10.85)
2	8	2044	1713	0.77 (0.73-0.81)	0.73 (0.66-0.78)	0.70 (0.59-0.78)	2.40 (1.83-3.15)	0.39 (0.33-0.46)	6.15 (4.40-8.60)

Aim 1: diagnosing Gram-negative BSI; Aim 2: differentiating Gram-negative BSI from Gram-positive BSI; AUC, Area under the curve; CI: Confidential interval; PLR: Positive likelihood ratio; NLR: Negative likelihood ratio; DOR: Diagnostic odds ratio.


Table IV. Meta-regression of potential heterogeneity among the included studies.

Covariates	No. of studies	Coefficient	SE	RDOR (95% CI)	<i>p</i> -value
Country					
European	9	0.48	0.37	1.61 (0.57-4.54)	0.27
Asian	4				
Sample size					
< 100	4	-0.63	0.44	0.53 (0.16-1.81)	0.23
≥ 100	9				
Study population/setting					
Multi-departments	5	0.35	0.25	1.42 (0.71-2.83)	0.23
Other	8				
Study design					
Prospective	5	-0.79	0.35	0.45 (0.17-1.21)	0.09
Other	8				
Assay					
IFA	9	-0.65	0.24	0.52 (0.27-1.03)	0.06
Other	4				
Cut-off					
< 1.0 ng/mL	5	0.26	0.25	1.29 (0.65-2.56)	0.36
$\geq 1 \text{ ng/mL}$	8				
QUADAS score					
< 10	4	-0.29	0.33	0.75 (0.30-1.87)	0.43
≥ 10	9				

SE: Standard error; RDOR: Relative diagnostic odds ratio; CI: Confidential interval; QUADAS: Quality assessment for diagnostic accuracy studies.

Figure 3. Summary receiver operating characteristic (SROC) curve for procalcitonin as a diagnostic test for Gram-negative bloodstream infection (BSI). The SROC curves with confidence and prediction regions around mean operating sensitivity and specificity point analyses. AUC, area under the curve; SENS, Sensitivity; SPEC, Specificity. **A**, Diagnosing Gramnegative BSI; **B**, Differentiating Gram-negative BSI from Gram-positive BSI.

Figure 4. Deek's funnel plot to assess the likelihood of publication bias. The statistically non-significant *p*-value > 0.05 for the slope coefficient suggests symmetry in the data and a low likelihood of publication bias. **A**, Diagnosing Gram-negative BSI; **B**, Differentiating Gram-negative BSI from Gram-positive BSI.

Acknowledgements

This work was supported by grants No.81201342 from the National Natural Science Foundation of China, and projects No.16PJ325 from Health and Family Planning Commission of Sichuan province. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of Interest

No conflict of interests to disclose.

References

 Ahmed D, Nahid MA, Sami AB, Halim F, Akter N, Sadioue T, Rana MS, Elahi MS, Rahman MM. Bacterial etiology of bloodstream infections and antimicrobial resistance in Dhaka, Bangladesh, 2005-2014. Antimicrob Resist Infect Control 2017; 6: 2.

- 2) Wang L, Wang Y, Fan X, Tang W, Hu J. Prevalence of resistant Gram-negative bacilli in bloodstream infection in febrile neutropenia patients undergoing hematopoietic stem cell transplantation: a single center retrospective cohort study. Medicine (Baltimore) 2015; 94: e1931.
- DAXBOECK F, ASSADIAN O, BLACKY A, KOLLER W, HIRSCHL AM. Resistance of Gram-negative non-fermentative bacilli causing blood stream infection, Vienna, 1996-2003. Eur J Clin Microbiol Infect Dis 2004; 23: 415-416.
- 4) LOPEZ-MEDRANO F, FERNANDEZ-RUIZ M, RUIZ-CANO MJ, BARRIOS E, VICENTE-HERNANDEZ M, AGUADO JM, ESCRIBANO P. High incidence of bloodstream infection due to Gram-negative bacilli in patients with pulmonary hypertension receiving intravenous treprostinil. Arch Bronconeumol 2012; 48: 443-447.
- 5) Papadimitriou-Olivgeris M, Fligou F, Bartzavali C, Zotou A, Spyropoulou A, Koutsileou K, Vamvakopoulou S, Sioulas N, Karamouzos V, Anastassiou ED, Spiliopoulou I, Christofidou M, Marangos M. Carbapenemase-producing Klebsiella pneumoniae bloodstream infection in critically ill patients: risk factors and predictors of mortality. Eur J Clin Microbiol Infect Dis 2017; 36: 1125-1131.
- DURDU B, HAKYEMEZ IN, BOLUKCU S, OKAY G, GULTEPE B, ASLAN T. Mortality markers in nosocomial Klebsiella pneumoniae bloodstream infection. Springerplus 2016; 5: 1892.
- 7) PROWLE JR, ECHEVERRI JE, LIGABO EV, SHERRY N, TAORI GC, CROZIER TM, HART GK, KORMAN TM, MAYALL BC, JOHNSON PD, BELLOMO R. Acquired bloodstream infection in the intensive care unit: incidence and attributable mortality. Crit Care 2011;15: R100.
- SOSTARICH AM, ZOLLDANN D, HAEFNER H, LUETTICKEN R, SCHULZE-ROEBECKE R, LEMMEN SW. Impact of multiresistance of Gram-negative bacteria in bloodstream infection on mortality rates and length of stay. Infection 2008; 36: 31-35.
- 9) FREIRE MP, DE OLIVEIRA GARCIA D, GARCIA CP, CAMPAGNARI BUENO MF, CAMARGO CH, KONO MAGRI AS, FRANCISCO GR, REGHINI R, VIEIRA MF, IBRAHIM KY, ROSSI F, HAJJAR L, LEVIN AS, HOFF PM, PIERROTTI LC, ABDALA E. Bloodstream infection caused by extensively drug-resistant acinetobacter baumannii in cancer patients: high mortality associated with delayed treatment rather than with the degree of neutropenia. Clin Microbiol Infect 2016; 22: 352-358.
- ORIOL I, SABE N, MELILLI E, LLADO L, GONZALEZ-COSTEL-LO J, SOLDEVILA L, CARRATALA J. Factors influencing mortality in solid organ transplant recipients with bloodstream infection. Clin Microbiol Infect 2015; 21: 1104e09-1104e14.
- McDonald LC, Fune J, Gaido LB, Weinstein MP, Re-IMER LG, Flynn TM, Wilson ML, Mirrett S, Reller LB. Clinical importance of increased sensitivity of BacT/Alert FAN aerobic and anaerobic blood culture bottles. J Clin Microbiol 1996; 34: 2180-2184.
- 12) Bloos F, Senderrek M, Bauer M. Sensitivity of blood culture vs polymerase chain reaction for skin con-

