# Role of long non-coding RNA SNHG1 in occurrence and progression of ovarian carcinoma

J. GE<sup>1</sup>, X.-M. WU<sup>1</sup>, X.-T. YANG<sup>2</sup>, J.-M. GAO<sup>3</sup>, F. WANG<sup>4</sup>, K.-F. YE<sup>1</sup>

**Abstract.** – OBJECTIVE: To investigate the expression of human long non-coding ribonucleic acid (IncRNA) small nucleolar RNA host gene 1 (SNHG1) in epithelial ovarian carcinoma tissues and its effects on the *in vitro* proliferation, apoptosis, invasion and metastasis of ovarian carcinoma cells, and to investigate its possible mechanism.

**PATIENTS AND METHODS:** The expressions of SNHG1 in 20 pairs of epithelial ovarian carcinoma tissues and para-carcinoma normal tissues were detected by Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). The g sions of SNHG1 in normal ovarian epithet (IOSE25) and ovarian carcinoma cells (C SKOV-3, ES2 and A2780) were further deta The knockdown efficiency of SNHG1 small into ing RNA (siRNA) in SKOV-3 cells 1 knoc qRT-PCR. Moreover, the effect down on proliferation, migra and otosis o SKOV-3 cells were detected y cell co ling kit 8 (CCK8) proliferation assay e form transwell migration as av a nally, the expressign of apo related proteins, epithelial-m chymal trai (EMT)-related proteins atrix meta einases ال gi (MMPs) in co and interference group were detected by Weste tting.

**RESUL** vel of IncRNA SN-The expressi HG1 in arian carcinoma es was signifigher than that in pala-carcinoma norcant r IncRNA SNHG1 knockdown , the cell proliferation and clone in Si ilities formati e significantly inhibitsay proved that inhibit-CRNA could promote the apopto-SKOV-3 s. Besides, Western blotting sis ed that the expressions of pro-apoptotic rference group were significanted compared with those in control up. Wound-healing assay and transwell miassay showed that the down-regulation RNA SNHG1 could inhibit the invasion and metastasis of SKOV-3 cells, whose mechanism was related to the inhibition of EMT process and down-regulation of expressions of MMPs.

CONCLUSIO : LncRNA ghly expressed in carcinoma can proetastasis of mote the vasion and s. The down-regulation ovarian carcinom of SNHG1 can inhibi proliferation, invasion lasis of SKC ells. Inhibiting the ession of SNHG1 may be a potentially effecmeans of treating ovarian carcinoma.

K Vords:

an carcin a, IncRNA, SNHG1, Proliferation,

#### Introduction

Ovarian carcinoma is a kind of common malignant tumor in women, accounting for 5% in systemic malignant tumors, whose incidence rate ranks third in gynecologic malignant tumors. Due to its concealed onset, atypical symptoms and a lack of effective early screening methods, 75% patients have been in the middle and advanced stage of ovarian carcinoma when treated, and they are mostly accompanied by intra-abdominal metastasis<sup>1</sup>. At present, the comprehensive treatment method of operation combined with radiotherapy and chemotherapy has a significant effect on ovarian carcinoma; 80% patients are sensitive to platinum/paclitaxel chemotherapy drugs, but the disease will relapse in most patients within a short period after treatment. Long-term data statistics show that the 5-year survival rate of patients with early ovarian carcinoma is as high as 80%, while that of patients with advanced ovarian carcinoma is just about 10-30%<sup>2,3</sup>. Therefore, searching effective molecular markers that can predict the metastasis and recurrence of ovarian carcinoma early, and investigating the molecular mechanisms of invasion and metastasis of ovarian carcinoma to obtain effective therapeutic targets, are important

<sup>&</sup>lt;sup>1</sup>Department of Gynecology, The First People's Hospital of Yunnan Province, Kunming, 1997

<sup>&</sup>lt;sup>2</sup>Department of Pathology, The First People's Hospital of Yunnan Province, Kurang, China

<sup>&</sup>lt;sup>3</sup>Department of Basic Laboratory, The First People's Hospital of Yunnan Provide, Kunming,

