In vitro gene and chromosome characterization of expanded bone marrow mesenchymal stem cells for musculo-skeletal applications

L. ROSETI, M. SERRA, F. CANELLA¹, C. MUNNO¹, A. TOSI¹, M. ZUNTINI², M. PANDOLFI², L. SANGIORGI², P. BISO³, M.C. PITTALIS³, C. BINI⁴, S. PELOTTI⁴, A. GASBARRINI⁵, L. BORIANI⁶, A. BASSI¹, B. GRIGOLO⁷

RAMSES Laboratory, Research Innovation Technology Department, Rizzoli Orthopaedic Institute, Bologna, Italy

Abstract. – OBJECTIVE: A number of studies have shown the role of expanded Bone Marrowderived Mesenchymal Stem Cells in the repair and regeneration of musculo-skeletal tissues. The current European regulations define in vitro expanded cells for clinical purposes as substantially manipulated and include them in the class of Advanced-Therapy Medicinal Products to be manufactured in compliance with current Good Manufacturing Practice. Among the characteristics that such cells should display, genomic stability has recently become a major safety concern. The aim of this study is to perform a chromosomal and genetic characterization of Bone Marrow-derived Mesenchymal Stem Cells expanded in compliance with Good Manufacturing Practice for a potential clinical use in or-

MATERIALS AND METHODS: Mesenchymal Stem Cells, isolated from bone marrow, were expanded for six weeks in compliance with current Good Manufacturing Practice. DNA profiling analyses were applied to test cross-contamination absence. Genomic stability was evaluated by means of karyotyping, sequencing of TP53, p21/CDKN1A and MDM2 genes and the expression analysis of c-MYC and H-RAS oncogenes,

p21/CDKN1A, TP53, p16/CDKN2A, RB1 and p27/CDKN1B tumor suppressor genes and hTERT gene.

RESULTS: The DNA profiling analysis showed a unique genetic profile for each Mesenchymal Stem Cell culture, indicating the absence of cross-contamination. Karyotyping evidentiated some chromosomal abnormalities within the 10% limit set by the Cell Products Working Party review, except for one patient. In all cases, the molecular biology analyses did not revealed DNA point mutations, acquisition or changes in gene expression. hTERT levels were undetectable.

CONCLUSIONS: Cultured Mesenchymal Stem Cells do not seem to be prone to malignant transformation. In fact, although some chromosomal aberrations were found, molecular biology analyses demonstrated that the expansion phase did not induce the acquisition of *de novo* genetic changes.

Key Words:

Mesenchymal stem cells, Karyotyping, DNA profiling, Direct sequencing, Oncogenes, Tumor suppressor genes, Musculo-skeletal applications.

¹Cell Factory, Prometeo, Research Innovation Technology Department, Rizzoli Orthopaedic Institute, Bologna, Italy

²Department of Medical Genetics and Skeletal Rare Diseases, Rizzoli Orthopaedic Institute, Bologna, Italy

³Department of Medicine and Surgery (DIMEC), Obstetrics and Gynecology, University of Bologna, Bologna, Italy

⁴Department of Medicine and Public Health, Section of Legal Medicine, University of Bologna, Bologna, Italy

⁵Department of Oncologic and Degenerative Spine Surgery, Rizzoli Orthopaedic Institute, Bologna, Italy ⁶Orthopaedics and Traumatology Operative Unit, Regional Spinal Department, Ospedale

[&]quot;Alto Vicentino", Santorso (Schio-Thiene, Vicenza), Italy

⁷Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopaedic Institute, Bologna, Italy

Abbreviations

ATMPs = Advanced-Therapy Medicinal Products; bp: base pair; cDNA = complementary DNA; BSE/TSE = Bovine Spongiform Encephalopathy/Transmissible Spongiform Encephalopathy; DMEM = Dulbecco's Modified Eagle Medium; EDTA = Ethylenediaminetetraacetic acid; EMA = European Medicines Agency; FBS = Fetal Bovine Serum; GAPDH = Glyceraldehyde 3-Phosphate Dehydrogenase; GTG = G banding by Trypsin and Giemsa; GMP = Good Manufacturing Practice; hTERT: Human Telomerase Reverse Transcriptase; ISCN = International System for Human Cytogenetic Nomenclature; ISCT = International Society for Cellular Therapy; MSCs = Mesenchymal Stem Cells; mtDNA = mithochondrial DNA; PCR = Polymerase Chain Reaction; qPCR = quantitative Real-time RT-PCR; RMP = Random Match Probability; rRCS = revised Reference Sequence; RT-PCR = Reverse Transcriptase-PCR; SIGU = Italian Society of Human Genetics; STR = Short Tandem Repeat; SNP = Single Nucleotide Polymorphism.

Introduction

Several studies have shown the role of bone marrow-derived Mesenchymal Stem Cells (MSCs) in the repair of musculo-skeletal tissues¹⁻⁸. Bone large segment regeneration after tissue lost, due to trauma, tumor resection or skeletal deformities, non-unions fractures and avascular necrosis may require a large amount of cells to achieve better results. Since MSCs display low density in bone marrow, an *in vitro* expansion phase is needed in order to obtain a suitable cell number⁹⁻¹².

