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Abstract. - OBJECTIVE: Chronic Heart Fail-
ure (CHF) is associated with multi-hormonal de-
rangement depicting a prevalence of catabolic
vs. anabolic axes. Moreover, thyroid adaption is
characterized by the reduced conversion of thy-
roxine to the active hormone triiodothyronine.
On the other hand, hormones modulate synthe-
sis and utilization of antioxidant systems. There-
fore, hormonal failure can cause unbalance be-
tween reactive radical species and the defens-
es, resulting in oxidative stress (0S). OS is well
described in CHF, but the relationship with the
hormonal picture is not entirely known.

In the present review, we firstly analyze the
mechanisms of ROS production in the heart,
discussing animal and human studies, and fo-
cusing on new discovered protective mecha-
nisms such as sirtuins and fibroblast growth
factor 21 (FGF21). The second section is ded-
icated to the role of main anabolic axes influ-
encing antioxidant systems. Finally, we present
some data supporting the hypothesis that OS
could be the link between hormonal derange-
ment and clinical outcome of CHF.

Key Words
Growth hormone, Anabolic hormones, Thyroid hor-
mones, Antioxidants, Heart failure, Personalized therapy.

Introduction

Chronic heart failure (CHF) is a complex clin-
ical syndrome defined as an unbalance between
cardiac output and metabolic requirements of
organism'. This syndrome can result from any
structural and functional disorder that reduces
the ability of the ventricle to fill with or eject an
adequate volume of blood.

The prevalence of CHF in European population
is around 2-3% and, therefore, it has been singled
out as an epidemic and staggering clinical and pub-
lic health problem associated with significant mor-
tality, morbidity, and healthcare costs, particularly
among people aged >65 years’. CHF often develops
after the damaging or weakening of the heart by
several causes, such as coronary heart disease,
hypertension, diabetes mellitus, cardiomyopathies,
heart valve diseases, arrhythmias, congenital heart
defects, anemia, cocaine abuse, AIDS, thyroid dis-
orders, radiation, and chemotherapy, etc.

Over the past several decades, clinical and
experimental studies®® have provided substantial
evidence that oxidative stress (OS), defined as an
excessive production of reactive radical species
compared to antioxidant defenses, is enhanced in
heart failure (HF). The most important reactive
oxygen species (ROS) are O,, ‘OH, H,O,. In ad-
dition, when both O, and NO are synthetized in
proximity, they will combine to form peroxyni-
trite (ONOO). ROS in the heart are involved in
the lowering of contractile function, hypertrophy
signaling, myocardial growth, matrix remodel-
ing, fibroblast proliferation, and definitely in the
breakthrough and progression of the disease®.

The dangerous effects of ROS are prevented by
scavenging enzymes such as superoxide dismutase
(SOD), glutathione peroxidase (GSHPx), catalase,
as well as non-enzymatic systems. Some of these
are downregulated in HF. On the other hand,
different endocrine systems are involved in mod-
ulation of anti-oxidants, as previously reviewed’.
Multi-hormonal deficiencies are reported in CHF,
suggesting a state of unbalance between anabolic
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and catabolic systems. They could represent cause
or consequence of the illness, but OS could under-
line both these phenomena'®.

Therefore, in the present review, we firstly
analyzed the mechanisms of ROS production in
the heart, discussing animal and human studies,
and focusing on new discovered protective mech-
anisms such as sirtuins and fibroblast growth fac-
tor 21 (FGF21). The second section is dedicated
to the role of main anabolic axes influencing an-
tioxidant systems. Finally, we present some data
supporting the hypothesis that OS could be the
link between hormonal derangement and clinical
outcome of CHF.

Oxidative Stress and HF

Oxidative Stress and Heart Failure:
Plasmatic Markers

The relationship between oxidative stress and
heart failure can be evaluated thanks to several
markers such as: uric acid (UA), malondialdehyde
(MDA), C-reactive protein (CRP), Mn and CuZn
superoxide-dismutase (SOD).

Positive correlations between uric acid con-
centrations and mean pulmonary artery pressure
(mPAP) and pulmonary vascular resistance index
(PVRI) have been shown, while correlations with
left ventricular ejection fraction (LVEF) are neg-
ative. UA concentration is also a predictor of poor
prognosis in heart failure patient'. Probably it
matches with an increase in ROS production and
mitochondrial Mn-SOD activity'2.

CRP levels are in positive correlations with
the activity of superoxide isoenzymes, so there
is probably a link between ROS genesis and in-
flammation'2.

