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Dexmedetomidine attenuates myocardial
ischemia/reperfusion injury through regulating
lactate signaling cascade in mice
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Abstract. - OBJECTIVE: The aim of this study
was to investigate the role of dexmedetomidine
(Dex) in lactate signaling cascade and myocardi-
al ischemia/reperfusion (I/R) injury in mice.

MATERIALS AND METHODS: The left anterior
descending of the coronary artery was ligatured
for 30 min and then reperfused for 6 h to induce
myocardial I/R injury in mice. Heart samples
were collected and the levels of lactate, SOD and
MDA were measured. Infarct size and myocardi-
um were stained with triphenyltetrazolium chlo-
ride and TUNEL, respectively. In addition, the ex-
pression levels of MCT1, cytochrome c, cleaved
caspase-9 and -3 were detected by Western blot.

RESULTS: The myocardial infarct size, lac-
tate and MDA levels of the I/R group were sig-
nificantly increased, whereas the SOD activity
was decreased. However, Dex significantly re-
duced the myocardial infarct size, as well as lac-
tate and MDA levels in contrast to the I/R group.
Meanwhile, the SOD activity was remarkably in-
creased. The expression levels of MCT1, cyto-
chrome c, cleaved caspase-9 and -3 were sig-
nificantly increased in the I/R group. In addition,
Dex administration further increased the expres-
sion of MCT1, whereas decreased the expres-
sions of cytochrome c, cleaved caspase-9 and
-3 in contrast to the I/R group.

CONCLUSIONS: Dex elevated the expression
of mitochondrial MCT1 and inhibited oxidative
stress and the activation of mitochondria-de-
pendent apoptosis in mice. This indicated that
Dex attenuated myocardial I/R injury by regulat-
ing lactate signaling cascade.
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Introduction

Myocardial ischemic injury refers to partial or
complete acute obstruction of the coronary arte-

ries. However, after ischemic myocardium resto-
red to blood reperfusion, tissue damage progressi-
vely worsens. This may eventually lead to a series
of pathophysiological changes, such as severe
arrhythmia, myocardial stunning and energy me-
tabolism disorder'. Multiple pathophysiological
mechanisms are involved in myocardial ischemia/
reperfusion (I/R) injury including calcium over-
load, oxidative stress, cell apoptosis and others?.

Lactate is known as the end-product of glycolysis.
Intracellular lactate shuttle is mediated by monocar-
boxylate transporter 1 (MCT1), which is located on
the mitochondrial membrane**. Previous evidence
has shown that lactate is a signaling molecule and
regulates the generation of reactive oxygen species
(ROSY’. Low levels of ROS can increase the expres-
sion of MCT1 and promote lactate metabolism in
mitochondria’. However, under pathological condi-
tions, lactate metabolic disorder results in an exces-
sive generation of ROS, thereby leading to oxidative
stress and the activation of mitochondria-dependent
apoptosis’. Currently, it has been demonstrated that
lactate signaling cascade is closely related to myo-
cardial I/R injury®. Therefore, lactate signaling
cascade can serve as a potential therapeutic target
against myocardial I/R injury.

As a highly selective o,-receptor agonist, dex-
medetomidine (Dex) is widely used in the seda-
tion of patients undergoing surgery and mechani-
cal ventilation in ICU®. Dex has been reported to
protect the heart from myocardial I/R injury by
inhibiting NF-kB signaling pathway'’ and activa-
ting PI3K/Akt signaling pathway''. However, the
exact role of Dex in lactate signaling cascade in
the myocardial I/R injury has not yet been repor-
ted. Therefore, we established a myocardial I/R
injury in mice, and explored the effect of Dex on
lactate signaling cascade as well as the potential
underlying mechanism.
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Materials and Methods

Ethics Statements

Male C57BL/6 mice (8-10 weeks old, weighing
20-30 g) were provided by the Experimental Ani-
mal Center of Jilin University (Jilin, China). Ani-
mal experiments were conducted following the
NIH Guide for Laboratory Animals. All mice were
kept at 22°C under 12:12 hour light/dark cycles, and
were fed with standard mouse food and water. This
investigation was approved by the Animal Ethics
Committee of Jilin University Animal Center.

Construction of the Myocardial I/R Injury
Model in Mice

Mice were first anesthetized with pentobarbi-
tal (50 mg/kg, intraperitoneal injection), followed
by intubation and ventilation. A left horizontal
incision was made at the third intercostal space.
To induce I/R injury, an 8-0 silk suture was tied
around both the left anterior descending (LAD)
and a silicon tube. Subsequently, myocardial
ischemia was measured by the electrocardiograph
performance (ST-elevated). Sham-operated mice
underwent the same surgical procedure without
ligation. After 30 min of ischemia, the silicon
tube was removed to induce reperfusion for 6 h.
Totally five groups were set in this study, inclu-
ding 1) the sham group; 2) the I/R group, 0.5 mL
saline was injected intraperitoneally at the start
of reperfusion; 3) the I/R + Dex5 group, 5 ug/
kg Dex was injected intraperitoneally at the start
of reperfusion; 4) the I/R + Dex10 group, 10 ug/
kg Dex was injected intraperitoneally at the start
of reperfusion; 5) the I/R + Dex20 group, 20 ug/
kg Dex was injected intraperitoneally at the start
of reperfusion. Each group had 10 mice (n=10).
After reperfusion, heart samples were harvested
and stored at -70°C for subsequent experiments.