<sup>&</sup>lt;sup>4</sup>Department of Laboratory Medicine, The First People's Hospital of Yunnan Vince, Kunming,

research topics in improving the prognosis of patients with ovarian carcinoma<sup>4,5</sup>. Following extensive studies on micro ribonucleic acid (miRNA), the role of long non-coding RNA (lncRNA) with the transcript greater than 200 nt in length in the tumor has attracted much attention. Although IncRNA dose not encode or only encodes a small number of proteins, its expressions in different tissues and developmental stages are specific and highly conserved in evolution process of mammals, suggesting that lncRNA may have important biological functions. In recent years, a series of studies have found that lncRNA participates in a series of important regulatory processes, such as X-chromosome silencing, chromatin modification, transcriptional interference and activation and intranuclear transport, through regulating the gene expression in the form of RNA. It is widely involved in almost all physiological and pathological processes in the human body, whose abnormal expression is closely related to the occurrence of a variety of tumors<sup>6,7</sup>.

LncRNA small nucleolar RNA host gene 1 (SNHG1) is located on 11q12.3 with 11 exons. More and more studies<sup>5,8</sup> have shown that it has the tion of promoting the occurrence and deve of various tumors. Zhang et al<sup>9</sup> studied and ed that the SNHG1 expression is significantly u ulated in hepatic carcinoma tissues, and SNI can promote the occurrence ar ression hepatic carcinoma through in p53 gen expression. Cui et al<sup>10</sup> four nat, con red with that in normal lung tiss ression e hig of SNHG1 exists in Moreover, relevant ncal date also shown that the high expr n of SNHG ted to the later stage and enosis of ne hall cell relationship between lung cancer. Nowever, IG1 and ova IncRNA carcinoma has not been re ted yet so far. The the expression of lncRNA SNHG1 in ovarian carcinoma and and its relevant mechanism was we in this s furthe

#### Path as and Methods

# cinoma Specimen Collection

A total of 20 pairs of epithelial ovarian carcinatissues and para-carcinoma normal tissues d via ovarian carcinoma operation in our hospital were collected. Patients received no radiotherapy and chemotherapy before operation. The specimens collected were all confirmed

pathologically and stored in liquid nitrogen within 5 min after resection, so as to avoid RNA degradation affecting the experimental results. This study was approved by the Ethics Committee First People's Hospital of Yunnar Signed written informed consents you obtained from the patients and/or guardian

#### Materials

Anti-B-cell lymphoma scl-2), antisociated X protein (Bax) nti-Caspase-9, an , anti-E-c ly-ADP-ribose polyn e (PA) atin, antimatrix herin, anti-N-cadherin, nti-MV metalloproteina 4MM) ies (Cell Siz nnology, anti-actin anti 42 and An-Inc. Danver ISA); Hoech de (PI) stailing kits (BD); nexin V/p. Jidiu. cell counting kit 8 ( (Beyotime, Shanghai, ofectamine Chi (Invitrogen, Carls-CA, USA); quantità. e reverse transcrippolymerase hain reaction (qRT-PCR) kits rmany); si-NC and si-SNHG1 gen, Hilden y Nanjing Genscript Biotech ynthesize (Nanii China), and other experimental reas e purchased from Sigma-Aldrich St Louis, MO, USA).

#### en Iture

IOSE25, CAOV-3, SKOV-3, ES2 and A2780 cells were purchased from American Type Cell Culture (ATCC, Manassas, VA, USA). Cells were incubated using the Dulbecco's modified Eagle medium (DMEM) containing 10% fetal bovine serum (FBS), 1% penicillin-streptomycin and 1% non-essential amino acids in an incubator with 5% CO, at 37°C.

# qRT-PCR

The total messenger RNA (mRNA) of cells was extracted using TRIzol and reversely transcribed into complementary DNA (cDNA). Reverse transcription reaction conditions: 25°C for 10 min, 50°C for 30 min and 85°C for 5 min; the fluorescence quantitative PCR kit was used for detection. Primer sequences of SNHG1: forward primer: 5'-CCTAAAGCCACGCTTCTTG-3'; reverse 5'-TGCAGGCTGGAGATCCTACT-3'. primer: Primer sequences of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (internal reference): forward primer: 5'-GGTCTCCTCTGACTTCAA-CA-3'; reverse primer: 5'-AGCCAAATTC-GTTGTCATAC-3'. Fluorescence quantitative PCR conditions: 95°C for 5 min, 95°C for 15 s, 60°C for 1 min, a total of 40 cycles.