The current European regulation defines such in vitro expanded cells as substantially manipulated and include them in the class of Advanced-Therapy Medicinal Products (ATMPs)13,14. Consequently, it becomes mandatory to produce these cell-based medicines in proper Facilities (authorized by each Member State) and in accordance with the current Good Manufacturing Practice (GMP)^{15,16}. These rules, that have been already encoded for conventional drugs, allow for the manufacture of medicinal products in a standardized and controlled way minimizing, at the same time, contamination risks¹⁷. The GMP-Facilities consist in environments (cleanrooms) where specific parameters such as air filtration, ventilation, temperature, relative humidity, differential pressure, number of air particles and bacterial colony forming units are standardized and continuously monitored¹⁵.

In the document issued by the European Medicines Agency (EMA), the "Reflection paper on stem cell-based medicinal products", the characteristics (specifications) that such MCS-based products should display are set out in detail: absence of contamination, viability, growth kinetics, identity maintenance, purity, potency and genomic stability¹⁸. The latter has recently become a major safety concern, especially in orthopaedic field, where most cell therapy treatments are not life-saving. In fact, pre-clinical data evaluating the *in vitro* and/or *in vivo* transformation/oncogenic potential are nowadays mandatory before starting any trial in humans⁹⁻¹².

In the literature there are various studies investigating MSC genomic stability, but results are conflicting ¹⁹⁻²⁴. In particular, the effects of possible abnormalities remain to be elucidated.

Recently, the Cell Products Working party (CP-WP) organized an expert meeting mainly focused on tumorigenicity of MSCs whenever used as therapeutic medicinal products²⁵. Besides emphasizing the importance of GMP cultures, the CPWP suggested that karyotyping analysis would be sufficient as a release test with the exclusion of two identical abnormal metaphases on a total of 20 analyzed (10%), in comparison with patient karyotype status. Such limit has been defined as a clonal chromosome change by the International System for Human Cytogenetic Nomenclature²⁵.

Within this complex context, the present study investigates the chromosomal and genetic stability of bone marrow MSCs expanded in compliance with GMP in order to evaluate their potential clinical use in orthopaedics.

Materials and Methods

Donor Screening and Informed Consent

Bone marrow was harvested, under general anesthesia, from the iliac crest of six patients (4 females and 2 males; median age: 35.6 years; range: 22-39 years, hereafter identified as Patient 1-6) undergoing regenerative orthopaedic treatment employing autologous bone marrow stem cells transplantation within a study approved by the Ethical Committee of Rizzoli Orthopaedic Institute, Bologna, Italy.

For this research, 6-8 remaining milliliters of heparinized bone marrow from each donor were used, after obtaining written informed consent.

Peripheral blood samples (3-4 ml) were also harvested from each patient and utilized both to

evaluate the presence of transmissible pathologies (Acquired Immune Deficiency Syndrome, Hepatitis B and C and syphilis) and as controls for karyotype and molecular biology analyses. An additional written consensus for the utilize of genetic data was obtained from each patient, as requested by current laws²⁶.

Reagents

All cell culture reagents were suitable for cell therapy applications: as specifically requested by current legislation, Trypsin-Ethylenediaminete-traacetic acid (EDTA) and Fetal Bovine Serum (FBS) were certified to be free from porcine and bovine mycoplasma and viral contaminations, respectively. In addition, FBS origin had to be from a country with a negligible risk of Bovine Spongiform Encephalopathy/Transmissible Spongiform Encephalopathy (BSE/TSE)²⁷.

Bone Marrow MSC Isolation and Culture

Cultures were developed in a public, authorized, GMP compliant facility located inside Rizzoli Orthopaedic Institute. After passing donor screening controls, bone marrow aliquots were diluted 1:4 with Dulbecco's Modified Eagle Medium (DMEM) low glucose (1 g/L), supplemented with 10% FBS and L-Glutamine 4 mM (complete medium). Diluted samples were then seeded in vented cell culture flasks (BD FalconTM, San Jose, California USA) and incubated at 37°C, 5% CO₂, 95% RH. Cells were let adhere for 2-3 days. The non-adherent cells were then removed by medium replacing and cultures were carried on in monolayer for six weeks. During the whole expansion phase, medium was changed weekly; at 70% confluence, MSCs were trypsinized and used partly for gene expression analysis and partly passaged at low density. DNA profiling, gene sequencing, karyotyping and Human Telomerase Reverse Transcriptase (hTERT) expression analyses were performed at the end of the six weeks expansion period. Gene expression analysis were carried on at each passage until the end of the expansion phase.

DNA Profiling

For each patient, a peripheral blood sample collected during surgery and a MSC pellet (80.000 cells) of the corresponding culture harvested at the end of the expansion phase were utilized. Nuclear and mitochondrial DNAs were extracted by *QIAmp Mini Kit* (Qiagen, Hilder,

Germany) following Manufacturer's instructions and visualized by electrophoresis on 1% agarose gel containing ethidium bromide.

Nuclear DNA

1-4 ng of DNA template were utilized for fluorescent multiplex Polymerase Chain Reaction (PCR) with the AmpFISTR Identifiler Amplification Kit (Applied Biosystems, Life Technologies, Carlsbad, CA, USA) to amplify 15 tetranucleotide Short Tandem Repeat (STR) loci (molecular size: 107-358 base pair, bp): D8S1179, D21S11, D7S820, CSF1PO, D3S1358, THO1, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, FGA. Amelogenin locus for sex determination was also amplified and used as internal control. Dye-labeled PCR fragments analysis was performed using an ABI PRISM 310 Genetic Analyzer (Applied Biosystems) and alleles were genotyped by GeneMapper ID V3.2 software.