- taminants in specimen retrieved via the distal lumen of Seldinger-guided central venous catheters. Chest 2014; 145: 430-431.
- CHRIST-CRAIN M, MULLER B. Procalcitonin in bacterial infections--hype, hope, more or less? Swiss Med Wkly 2005; 135: 451-460.
- 14) NAKAJIMA A, YAZAWA J, SUGIKI D, MIZUGUCHI M, SAGARA H, FUJISIRO M, SHIBAZAKI M, HITANI A, TO M, HARUKI K. Clinical utility of procalcitonin as a marker of sepsis: a potential predictor of causative pathogens. Intern Med 2014; 53: 1497-1503.
- 15) Lang Y, Jiang Y, Gao M, Wang W, Wang N, Wang K, Zhang H, Chen G, Liu K, Liu M, Yang M, Xiao X. Interleukin-1 receptor 2: a new biomarker for sepsis diagnosis and Gram-negative/Gram-positive bacterial differentiation. Shock 2017; 47: 119-124.
- 16) Arai T, Ohta S, Tsurukiri J, Kumasaka K, Nagata K, Okita T, Oomura T, Hoshiai A, Koyama M, Yukioka T. Procalcitonin levels predict to identify bacterial strains in blood cultures of septic patients. Am J Emerg Med 2016; 34: 2150-2153.
- 17) WATANABE Y, OIKAWA N, HARIU M, FUKE R, SEKI M. Ability of procalcitonin to diagnose bacterial infection and bacteria types compared with blood culture findings. Int J Gen Med 2016; 9: 325-331.
- 18) REITSMA JB, GLAS AS, RUTJES AW, SCHOLTEN RJ, BOSSUYT PM, ZWINDERMAN AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005; 58: 982-990.
- DEEKS JJ, MACASKILL P, IRWIG L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 2005; 58: 882-893.
- 20) ENGEL A, STEINBACH G, KERN P, KERN WV. Diagnostic value of procalcitonin serum levels in neutropenic patients with fever: comparison with interleukin-8. Scand J Infect Dis 1999; 31: 185-189.
- 21) PRAT C, SANCHO JM, DOMINGUEZ J, XICOY B, GIMENEZ M, FERRA C, BLANCO S, LACOMA A, RIBERA JM, AUSINA V. Evaluation of procalcitonin, neopterin, C-reactive protein, IL-6 and IL-8 as a diagnostic marker of infection in patients with febrile neutropenia. Leuk Lymphoma 2008; 49: 1752-1761.
- 22) CHARLES PE, LADOIRE S, AHO S, QUENOT JP, DOISE JM, PRIN S, OLSSON NO, BLETTERY B. Serum procalcitonin elevation in critically ill patients at the onset of bacteremia caused by either Gram negative or Gram positive bacteria. BMC Infect Dis 2008; 8: 38
- 23) Koivula I, Hamalainen S, Jantunen E, Pulkki K, Kuittinen T, Nousiainen T, Juutilainen A. Elevated procalcitonin predicts Gram-negative sepsis in haematological patients with febrile neutropenia. Scand J Infect Dis 2011; 43: 471-478.
- 24) BRODSKA H, MALICKOVA K, ADAMKOVA V, BENAKOVA H, STASTNA MM, ZIMA T. Significantly higher procalcitonin levels could differentiate Gram-negative sepsis from Gram-positive and fungal sepsis. Clin Exp Med 2013; 13: 165-170.