### Hoechst 33342 Staining

SKOV-3 cells were transfected with si-NC and si-SNHG1. At 48 h after transfection, cells were collected and inoculated into a 12-well plate and cultured for 24 h. Then, the supernatant was discarded and cells were washed with phosphate-buffered saline (PBS) twice. 1 mL Hoechst 33242 fluorochrome was added, followed by incubation at 37°C for 15 min. Next, the fluorochrome was discarded, and cells were washed with PBS, observed and photographed under an inverted fluorescence microscope. The experiment was repeated for three times.

### Apoptosis Detection

SKOV-3 cells were transfected with si-NC and si-SNHG1, collected at 48 h after transfection, and washed with PBS twice. 500  $\mu$ L 1 × binding buffer was added to resuspend the cells and the cell suspension was added with 5  $\mu$ L Annexin V-fluorescein isothiocyanate (FITC) reagent and mixed evenly, followed by incubation in a dark place at room temperature for 15 min. Next, 10  $\mu$ L PI reagent was added and gently mixed, followed by incubation in a dark place at room temperature for 5 min, and submission for detection who have the experiment was repeated for three to the simple state of the simple state.

#### Western Blotting

SKOV-3 cells were transfected si-NC a si-SNHG1, and collected at ransfe tion. After cells were w d with -cooled PBS, they were fully ly ith ra munoprecipitation assay ( as taken and ter centrifugation, supernal quantified. Then ug total pro as mixed with  $5 \times \text{sodi}$ d sulfonate S) protein loading buffer, to d by denaturation at

100°C for 5 min, loading in SDS-polyacrylamide gel electrophoresis (PAGE) and electrophoresis. The gel and activated polyvinylidene difluoride (PVDF) were placed on the membrane frame for membrane transfer under co rent for 2 h. PVDF membrane was noved and blocked with 5% skim milk pow for 1 h. The corresponding primary antibodies dded for he me incubation at 4°C overnight e was washed with Tris-Buffere aline and corresponding (TBST), and added with abeled radish peroxidase (H condary a. bodies for incubation as perature or 1 h. lor dev TBST After washing w oment, geJ softthe gray valu as analyzed el of target ware, and ve expression s target protein/actin. The protein w. prese experiment was repe for three times.

#### S Astical Analysis

PSS 20.0 software (IBM, Armonk, NY, USA) used for standard analysis. All quantitative during the expression of the expre

#### Results

# SNHG1 was Highly Expressed in Ovarian Carcinoma Tissues and four Ovarian Carcinoma Cell Strains

Results of qRT-PCR showed that the expression of SNHG1 in epithelial ovarian carcinoma tissues was significantly higher than that in normal ovarian tissues, and the difference was

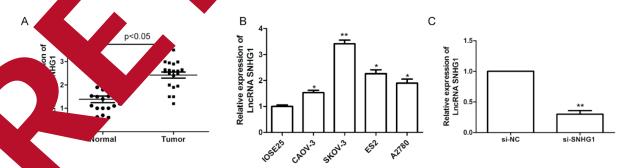



Fig. 21. Relative SNHG1 expression levels in ovarian carcinoma tissues and cell lines. (A) qRT-PCR analysis of relative SNHG1 expression levels in 20 pairs of ovarian carcinoma tissues (Tumor) and adjacent non-cancerous tissues (Normal). (B) qRT-PCR analysis of relative SNHG1 expression levels in the IOSE25 cell line and four ovarian cancer cell lines. (C) Effective knockdown of SNHG1 in SKOV-3 epithelial ovarian cancer cells 48 h after siRNA treatment. (\*p<0.05, \*\*p<0.01).