Mitochondrial DNA

Mitochondrial DNA (mtDNA) analysis was performed in a reaction volume of 25 µl containing: 10 ng of genomic DNA, 1X PCR buffer, 1,5 μM MgCl₂, 200 mM of each dNTP, 1,5 U Ampli-Taq DNA Polymerase (Applied Biosystems) and 0,2 mM of each primer (L15997-H16401 for HV1 control region and L00029-H00408 for HV2 control region). The amplification was carried out for 35 cycles: 3 min at 94°C, 1 min at 94°C, 30 sec at 56°C and 1 min at 72°C, with a final extension of 10 min at 72°C. PCR products were run on a 2% agarose gel and stained with ethidium bromide. Amplicons were purified by ExoSAP-ITTM reagent (USB Corporation, Cleveland, OH, USA), according to Manufacturer's protocol. Sequencing was performed using BigDye Terminator Cycle Sequencing Kit v 1.1 (Applied Biosystems) and products were purified by ethanolic precipitation. Sequences were analyzed by capillary electrophoresis using an ABI PRISM 310 Genetic Analyzer (Applied Biosystems) and sequences were aligned and compared with the revised Reference Sequence (rRCS), using the Sequence Navigator computer program (Applied Biosystems, Sequence Navigator version 1.0.1).

Statistical Analysis

The calculation of Random Match Probability (RMP) based on genotype frequencies was estimated using the Italian database^{28,29}. p < 0.05 was considered statistically significant.

Karyotyping

For each patient, karyotyping was performed both on a peripheral blood sample collected during surgery (control) and his relative MSC culture obtained at the end of the expansion phase.

Standard techniques were used for the preparation of metaphase spreads³⁰. At least, 20 metaphases per samples were studied using G banding by trypsin and Giemsa (GTG) at a resolution of 400 bands for haploid set. Each case was analysed by two different operators in order to reduce slide subjective scanning impact. Cytogenetic investigations were performed in accordance with the International Guidelines of the Association of Cytogenetic Technologists (USA) and of the Italian Society of Human Genetics (SIGU). Karyotypes were formulated following the International System for Human Cytogenetic Nomenclature (ISCN, 2009) indications.

Oncogenes and Tumor Suppressor Genes Analysis

TP53, p21/CDKN1A and MDM2 Sequencing. A peripheral blood sample collected during surgery and a MSC pellet (500.000 cells) of the corresponding culture harvested at the end of the expansion phase were analyzed.

Genomic DNA from whole blood was extracted with the Beckman Biomek NX automated liquid handling workstation using Agencourt® GenfindTM v2 kit (Beckman Coulter Company, Miami, FL, USA), according to the protocols specified by Manufacturer.

MSCs were washed in PBS and DNA was extracted using the Nucleospin Blood kit (Macherey-Nagel, Düren, Germany).

DNA quality and quantity were checked with a NanoQuant Infinite M200 instrument (Tecan Group Ltd, Männedorf, Switzerland) before analyses. The 11 exons of TP53 gene, the 3 exons of p21/CDKN1A, along with exon-intron junctions, and Single Nucleotide Polymorphism (SNP)309 (rs2279744) in MDM2 gene were PCR-amplified. Gene-specific primers were designed using the software BLAST Primer designing tool (http://www.ncbi.nlm.nih.gov/tools/primerblast/). Amplification products were purified using ExoSap-IT (USB Corp., Cleveland, OH, USA) and sequenced in both forward and reverse direction with the BigDye Terminator chemistry version 3.1 (Applied Biosystems). Sequencing products purification was performed with BigDye X-Terminator kit and samples were analyzed with ABI prism 3100 automated DNA sequencer (Applied Biosystems). Wild-type reference sequences for TP53, p21/CDKN1A and MDM2 were obtained from GenBank accession numbers NM_000546.4, NM_000389 and NM_002392.3, respectively. Mutation numbering was based on complementary DNA (cDNA), such that + 1 corresponds to the A of the ATG initiation codon, in the reference sequence.

Gene Expression Analysis

MSC pellets (500.000 cells) harvested at each passage until the end of the expansion phase were utilized. hTERT expression analysis was performed at the end of the expansion phase.

Total RNA was isolated from MSCs using the Qiagen RNeasy mini kit (Qiagen), according to Manufacturer's instruction. RNA quality was determined by 1% agarose gel electrophoresis. RNA concentration and 260/280 ratio were checked with a NanoQuant Infinite M200 instrument (Tecan Group Ltd, Mannedorf, Switzerland). From each sample, 500 ng of RNA were used for cDNA synthesis in a 50 µl reaction mixture using TaqMan Reverse Transcription Reagent (Applied Biosystems).