Assessment of Myocardial Infarct Size
Heart sections were first stained with 1% tri-
phenyltetrazolium chloride at 37°C for 20 min.
Then the sections were fixed with 4% paraformal-
dehyde at room temperature for 8 h. Infarcted myo-
cardium was carefully separated from the non-in-
farcted myocardium and weighed. Infarct size was
expressed as the percentage of ischemic risk area.

Measurement of Lactate, SOD and MDA
Levels in Myocardium

The enzyme-labeled immunosorbent assay
was used to measure the levels of lactate, SOD
and MDA in the myocardium. After 6 h of reper-
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fusion, left ventricular tissues were homogenized,
centrifuged, and then transferred to EP tubes. The
following steps were performed according to the
instructions of the detection kit (Jiancheng Bioen-
gineering Research, Nanjing, China).

TUNEL Assay

Cell apoptosis was detected by an in situ cell
death detection kit (Roche, Basel, Switzerland).
Heart sections were stained with the terminal de-
oxynucleotidyl transferase (TdT)-mediated dUTP
nick-end labeling (TUNEL) reaction mixture and
Converter-POD, followed by observation under a
microscope (Eclipse, Nikon, Tokyo, Japan). Apop-
totic nuclei showed brown, while normal nuclei
showed blue. The number of TUNEL-positive nu-
clei was expressed as the percentage of total nuclei.

Western Blot

Western blot was used to determine the expres-
sion levels of cytoplasmic and mitochondrial pro-
teins extracted from I/R myocardium. Briefly,
extracted proteins were separated by sodium do-
decyl sulphate-polyacrylamide gel electrophore-
sis (SDS-PAGE) and transferred to polyvinylidene
difluoride (PVDF) membranes (Merck Millipore,
Billerica, MA, USA). Then the membranes were
incubated with primary antibodies of anti-MCT1,
anti-cytochrome c, anti-cleaved caspase 9 and
anti-cleaved caspase 3 at 4°C overnight. After
washing with Tris-Buffered Saline and Tween
20 (TBST), the membranes were incubated with
the HRP-conjugated secondary antibody at room
temperature for 2 h. Western blot detection kit
and Image J software (NIH) were used to measu-
re the blot signal and density.

Statistical Analysis

Statistical Product and Service Solutions
(SPSS) 19.0 Software (IBM, Armonk, NY, USA)
was used for all statistical analysis. Experimen-
tal results were expressed as means + standard
deviations (SD). One-way analysis of variance
(ANOVA) was used to compare the differences
among different groups, followed by Post-Hoc
Test (Least Significant Difference). p<0.05 was
confirmed statistically significant.

Results
Effect of Dex on Myocardial Infarct Size

As shown in Figure 1, compared with the sham
group, myocardial infarct size in the I/R group
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Figure 1. Effect of Dex on infarct size, lactate, SOD and MDA. ***p<0.001 versus the sham group; “p<0.05, #p<0.01 and
##p<0.001 versus the I/R group; “p<0.05 versus the I/R+Dex10 group.

was significantly increased (p<0.001). 5, 10, 20
ug/kg of Dex administration all significantly
reduced the myocardial infarct size in contrast
to the I/R group (p<0.05; p<0.001; p<0.001, re-
spectively). Moreover, myocardial infarct size in
the Dex (20 pg/kg)-treated group was less than
that of the Dex (10 pg/kg)-treated group (p<0.05).

Effect of Dex on Lactate, SOD, and MDA
Levels

As shown in Figure 1, compared with the sham
group, the levels of lactate and MDA were si-
gnificantly increased in the I/R group (p<0.001;
p<0.001, respectively), whereas the SOD activity
was markedly decreased (p<0.001). Meanwhile,
5, 10, 20 pg/kg of Dex administration significant-
ly reduced lactate and MDA levels in contrast to
the I/R group (p<0.05; p<0.01; p<0.001, respecti-
vely), whereas the SOD activity was remarkably
increased (p<0.05; p<0.001; p<0.001, respecti-
vely). Moreover, the levels of lactate and MDA

in the Dex (20 pg/kg)-treated group were both
significantly lower than those of the Dex (10 pg/
kg)-treated group (p<0.05; p<0.05, respectively).
However, SOD activity of the Dex (20 pg/kg)-tre-
ated group was higher than that of the Dex (10 pg/
kg)-treated group (p<0.05).