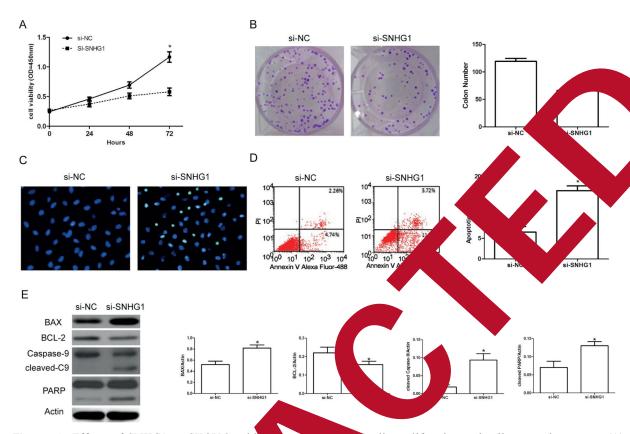



Figure 2. Effects of SNHG1 on SKOV-3 epith povars. CCK-8 cell proliferation assays were performed terminal transfected SKOV-3 cells. (B) Colony-forming assays were conducted to determine the prolife apoptosis of si-SNHG1-transfected SKOV-3 cells. (C,D) Hoechst 33342 staining and Flow cytometry were conducted to determine the prolife apoptosis of si-SNHG1-transfected SKOV-3 cells. (E) The apoptosis related proteins levels were united by si-NC. (\*p<0.05).

statistically significa suggesting that S plays tain role in promoting the oment of ence and d ovarian carcip rther valida esults in HG1 in normal ovarvitro, the expressions and four ovarian ian epith cells (IOS SKOV-3, ES2 carcing cell strains (CA 80) were compared. Compared with that and an epithelial cells, the expresin **d** in for varian carcinoma cell sions y higher. Compared with mific ins w ee cell strains, the expresin the I in SKOV-3 was the highest, vel of Si e difference was statistically significant ure 1B). In this study, SKOV-3 Is with the highest expression of SNHG1 were ted for subsequent transfection and study. hibition efficiency at 48 h after transfection with si-SNHG1 was verified via qRT-PCR. As shown in Figure 1C, si-SNHG1 was effective in inhibiting the expression of SNHG1 in SKOV- 3 cells, and there was a statistically significant difference compared with that in negative control group (p<0.01), so si-SNHG1 was used for transfection in subsequent experiments.

# Down-Regulation of SNHG1 Expression Inhibited the in vitro Proliferation of SKOV-3 Cells

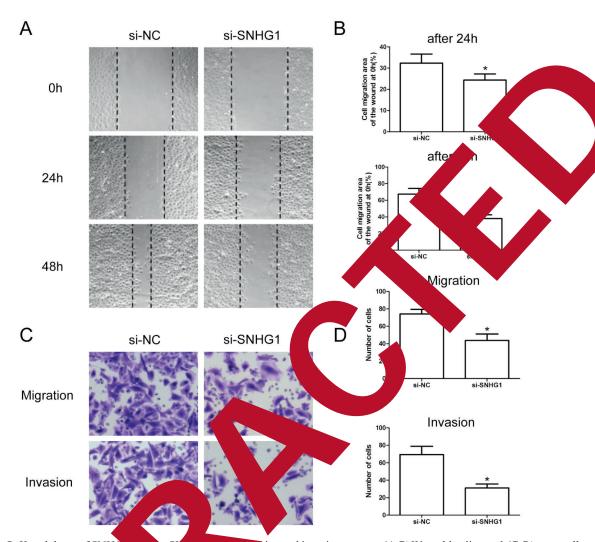
In this study, the effect of inhibiting SNHG1 on the *in vitro* proliferation of SKOV-3 cells was verified via CCK8 and clone formation assays. SKOV-3 cells were cultured for 24, 48 and 72 h after interference with si-SNHG1 and si-NC. Compared with that in control group, the optical density (OD) value in experimental group was decreased in different degrees, indicating that the inhibition of SNHG1 expression reduced the SKOV-3 cell growth rate (Figure 2A). Similarly, results of clone formation assay showed that the number of cell clone in si-SNHG1 interference group was significantly decreased compared with

that in si-NC group (p<0.01, Figure 2B), suggesting that the inhibition of SNHG1 expression can significantly inhibit the cell clone formation.