Gene expression analysis by quantitative Real-Time RT-PCR (qPCR) was performed on cDNA samples of c-MYC and H-RAS oncogenes and p21/CDKN1A, TP53, p16/CDKN2A, RB1 and p27/CDKN1B tumor suppressor genes. Genespecific primers were designed using the software BLAST or selected from the RTPrimerDB database (http://www.rtprimerdb.org/). Human glyceraldehyde 3-phosphate dehydrogenase (GAPDH)" was used as endogenous control. Primers sequence and products size are reported in Table I. The RT² SYBR Green qPCR Master Mix (Qiagen) was used with 4 µl of 1:10 cDNA dilution and with 800 nM primers in a 25 µl reaction volume. All PCR reactions were performed in triplicate by using a Rotor-Gene Q instrument (Qiagen) at the following cycling conditions: 95°C for 10 min followed by 40 cycles at 95°C for 15 sec and 61°C for 1 min. After amplification, a melting step was performed within the 70°C-90°C range, rising at 1°C each step, and melting temperature of PCR products were used to check amplicon specificity. A negative control without any cDNA template (no template control) was run with every assay.

mRNAs relative expression was determined using the $\Delta\Delta$ Ct method, that enables relative gene expression analysis as described by Livak and Schmittgen³¹.

Table I. Primers used for gene expression analysis by quantitative Real-Time RT-PCR.

Gene	ENTREZ gene ID*	Forward primer 5'-3'	Reverse primer 5′-3′	Product size (bp**)
p21/CDKN1A	1026	CCTCATCCCGTGTTCTCCTTT	GTACCACCCAGCGGACAAGT	97
TP53	7157	ACGACGGTGACACGCTTCCCT	CTCAGAGGGGGCTCGACGCT	100
p16/CDKN2A	1029	CTCACGGCGTCCCCTTGCCT	CCTCCGGTGCTGGCGGAAGA	93
p27/CDKN1B	1027	CCGACGCCGGCAAGGTTTGG	AGGCAAGCGGAGAGGGTGGC	99
RB1	5925	GCTTCCACCAGGCCCCCTACC	CCCTCCAGGAATCCGTAAGGGTGA	110
H-RAS	3265	TGCGTGAGATCCGGCAGCAC	AGCTTGTGCTGCGTCAGGAGAG	105
c-MYC	4609	TCAAGAGGCGAACACACAAC	GGCCTTTTCATTGTTTTCCA	110
GAPDH	2597	GCAAATTCCATGGCACCGT	GCCCCACTTGATTTTGGAGG	104

^{*}ID, identification; **bp, base pair.

For $\Delta\Delta$ Ct analysis, the MSC sample harvested at the earliest available passage was used as calibrator (2- $\Delta\Delta$ Ct = 1).

hTERT expression was analyzed by Reverse Transcription-PCR (RT-PCR), along with the endogenous control human GAPDH, as described by Rosland et al¹⁹. PCR products have been analyzed using 2% agarose gel electrophoresis. A telomerase-negative osteosarcoma cell line (U2OS)³² and a Ewing's tumor cell line expressing TERT (SK-ES-1)³³ were utilized as controls.

Results

DNA Profiling

Typing of the 15 STRs and the amelogenin locus showed a genetic autosomal profile unique and identical for each MSC culture and the relative patient's peripheral blood sample, as reported in Table II. The random match probability was estimated in a range from 1×10^{-15} to 1×10^{-18} .

Sequence of mitochondrial DNA HV1 and HV2 control regions did not show *de novo* heteroplasmic nucleotide positions neither mutations com-

Table II. DNA profiling analysis on Mesenchymal Stem Cell samples after a six weeks culture period. Cells and peripheral blood related control samples displayed the same DNA profiling, for each patient. Amelogenin locus for sex determination was used as internal control.

	STR* polymorphims in MSC** samples							
DNA Loci	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6		
D8S1179	13-14	12-12	15-16	12-13	12-13	13-15		
D21S11	29-31.2	31.2-33.2	30-32.2	32-33.2	29-30	29-30.2		
D7S820	10-11	10-12	8-11	7-12	10-12	10-12		
CSF1PO	11-12	11-11	10-10	11-12	10-12	10-11		
D3S1358	14-15	14-18	16-18	15-18	16-16	14-16		
TH01	9.3-9.3	9-9	6-7	7-9.3	7-8	7-8		
D13S317	9-11	8-12	11-12	12-14	9-11	9-12		
D16S539	12-13	12-13	9-12	11-13	11-12	9-12		
D2S1338	18-24	18-24	17-18	17-23	21-23	17-26		
D19S433	13-15.2	13-15.2	12-14	13-15	14-15.2	14-15		
vWA	18-19	17-19	16-19	16-17	16-18	18-18		
TPOX	8-9	10-10	8-11	8-12	9-11	9-11		
D18S51	16-16	16-17	16-17	12-15	14-17	13-14		
D5S818	11-12	11-12	11-12	11-13	10-13	9-11		
FGA	19-20	23-23	21-23	20-23	23-25	20-24		
AMEL	XX	XY	XX	XX	XY	XX		

^{*}STR: Short Tandem Repeats; **MSC: Mesenchymal Stem Cell.

pared to blood reference samples sequences and revealed the variations indicated in Table III, with respect to Anderson reference Sequence³⁴.

Karyotyping

All peripheral blood samples showed a normal karyotype. Two MSC cultures showed a normal karyotype (patient 1 and 5). Some chromosomal non-clonal abnormalities were observed in three MSC cultures: cells from Patients 2 showed two different chromosome abnormalities in two metaphases: del (5)(p15.1) and del (12)(p12.3); in patient 4 MSCs one metaphase was found with a X chromosome monosomy; cultures from patient 6 showed one cell with an unbalanced rearrangement: der(5)t(5;?)(q35.1;?). Clonal chromosomal changes were found in patient 3 culture: 2 metaphases showed a reciprocal translocation: t(1;2)(p32;p16); 7 metaphases displayed a deletion: del(3)(q21).