CuZnSOD, MnSOD and MDA activities pos-
itively correlate with mean pulmonary arterial
pressure (mPAP) and pulmonary wedge pressure
(PWP), whereas there are negative correlations
between them and LVEF and no correlations
between MDA and LVEF. MnSOD levels, which
are in direct ratio to CuZnSOD and uric ac-
id concentrations, are positively correlated with
NT-proBNP"2. MnSOD increases as the patients
pass from NYHA 1, II to III, IV, while there’s
no change (or minimal changes) in CuZnSOD
activity. This transition may be the key factor to
explain MDA constant levels in the four classes
of NYHA. MnSOD, uric acid, CRP and MDA
are significantly higher in patients with dilated
cardiomyopathy. They are also related to severity

of HF in patients with dilated cardiomyopathy
except for MDA, in fact in two groups of patients
with mild and severe limitation functional capac-
ity (NYHA L, I, and NYHA 111, IV) there are no
significant differences in MDA level'?.

A significant negative correlation between
MDA and left ventricular (LV) ejection fraction
has been reported?.

ROS Production in the Heart

Table I synthetizes the main mechanisms lead-
ing to ROS production in the heart such as mito-
chondrial production, production by cytochrome
P450 and different oxidases (NADPH, xanthine),
uncoupling of nitric oxide (NO)-synthetase and
auto-oxidation of catecholamines®!*-"7.

NADPH oxidases’ (Nox) activity in the heart
is first due to Nox2 and Nox4'®2° which, despite
their similar structure, differ in cellular localiza-
tion and functionality.

Nox2 is located on the plasma membrane,
and, in addition to binding p22phox, its activation
involves binding of cytosolic subunits p47phox
and p67phox (sometimes even p40phox), and
Racl-GTPase, which assure post-translational
modulation of Nox2 activity through regulation
of cytosolic subunit translocation®. Nox4 is lo-
cated on perinuclear intracellular membranes, as
mitochondrial ones'®, and does not have cytosolic
subunit binding, but it is regulated at a transcrip-
tional level?’. Nox activity is increased in end-
stage failing human hearts?*2.

The expression of Xantine Dehydrogenases (XD)
and Xantine Oxidases (XO) is elevated in failing
human myocardium?; it is not casual that long-term
high-dose treatment with allopurinol, a XO inhibitor,
reduces mortality in patients with HF*.

Animal and Human Studies

While we present in table 2 what we actually
know about studies in experimental animals*’>¥,
we treat in more details studies in humans.

ROS and OS are involved in a number of
pathological processes that contribute to HF, in-
cluding vasoconstriction, ischaemia/reperfusion
injury, cardiac hypertrophy, myocyte apoptosis,
fibrosis, inflammation and myocardial stun-
ning39,40‘

As above reported an alteration in oxidative
balance can be the result of an overproduction of
ROS or an inhibition of scavenging mechanisms.

Several studies have shown that O, produc-
tion and OS are significantly increased in the
hearts of patients with dilated cardiomyopathy
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Table I. Mechanisms of production of radical species in the heart.

Mitochondrial
production

CYP450 production

Production by
NADPH oxidase

Xanthine oxidase

Uncoupled NO
synthetase

Auto-oxidation of
catecholamines

A source of ROS is the leakage of activated oxygen from mitochondria during oxidative
phosphorylation

The production of ROS fastly increases in conditions such as ischemia or hypoxia.

Mitochondria from the failing heart produced more O,*

Role in metabolism of different compounds including polyinsaturated fatty acids, in turn associated
to cardiovascular disease'

Vascular endothelial cells and activated leukocytes are the cells involved in ROS production
via NAD(P)H oxidase. It is a family of membrane-bound enzymes that produces O, by transferring
an electron from NAD(P)H to O,

NADPH oxidase activity can be increased by several stimuli that are relevant to the pathophysiology
of HF (mechanical stretch, angiotensin II, endothelin-1 and tumor necrosis factor).