# Inhibition of SNHG1 Expression Promoted the SKOV-3 Cell Apoptosis

To further investigate the mechanism of inhibiting SNHG1 in inhibiting the SKOV-3 cell proliferation, the effect of SNHG1 small interfering RNA (siRNA) on apoptosis was verified. First, the change in the proportion of apoptotic cells after interference with SNHG1 siRNA was observed via Hoechst 33342 staining. The results showed that the proportion of apoptotic cells in experimental group was significantly increased compared with that in control group at 48 h after interference in SKOV-3 cells with SNHG1 siRNA (Figure 2C). The results of flow cytometry showed that the total apoptosis rate in experimental group was obviously increased compared with that in control group (p<0.05, Figure 2D), indicating that inhibiting SNHG1 expression promotes the apoptosis. In order to further explore the mechanism of inhibiting SNHG1 expression in promoting the apoptosis, the changes in Bax, Bcl-2, cleaved Caspase-9, and cleaved PARP were detected. As sl Figure 2E, the expression of Bax protein v nificantly increased but the expression of Bcldecreased after interference with SNHG1 siR Moreover, cleaved Caspase-9 ar red PA were significantly increased siRN interference group. The ab results eal that inhibiting the expression NHG1 cionificantly up-regulate the d Caspase-9 increasing the exp ons of and cleaved PAP d ultimately oting the cell apoptosis

# Down-relation of Second Expression Inhibit the SKOV-3 Configration and vasion


abilities of cells in two groups igrat Via wou healing assay first, and were cratcl aling were observed at 24 degre atch model was established. h aft that after 24 and 48 h, the misults sho n distance of cells in SNHG1 knockdown nificantly shorter than that in con-I group. With the prolongation of healing time, ifference in migration distance was further d between two groups, and the difference was statistically significant (p<0.05, Figure 3A-B), indicating that inhibiting the SNHG1 expression can significantly inhibit the wound healing ability of SKOV-3 cells. Next, transwell migration assay was conducted, and the consistent results to wound healing assay were obtained. After SNHG1 knockdown, the number of SKOV and passing through the filter membrane is chamber was significantly decrease compared with that in control group, and the ference was statistically significant (p<0.01, Fig. 3C-D).

# Inhibited EMT Proces and MMP-2 and MMP-9 Expression SKO Cells

anism of nock-To further investigate nhibitir down of SNHG1 pression ne mi- $\Omega$ cells, the gration and in on abilities er detected changes in plecules were is well known that invasion via Wester slotth and metastasis are teristics of tumors, and sm is closely ed to epithelial-mesits 1 ymar transition (EM1). 12. Therefore, changn expression levels of EMT-related proteins in V-3 cells af nockdown of SNHG1 expresere further tected. E-cadherin expression ificant' up-regulated, but N-cadherin wa. xpressions were down-regulated and V onificantly after SNHG1 knockdown (Figure 4), that down-regulating the SNHG1 excan inhibit the EMT process of SKOV-3 cells. It is all known that extracellular hydrolase is necessary for tumor cells passing through the basement membrane. The extracellular matrix degradation is required for tumor cells in invasion to surrounding tissues, passing through the vascular wall and formation of distant metastasis, in which MMPs play key roles<sup>13,14</sup>. The results (Figure 4) showed that after SNHG1 knockdown, the expressions of MMP-2 and MMP-9 in SKOV-3 cells could also be down-regulated. The above results reveal that after the down-regulation of SNHG1 expression, the invasion and metastasis of cells can be inhibited through the regulation of EMT and MMPs.

#### Discussion

In this study, the expressions of lncRNA SNHG1 in 20 pairs of ovarian carcinoma tissues and para-carcinoma tissues were detected via RT-PCR. The results showed that the expression level of SNHG1 in ovarian carcinoma was significantly increased compared with that in para-carcinoma tissues. Further *in vitro* cell experiments also revealed that compared with that in



**Figure 3.** Knockdown of SNHO. as SV dation and invasion *in vitro.* (A-B) Wound-healing and (C-D) transwell assays showing the migrated abilities as sive capacity of SKOV-3 cells transfected with si-SNHG1 or si-NC. ( $^*p$ <0.05).