Oncogenes and Tumor Suppressor Genes Analysis

TP53, p21/CDKN1A and MDM2 Sequencing. The analyses showed no point mutations for all the three genes, both in the MSC cultures and in the corresponding blood samples used as controls. For the TP53 gene some polymorphisms were detected in all samples and relative controls. In all patients the same two polymorphisms were found: Pol Etero IVS2(+38)c > g and Pol Omo IVS3(+41_+56) del in exon 3; Pol Etero

c.215C > G and p.Pro 72Arg in exon 4. In exon 6 of patient 6 samples Pol Etero c.639A > G and p.Arg213Arg were detected. In exon 7 of patient 3 samples Pol Etero IVS7(+72) c > t and Pol Etero IVS7(+92) t > t were evidentiated.

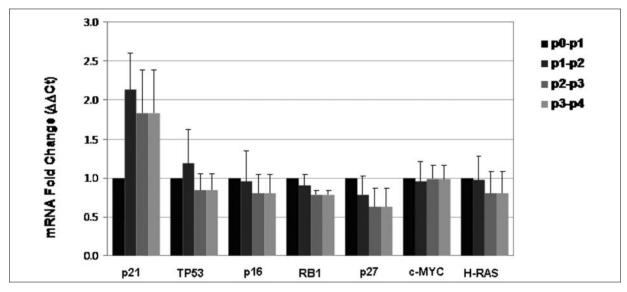
No polymorphisms have been identified at the level of p21/CDKN1A gene.

SNP309 variant in the promoter of MDM2 gene was detected in three patients (rs2279744 homozygosis in patient 1 and 3, heterozygosis in patient 2).

Gene Expression Analysis

Mean expression mRNA values showed no differences among passages except for p21/CDKN1A which displayed a slight increase (Figure 1).

As shown in Figure 2, undetectable levels of endogenous hTERT were observed for all the MSC cultures analysed.


Discussion

In this study we developed MSC cultures in compliance with current GMP, mimicking a production process suitable for a clinical use in orthopaedic applications. The expansion phase has been carried on beyond the time hypothesized for a clinical administration (about three weeks) in order to evidentiate any increase in chromosomal aberration risk.

Table III. Mitochondrial DNA HV1 and HV2 hyper variable regions analyses on Mesenchymal Stem Cell samples after a six weeks culture period. *De novo* heteroplasmic nucleotide positions neither mutations were observed in comparison with each patient's peripheral blood reference samples sequence, with respect to Anderson reference.

mtDNA	Nucleotde sequence variations in MSC* samples						
hyper variable regions	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6	
HV1	16184T 16357C	16093C 16224C 16311C	16111T 16187T 16223T 16290T 16319A 16362C	16224C 16311C	16093C/T 16126C 16292T 16294T 16296T 16304C	16192T 16256T 16270T 16325C 16362C 16399G	
HV2	263G 309.1insC 315.1insC	73G 195C 263G 315.1insC	64T 73G 146C 153G 204C 235G 263G 309.1insC 315.1insC	73G 263G 315.1C	73G 263G 315.1C	73G 263G 315.1C	

*MSC: Mesenchymal Stem Cell.

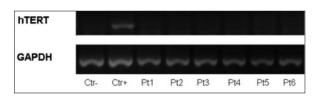


Figure 1. Mean expression levels of tumor associated genes in Mesenchymal Stem Cell samples at different culture passages. Results are expressed as fold changes relative to the earliest culture passage $(2^{-\Delta\Delta Ct} = 1)$. Each analysis has been performed in triplicate. Values are the mean \pm SD.

A potential application of such expanded cells is bone reconstruction after large tissue loss^{1,2,4,6,8}: the MSC-based medicines developed could be delivered to the patients directly in the lesion site as a suspension or implanted in association with a scaffold/biomaterial.

We found that cell features such as viability, morphology, immuno-phenotype, proliferation rate (population doublings) and differentiation ability were in line with the literature^{9-12,35} and normative requirements^{18,36} (data not shown). We have particularly focused on genomic stability which is still a matter of debate^{24,37}.

The data obtained from karyotype analysis showed in the cultures some chromosomal abnormalities such as chromosome X monosomy that has been already described in the literature³⁸. In particular, Verp evidentiated that cultured fibroblastic lines with X monosomy displayed a growth disadvantage when compared to normal ones³⁹.

Figure 2. Agarose gel electrophoresis of human Telomerase Reverse Transcriptase RT-PCR products in Mesenchymal Stem cells samples after a six weeks culture period. Ctr-: U2OS used as negative control; Ctr+: SK-ES-1 used as positive control; Pt1-6: Patients.

Recent articles highlighted the role of specific chromosomal abnormalities as an in vivo selective growth disadvantage^{40,41}. On the other side, it cannot be ignored that chromosomal abnormalities have been associated with pathologies development or neoplastic transformation⁴². For instance, chromosome 7 trisomy has been described in cultured synovial and cartilage cells from patients with osteoarthritis and rheumatoid arthritis⁴³. The chromosomal abnormalities that we found in the MSC cultures were within the 10% limit set by the Cell Products Working Party (CPWP) review to allow implantation, except for one patient²⁵. However, the scarcity of the starting bone marrow (see Materials and Methods) did not allow to perform karyotyping also at the time of the supposed clinical release (three weeks) and to generate multiple cultures from each patient sample in order to both confirm the data and to evidentiate the possible presence of recurrent abnormalities, as stated by the CPWP review. If confirmed, safety reason altogether with the CPWP recommendation, impose not to use in the clinics the cultures carrying abnormalities that exceed the posed limit³⁷.