- 25) OUSSALAH A, FERRAND J, FILHINE-TRESARRIEU P, AISSA N, AIMONE-GASTIN I, NAMOUR F, GARCIA M, LOZNIEWSKI A, GUEANT JL. Diagnostic accuracy of procalcitonin for predicting blood culture results in patients with suspected bloodstream infection: an observational study of 35,343 consecutive patients (a STROBE-compliant article). Medicine (Baltimore) 2015; 94: e1774.
- 26) Guo SY, Zhou Y, Hu QF, Yao J, Wang H. Procalcitonin is a marker of Gram-negative bacteremia in patients with sepsis. Am J Med Sci 2015; 349: 499-504
- 27) Leli C, Ferranti M, Moretti A, Al Dhahab ZS, Cenci E, Mencacci A. Procalcitonin levels in Gram-positive, Gram-negative, and fungal bloodstream infections. Dis Markers 2015; 2015: 701480.
- 28) VINCENZI B, FIORONI I, PANTANO F, ANGELETTI S, Dicuonzo G, Zoccoli A, Santini D, Tonini G. Procalcitonin as diagnostic marker of infection in solid tumors patients with fever. Sci Rep 2016; 6: 28090.
- 29) YAN ST, SUN LC, JIA HB, GAO W, YANG JP, ZHANG GQ. Procalcitonin levels in bloodstream infections caused by different sources and species of bacteria. Am J Emerg Med 2017; 35: 579-583.
- 30) Li S, Rong H, Guo Q, Chen Y, Zhang G, Yang J. Serum procalcitonin levels distinguish Gram-negative bacterial sepsis from Gram-positive bacterial and fungal sepsis. J Res Med Sci 2016; 21: 39.
- 31) Stoma I, Karpov I, Uss A, Rummo O, MILANOVICH N, ISKROV I. Diagnostic value of sepsis biomarkers in hematopoietic stem cell transplant recipients in a condition of high prevalence of Gram-negative pathogens. Hematol Oncol Stem Cell Ther 2017; 10: 15-21.
- 32) LIU HH, ZHANG MW, GUO JB, LI J, SU L. Procalcitonin and C-reactive protein in early diagnosis of sepsis caused by either Gram-negative or Gram-positive bacteria. Ir J Med Sci 2017; 186: 207-212
- 33) MICEK ST, WELCH EC, KHAN J, PERVEZ M, DOHERTY JA, REICHLEY RM, HOPPE-BAUER J, DUNNE WM, KOLLEF MH. Resistance to empiric antimicrobial treatment predicts outcome in severe sepsis associated with Gram-negative bacteremia. J Hosp Med 2011; 6: 405-410.
- 34) MICHALOPOULOS A, FALAGAS ME, KARATZA DC, ALEXANDROPOULOU P, PAPADAKIS E, GREGORAKOS L, CHALEVELAKIS G, PAPPAS G. Epidemiologic, clinical characteristics, and risk factors for adverse outcome in multiresistant Gram-negative primary bacteremia of critically ill patients. Am J Infect Control 2011; 39: 396-400.
- 35) BLOT S, VANDEWOUDE K, DE BACQUER D, COLARDYN F. Nosocomial bacteremia caused by antibiotic-resistant Gram-negative bacteria in critically ill patients: clinical outcome and length of hospitalization. Clin Infect Dis 2002; 34: 1600-1606.
- 36) HOEBOER SH, VAN DER GEEST PJ, NIEBOER D, GROENEVELD AB. The diagnostic accuracy of procalcitonin for bacteraemia: a systematic review and meta-analysis. Clin Microbiol Infect 2015; 21: 474-481.

- 37) ENGUIX-ARMADA A, ESCOBAR-CONESA R, GARCIA-DE LA TORRE A, DE LA TORRE-PRADOS MV. Usefulness of several biomarkers in the management of septic patients: C-reactive protein, procalcitonin, presepsin and mid-regional pro-adrenomedullin. Clin Chem Lab Med 2016; 54: 163-168.
- 38) PLESKO M, SUVADA J, MAKOHUSOVA M, WACZULIKOVA I, BEHULOVA D, VASILENKOVA A, VARGOVA M, STECOVA A, KAISEROVA E, KOLENOVA A. The role of CRP, PCT, IL-6 and presepsin in early diagnosis of bacterial infectious complications in paediatric haemato-oncological patients. Neoplasma 2016; 63: 752-760.
- 39) SBRANA A, TORCHIO M, COMOLLI G, ANTONUZZO A, DANOVA M, ITALIAN NETWORK FOR SUPPORTIVE CARE IN O. Use of procalcitonin in clinical oncology: a literature review. New Microbiol 2016; 39: 174-180.
- 40) KUMAR S, INGLE H, PRASAD DV, KUMAR H. Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol 2013; 39: 229-246.
- 41) DUPUY AM, NE M, BARGNOUX AS, BADIOU S, CRISTOL JP. Analytical evaluation of Lumipulse(R) BRAHMS PCT CLEIA assay and clinical performances in an unselected population as compared with central lab PCT assay. Clin Biochem 2017; 50: 248-250.