Effect of Dex on Myocardial I/R-Induced
Apoptosis

As shown in Figure 2, compared with the sham
group, the apoptotic rate of the infarcted myocar-
dium was significantly increased in the I/R group
(p<0.001). Meanwhile, 20 pg/kg Dex administra-
tion reduced the apoptotic rate in contrast to the
I/R group (p<0.001).

Effect of Dex on Lactate Signaling
Cascade

As shown in Figure 3, compared with the sham
group, the expression level of MCT1 on the mito-
chondrial membrane was significantly increased
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Figure 2. Effect of Dex on myocardium apoptosis. ***p<0.001 versus the sham group; “#p<0.001 versus the I/R group.
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Figure 3. Effect of Dex on the expression of MCTI. *p<0.05 versus the sham group; “p<0.05 versus the I/R group.

in the I/R group (p<0.05). 20 pg/kg Dex admini-
stration further increased the expression level of
MCT]1 in contrast to the I/R group (p<0.05).

As shown in Figure 4, compared with the sham
group, the expression levels of cytochrome c, cle-
aved caspase-9 and -3 were markedly increased in
the I/R group (p<0.01; p<0.01; p<0.01, respecti-
vely). Meanwhile, 20 pg/kg Dex administration
significantly decreased the expressions of cyto-
chrome c, cleaved caspase-9 and -3 in contrast to
the I/R group (p<0.05; p<0.05; p<0.05, respecti-

vely).
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Discussion

The focus of this study was to investigate the
cardioprotective effect of Dex on myocardial I/R
injury in mice. Our results demonstrated that Dex
administration protected the heart from myocardial
I/R injury, as confirmed by the reduction in infarct
size. This protective effect was associated with the
regulation of lactate signaling cascade, including
elevating the expression of mitochondrial MCT],
inhibiting oxidative stress and suppressing the acti-
vation of mitochondria-dependent apoptosis.
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As the end-product of glycolysis, lactate can
be transported into mitochondria by mono-car-
boxylate transport 1 (MCTI) protein®. Brooks et
al'? first proposed the hypothesis of intracellular
lactate shuttle mechanism. They demonstrated
that MCT1 was localized on the mitochondrial
membrane of rodent and human hearts'*"*. Under
physiological or pathological conditions, glycoly-
sis can be enhanced and may result in excessive
production of lactate. Meanwhile, the expression
of MCT1 compensatory increases to alleviate in-
tracellular acidification. In the rat heart failure
model, both Johannsson et al’® and Evans et al'®
have found that the increased expression of MCT1
on the mitochondrial membrane is closely asso-
ciated with advanced lactate influx. Similarly, Xu
et al'” have also found that in patients with atrial fi-
brillation, the expression of MCT1 is upregulated
alone with the increase of lactate concentration in
atrial tissues. Conversely, Martinov et al'® have re-
ported that inhibiting the expression of MCT1 can
aggravate myocardial I/R injury in mice. In ac-
cordance with these findings, our results showed
that the expression of mitochondrial MCT1 and
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the level of lactate in the infarcted myocardium
were both significantly increased. Moreover, Dex
administration could further enhance the expres-
sion of mitochondrial MCT1 and reduce the le-
vel of lactate in infarcted myocardium. Taken
together, intracellular lactate shuttle mediated by
MCT]I exhibited an inimitable effect on the deve-
lopment of myocardial I/R injury.

Lactate has been confirmed as a signaling mo-
lecule that can regulate the generation of ROS and
related signaling cascade. Low level of lactate
can promote ROS generation and increase MCT1
expression”®. However, a high level of lactate
may result in acidosis, oxidative stress and mito-
chondria-dependent apoptosis'”?’. In this study,
we found that the lactate level was significantly
increased in infarcted myocardium alone with
upregulated MCT1 expression, remarkable oxida-
tive stress and activated mitochondria-dependent
apoptosis. Our results indicated that lactate signa-
ling cascade was closely associated with myocar-
dial I/R injury. In addition, Dex administration
significantly inhibited oxidative stress, reduced
the release of cytochrome c, and down-regulated
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Figure 4. Effect of Dex on the expression of cytochrome c, cleaved caspase-9 and -3. **p<0.01 versus the sham group;

#p<0.05 versus the I/R group.
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the expression of cleaved caspase-9 and -3 in in-
farcted myocardium.

Conclusions

We showed that Dex protected against myo-
cardial I/R injury by regulating lactate signaling
cascade, including enhancing the expression of
mitochondrial MCT1, alleviating oxidative stress,
and inhibiting mitochondria-dependent apopto-
sis. This suggested that lactate signaling cascade
might be a potential therapeutic target for myo-
cardial I/R injury. However, further researches
are still needed to investigate the precise mecha-
nism in vitro.
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