In literature there are various reports on MSC chromosomal stability, but results are conflicting 19-24. Some authors have demonstrated that these cells display stable karyotypes even after long-term expansion 22,44. Other researches have reported a number of chromosomal abnormalities that gave rise to neoplastic transformation 23,45.

However, these last have subsequently retracted their own data since the transformed cells found were coming from tumor lines simultaneously cultured in the same laboratory⁴⁶. In general, GMP compliance protects cells from cross-contamination risks (i.e. disposable materials and cultures production by campaign followed by appropriate and validated cleaning procedures). However, in order to give evidence of cross-contamination absence in our cultures we decided to apply the DNA profiling technique, a method already proved to be effective for this aim⁴⁷. The DNA profiling analysis showed a unique genetic profile for each MSC culture, indicating no mix-up.

Recently, some papers analyzed a set of karyotypes from GMP grade MSCs, highlighting the presence of abnormalities in some cells. Evidence of clonal mutations was obtained, but not associated with *in vitro* malignant transformation. The studies generally included a parallel analysis of a panel of well-known genes involved in tumorigenesis or cell cycle control that showed stability^{24,37}.

The molecular biology analyses that we performed on a set of oncogenes and tumor suppressor genes evidentiated that our MSC cultures have not acquired DNA point mutations or significant changes in gene expression levels that may indicate a tendency to neoplastic transformation^{22,24,48}. In particular, all TP53 polymorphisms were detected in both MSC samples and relative blood controls, thus without *de novo* mutations acquired in culture. Moreover, these polymorphisms are described in the IARC DataBase (DataBase IARCTP53; http://www.p53.iarc.fr/PolymorphismView.asp) as non-pathological variations.

MDM2 is the primary regulator of TP53. SNP309 is a functional single-nucleotide T to G polymorphism located in the promoter of the MDM2 gene (rs2279744)⁴⁹. Bond et al. demonstrated that the GG genotype of SNP309 enhanced the affinity of the transcription factor Sp1 to the MDM2 promoter in cell lines, and consequently enhanced the expression of MDM2 RNA and protein, resulting in an attenuation of the p53 pathway⁵⁰. However, the possible association between SNP309 and cancer risk remains contradictory⁵¹. In our study, SNP309 variant was detected in three patients, both in the MSC cultures and in the corresponding blood samples controls, further confirming that we did not detect new sequence variations at the end of the expansion phase. No polymorphisms have been identified at the level of p21/CDKN1A gene.

The gene expression analysis showed, in general, no differences among passages. The slight increase detected in p21/CDKN1A mRNAs has been already described in MSC senescent cultures and is therefore indicative of a controlled and not disorganized proliferation⁵². Moreover, the undetectable endogenous hTERT levels observed in all the MSC cultures are not related with a tumorigenic pattern, in agreement with previous Literature^{19,22}. In fact, the hTERT gene, plays a key role in cellular senescence and is normally repressed in somatic cells, thereby leading to progressive telomere shortening⁵³.

Conclusions

Our results suggest MSC GMP cultures genetic stability, in line with literature data⁵⁴, but the karyotype analyses are not conclusive, due to the starting small bone marrow samples. Therefore, more in depth studies are needed with an increased number of patients, number of samples per patient, bone sample volume appropriateness to test cell tumorigenic potential with additional *ex vivo* models.

Acknowledgements

This work was supported by the grant "Progetto di Medicina Rigenerativa" from "Regione Emilia Romagna" (Delibera di giunta n. 2233/2008). There is neither conflict of interest to declare nor clinical trial registry information. The Authors wish to thank Dr. Annarita Cenacchi for her contribution in harvesting bone marrow aspirates.

Progetto Regione-Università 2010-2012-RER.

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

- HORWITZ EM, GORDON PL, KOO WK, MARX JC, NEEL MD, McNall RY, Muul L, Hofmann T. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 99: 8932-8937.
- 2) KAWATE K, YAJIMA H, OHGUSHI H, KOTOBUKI N, SUGIMOTO K, OHMURA T, KOBATA Y, SHIGEMATSU K, KAWAMURA K, TAMAI K, TAKAKURA Y. Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured