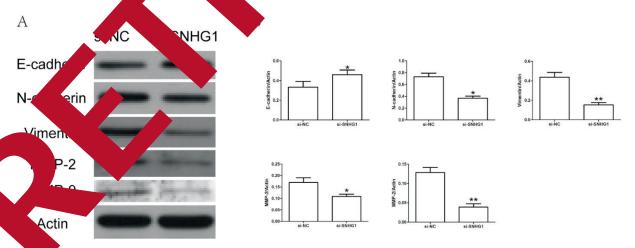



Fig. 4. Knockdown of SNHG1 inhibits cell migration and invasion *in vitro.* (A) The expression levels of target proteins (E-cadherin, N-cadherin, Vimentin, MMP-2 and MMP-9) measured by Western blotting in SKOV-3 cells transfected with si-SNHG1 or si-NC. (B) Data shown are representative of 3 independent experiments. Data are presented as means  $\pm$  SD (n = 3). (\*p<0.05, \*\*p<0.01)

normal ovarian epithelial cells, lncRNA SNHG1 was highly expressed in different ovarian carcinoma cells. These results strongly suggest that lncRNA SNHG1 also promotes the occurrence and development of ovarian carcinoma. In CCK8 and clone formation assays, it was found that after knockdown of SNHG1 in SKOV-3 cells, the cell proliferation rate was significantly reduced. Interestingly, it was found in the apoptosis assay that the proportion of apoptotic SKOV-3 cells with SNHG1 knockdown was significantly increased. Besides, results of Western blotting confirmed that when the expression of SNHG1 was inhibited, the expressions of pro-apoptotic proteins in mitochondrial apoptosis pathway were upregulated and activated, while the anti-apoptosis proteins were inhibited, thereby activating the mitochondrial apoptosis pathway and inducing apoptosis. These results also partially clarify the pro-apoptotic mechanism after SNHG1 is inhibited.

#### Conclusions

We found that SNHG1 can promote the eration of ovarian carcinoma cells, and in the expression of SNHG1 can partially reve tumor-promoting effect. The underlying me nism is related to the activation chondi apoptotic pathway after the j SNHG In addition, SNHG1 can prom the metastasis of ovarian carci ugh the cells regulation of EMT a limitations in this y, and ecific mechanism of SNHG egulating E d MMPs needs to be fu provides ed. This stu a new horizon for the anism of occurrence and devel nent of ovari cinoma and a new arget for the treath potenti of ovarian carcinom the future.

### nflict erest

thors a chey have no conflict of interest.

#### References

- 1) SIEGEL RL, MILLER KD, JEMAL A. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67: 7-30.
- BANERJEE S, GORE M. Recent advances ic treatments for ovarian cancer. Carlinagin, 2012; 12: 305-309.
- 3) Su Z, Graybill WS, Zhu Y. Detection of monitoring of ovarian cancer. Clin Chim Acta 415: 341-345
- 4) DAVIDSON B, TROPE CG. Train cancer. tic, biological and processing aspects. We Health (Lond) 2014 519-537
- 5) CAIOLA E, BROGGINI M, Genetic markers for prediction treath tcomes varian cancer. Physicacogenom 14; 1 401-410.
- 6) Kondo Y K, Katsushima non-coding RNAs an netic regulate human cancers. Cancer St. 7: 108: 1927-1933.
- 7) ZHANG M, Wu WB, ZW, WANG XH. LncRNA is closely related progression of breast cancer via promoting proferation and EMT. Eur Rev Med Pharmacol Sci 2017; 21: 1020-1026.
- LI J, ZHANG Z, DNG L, GUO C, JIANG T, ZENG L, LI F, WANG J. S G1 IncRNA negatively regulates enhance CDK7 expression and oliferation in prostate cancer. Biochem. 2017; 487: 146-152.
- ZHANG M, WANG W, LI T, YU X, ZHU Y, DING F, LI G T. Long noncoding RNA SNHG1 predicts or prognosis and promotes hepatocellular carcinoma tumorigenesis. Biomed Pharmacother 2016; 80: 73-79.
- 10) Cui Y, Zhang F, Zhu C, Geng L, Tian T, Liu H. Upregulated IncRNA SNHG1 contributes to progression of non-small cell lung cancer through inhibition of miR-101-3p and activation of Wnt/beta-catenin signaling pathway. Oncotarget 2017; 8: 17785-17794.
- 11) HANAHAN D, WEINBERG RA. Hallmarks of cancer: The next generation. Cell 2011; 144: 646-674.
- KUDO-SAITO C, SHIRAKO H, TAKEUCHI T, KAWAKAMI Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 2009; 15: 195-206.
- Deryugina El, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25: 9-34.
- AL-ALEM L, CURRY TJ. Ovarian cancer: involvement of the matrix metalloproteinases. Reproduction 2015; 150: R55-R64.