- with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs 2006; 30: 960-962
- Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002; 10:199-206.
- Murray IR, Corselli M, Petrigliano FA, Soo C, Péault B. Recent insights into the identity of mesenchymal stem cells: Implications for orthopaedic applications. Bone Joint J 2014; 96-B: 291-298.
- MINAMIDE A, YOSHIDA M, KAWAKAMI M, YAMASAKI S, KOJIMA H, HASHIZUME H, BODEN SD. The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion. Spine (Phila Pa 1976) 2005; 30: 1134-1138.
- MAUNEY JR, VOLLOCH V, KAPLAN DL. Role of adult mesenchymal stem cells in bone tissue-engineering applications: current status and future prospects. Tissue Eng 2005; 11: 787-802.
- WANG W, CAO W. Treatment of osteoarthritis with mesenchymal stem cells. Sci China Life Sci 2014; 57: 586-595.
- HOCH AI, LEACH JK. Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications. Stem Cells Transl Med 2014; 3: 643-652.
- KEATING A. Mesenchymal stromal cells: new directions. Cell Stem Cell 2012; 10: 709-716.
- WANG S, Qu X, ZHAO RC. Clinical applications of mesenchymal stem cells. J Hematol Oncol 2012; 5: 19.
- MARIANI E, FACCHINI A. Clinical applications and biosafety of human adult mesenchymal stem cells. Curr Pharm Des 2012; 18: 1821-1845.
- 12) LALU MM, MCINTYRE L, PUGLIESE C, FERGUSSON D, WINSTON BW, MARSHALL JC, GRANTON J, STEWART DJ. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and metaanalysis of clinical trials. Plos One 2012; 7: 1-21.
- 13) Regulation (EC) No 1394/2007 of the European Parliament and of the Council on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004.
- LIRAS A. Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. J Transl Med 2010; 8: 1-15.
- 15) EUROPEAN COMMISSION, THE RULES GOVERNING MEDICINAL PRODUCTS IN THE EUROPEAN UNION. Volume 4-Guidelines for good manufacturing practices for medicinal products for human and veterinary use. Current Edition.
- Sensebé L, Bourin P, Tarte K. Good manufacturing practices production of mesenchymal stem/stromal cells. Hum Gene Therapy 2011; 22: 19-26.
- Herberts C-A, Kwa M-S-G, Hemsen H-P-H. Risk factors in the development of stem cell therapy. J Transl Med 2011; 9: 1-14.

- Reflection paper on stem cell-based medicinal products, 14 January 2011, EMA/CAT/571134/ 2009, Committee for advanced therapies (CAT).
- 19) RØSLAND GV, SVENDSEN A, TORSVIK A, SOBALA E, MC-CORMACK E, IMMERVOLL H, MYSLIWIETZ J, TONN J-C, GOLDBRUNNER R, LØNNING P-E, BJERKVIG R, SCHICHOR C. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 2009; 69: 5331-5339.
- Sensebé L, Tarte K, Galipeau J, Krampera M, Martin I, Phinney D-G, Shi Y. Limited acquisition of chromosomal aberrations in human adult mesenchymal stromal cells. Cell Stem Cell 2012; 10: 9-11.
- 21) Ben-David U, Mayshar Y, Benvenisty N. Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 2011; 9: 97-102.
- 22) CHOUMERIANOU D-M, DIMITROU H, PERDIKOGIANNI C, MARTINIANAKI G, RIMINUCCI M, KALMANTI M. Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Prolif 2008; 41: 909-922.
- 23) TORSVIK A, RØSLAND GV, SVENDSEN A, MOLVEN A, IMMERVOLL H, MCCORMACK E, LØNNING PE, PRIMON M, SOBALA E, TONN JC, GOLDBRUNNER R, SCHICHOR C, MYSLIWIETZ J, LAH TT, MOTALN H. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track-letter. Cancer Res 2010; 70: OF1-OF4.
- 24) TARTE K, GAILLARD J, LATAILLADE J-J, FOUILLARDE L, BACKER M, MOSSAFA H, TCHIRKOV A, ROUARD H, HENRY C, SPLINGARD M, DULONG J, MONNIER D, GOURMELON P, GORIN N-C, SENSEBÉ L. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 2010; 115: 1549-1553.
- 25) BARKHOLT L, FLORY E, JEKERLE V, LUCAS-SAMUEL S, AHNERT P, BISSET L, BÜSCHER D, FIBBE W, FOUSSAT A, KWA M, LANTZ O, MA IULAITIS R, PALOMÄKI T, SCHNEIDER C-K, SENSEBÉ L, TACHDJIAN G, TARTE K, TOSCA L, SALMIKANGAS P. Risk of tumorigenicity in mesenchymal stromal cell-based therapies--Bridging scientific observations and regulatory viewpoints. Cytotherapy 2013; 15: 753-759.
- 26) Directive 2004/23/EC of the European Parliament and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells.
- 27) COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE (CHMP). Guideline on the use of bovine serum in the manufacture of human biological medicinal products, 30 May 2013 (EMA/CHMP/BWP/ 457920/2012 rev 1).
- FOREMAN L-A, EVETT I-W. Statistical analyses to support forensic interpretation for a new ten-locus STR profiling system. Int J Legal Med 2001; 114: 147-155.

- 29) PRESCIUTTINI S, CERRI N, TURRINA S, PENNATO B, ALÙ M, ASMUNDO A, BARBARO A, BOSCHI I, BUSCEMI L, CAENAZZO L, CARNEVALI E, DE LEO D, DI NUNNO C, DOMENICI R, MANISCALCO M, PELOSO G, PELOTTI S, PICCININI A, PODINI I, RICCI U, ROBINO C, SARAVO L, V ERZELLETTI A, VENTURI M, TAGLIABRACCI A. Validation of a large Italian Database of 15 STR loci. Forensic Sci Int 2006; 156: 266-268.
- 30) THE PRINCIPLES OF CLINICAL CYTOGENETICS, SECOND EDITION. Edited by Steven L. Gersen and Martha B. Keagle. Totowa, NJ: Humana Press, 2004.
- 31) LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2011; 25: 402-408.
- 32) YU ST, CHEN L, WANG HJ, TANG XD, FANG DC, YANG SM. hTERT promotes the invasion of telomerase-negative tumor cells in vitro. Int J Oncol 2009; 35: 329-336.
- ULANER GA. Telomere maintenance in clinical medicine. Am J Med 2004; 117: 262-269.
- 34) ANDERSON S, BANKIER AT, BARREL BG, DE BRUJIN MHL, COULSON AR, DROUIN J, EPERON IC, NIERLICH DP, ROE BA, SANGER F, SCHREIER PH, SMITH AJH, STADEN R, YOUNG IG. Sequence and organization of the human mitochondrial genome. Nature 1981; 290: 457-465.
- 35) DOMINICI M, LE BLANC K, MUELLER I, SLAPER-CORTENBACH I, MARINI FC, KRAUSE DS, DEANS RJ, KEATING A, PROCKOP DJ, HORWITZ EM. Position paper. Minimal criteria for defining multipotent mesenchymal stem cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317.
- 36) WANG Y, HAN Z, SONG Y, HAN ZC. Safety of mesenchymal stem cells for clinical application. Stem Cells Internat 2012; (2012), 4 pages.
- 37) CAPELLI C, PEDRINI O, CASSINA G, SPINELLI O, SALMOIRAGHI S, GOLAY J, RAMBALDI A, GIUSSANI U, INTRONA M. Frequent occurrence of non-malignant genetic alterations in clinical grade mesenchymal stromal cells expanded for cell therapy protocols. Haematologica 2014; 99: e94-97.
- 38) BUYANOVSKAYA OA, KULESHOV NP, NIKITINA VA, VORONINA ES, KATOSOVA LD, BOCHKOV NP. Spontaneous aneuploidy and clone formation in adipose tissue stem cells during different periods of culturing. Bull Exp Biol Med 2009; 148: 109-112.
- 39) VERP MS, ROSINSKY B, LE BEAU MM, MARTIN AO, KA-PLAN R, WALLEMARK CB, OTANO L, SIMPSON JL. Growth disadvantage of 45, X and 46, X, del(X)(p11) fibroblasts. Clin Genet 1988; 33: 277-285.
- 40) HULLEY BJ, HUMMEL M, COOK LL, BOYD BK, WENGER SL. Trisomy 8 mosaicism: selective growth advantage of normal cells vs. growth disadvantage of trisomy 8 cells. Am J Med Genet A 2003; 116A: 144-146.
- 41) JOHNSTON LA. Competitive interacions between cells: death, growth and geography. Science 2009; 324: 1679-1682.
- 42) BAKHOUM SF, COMPTON DA. Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest 2012; 122: 1138-1143.

- 43) BROBERG K, HÖGLUND M, LINDSTRAND A, TOKSVIG-LARSEN S, MANDAHL N, MERTENS F. Polyclonal expansion of cells with trisomy 7 in synovia from patients with osteoarthritis. Cytogenet Cell Genet 1998; 83: 30-34.
- 44) Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daldone MG, Zuffardi O, Locatelli F. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 2007; 67: 9142-9149.
- 45) RUBIO D, GARCIA-CASTRO J, MARTÍN MC, DE LA FUENTE R, CIGUDOSA JC, LLOYD AC, BERNAD A. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 3035-3039.
- 46) GARCIA S, BERNAD A, MARTÍN MC, CIGUDOSA J-C, GARCIA-CASTRO J, DE LA FUENTE R. Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Exp Cell Res 2010; 316: 1648-1650.
- 47) ROSETI L, BASSI A, FORNASARI P-M, SERRA M, CANELLA F, MASO A, DALLARI D, BINI C, PELOTTI S. A novel DNA profiling application for the monitoring of cross-contamination in autologous chondrocyte implantation. Eur Rev Med Pharmacol Sciences 2013; 17: 820-833.
- 48) KIM J, KANG JW, PARK JH, CHOI Y, CHOI KS, PARK KD, BAEK DH, SEONG SK, MIN HK, KIM HS. Biological characterization of long-term cultured human mesenchymal stem cells. Arch Pharm Res 2009; 32: 117-126.
- 49) BOND GL, HU W, BOND EE, ROBINS H, LUTZKER SG, ARVA NC, BARGONETTI J, BARTEL F, TAUBERT H, WUERL P, ONEL K, YIP L, HWANG SJ, STRONG LC, LOZANO G, LEVINE AJ. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004; 119: 591-602.
- 50) BOND GL, Hu W, LEVINE AJ. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 2005; 5: 3-8.
- 51) WAN Y, Wu W, YIN Z, GUAN P, ZHOU B. MDM2 SNP309, gene-gene interaction, and tumor susceptibility: an update meta-analysis. Cancer 2011; 11: 208.
- 52) BREU A, SPRINZING B, MERKL K, BECHMANN V, KUJAT R, JENEI-LANZL Z, PRANTL L, ANGELE P. Estrogen reduces cellular aging in human mesenchymal stem cells and chondrocytes. J Orthop Res 2011; 29: 1563-1571.
- 53) ZIMMERMANN S, VOSS M, KAISER S, KAPP U, WALLER CF, MARTENS UM. Lack of telomerase activity in human mesenchymal stem cells. Leukemia 2003; 17: 1146-1149.
- 54) Neri S, Bourin P, Peyrafitte J-A, Cattini L, Facchini A, Mariani E. Human Adipose Stromal Cells (ASC) for the regeneration of injured cartilage display genetic stability after *in vitro* culture expansion. PLoS ONE 2013; 8: e77895.