XO transfers electrons to O,, resulting in formation of urate and O,
Increased xanthine oxidase expression and activity has been reported in HF®

Uncoupled NOS can lead to ROS production through the oxidation of the essential NOS cofactor
BH,. NOS3 becomes structurally unstable and generates ROS after the exposure to oxidative stress
or the deprivation of BH, or L-arginine®

Aminolutine's production causing coronary spasms, arrhythmias and cardiac dysfunction'®"”

ROS =reactive oxygen species; XO = xanthine oxidase; NOS = nitric oxide synthase

and HF. In fact, lipid peroxides and 8-iso-prosta- positively correlated with its severity®. Electron
glandin F2 (major biochemical markers of ROS spin resonance (ESR) spectroscopy combined with
generation) levels are elevated in the plasma and the nitroxide radical 4-hydroxy-2,2,6,6-tetrameth-
pericardial fluid of patients with HF and also yl-piperidine-N-oxyl granted a direct evidence for

Table Il. Studies in experimental animals concerning oxidative stress and heart.

with allopurinol®.

A deficiency of NAD(P)H oxidase protects the heart from LV remodeling and dysfunction after MI in mice lacking
p47phox (p47phox mice)?’.

Angiotensin IT can mediate mitochondrial dysfunction via the activation of NAD(P)H oxidases in vascular endothelial cell?®.

Left ventricle (LV) contractile function and myocardial efficiency is improved by the treatment of HF animals

Chronic allopurinol treatment of animals with M1 significantly reduces adverse LV remodeling*’.

In spontaneously hypertensive/HF rats with established dilated cardiomyopathy XO, Nox subunits, Nox2 and p67phox,
increase, while only XO activity is elevated above normal®.

Uncoupled NOS3 contributes to LV remodeling in response to chronic pressure overload in mice®.

Nox2 and its cytosolic cofactors increase during the progression of cardiac hypertrophy to HF in guinea pigs subjected to
pressure overload and in hypertensive Dahl salt-sensitive rats’>-3.

Mice subjected to transverse thoracic aortic constriction have reduced BH4 levels and uncoupling of eNOS in association
with LV dilatation and contractile dysfunction®'.

eNOS/mice subjected to aortic constriction develop worse contractile function, greater hypertrophy, and more interstitial
fibrosis*.

Post-myocardial infarction (MI) LV remodeling is more extensive in eNOS/mice®.
The activity of electron transport chain complex I, III, and IV decreases in mice subjected to MI*.

COX III overexpression results in a decreased abundance of COX I and a decrease in COX activity, accompanied by
increased apoptosis in HF following MI*".

Significant improvement in survival after MI in MMP-2 knockout mice?®.

MI = myocardial infarction; XO = xanthine oxidase; Nox = NADPH oxidase; NOS = nitric oxide synthase; HF = heart failure;
LV = left ventricle; COX = cyclo-oxigenase; MMP = matrix metallo-proteinase.
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enhanced generation of ROS within the failing
myocardium*. In the heart obtained from pac-
ing-induced HF no decrease in the activities of the
scavenging enzymes, including SOD and catalase,
is observed; GSHPx activity is even increased*.
OS in HF might be primarily due to the enhance-
ment of ROS generation rather than to the decline
in antioxidant defense within the heart.

ROS activate a wide variety of hypertro-
phy signaling kinases and transcription fac-
tors®. ROS stimulate the tyrosine kinase Src,
GTP-binding protein Ras, protein kinase C,
mitogen-activated protein kinases (MAPK), and
Jun-nuclear kinase (JNK). Low levels of H,O,
are associated with MAPK activation and pro-
tein synthesis, whereas higher levels stimulate
MAPK, JNK, p38, and protein kinase B (Akt)
kinases to induce apoptosis*.

ROS induce apoptosis by DNA and mitochon-
drial damage and activation of pro-apoptotic sig-
naling kinases*. ROS cause DNA strand breaks,
activating the nuclear enzyme poly(ADP-ribose)
polymerase-1 (PARP-1), which regulates the ex-
pression of plenty of inflammatory mediators.

ROS can also activate metalloproteinases
(MMPs) post-translationally interacting with crit-
ical cysteines in the propeptide auto-inhibitory
domain. ROS also stimulate transcription factors
nuclear factor-KB, Ets, and activator protein-1
to stimulate MMP expression. MMP activity
increases in the failing hearts***. Furthermore,
an MMP inhibitor can limit LV dilatation after
an experimental myocardial infarction (MI)*.
An -OH scavenger, dimethylthiourea, suppresses
the activation of MMP-2 and the development of
LV remodeling and failure after MI*. Enhanced
OS can be a stimulus for myocardial MMP ac-
tivation, which plays an important role in the
development and progression of HF.

ROS directly influence contractile function by
modifying proteins involved in excitation-con-
traction coupling®. This includes modification
of critical thiol groups (-SH) on the ryanodine
receptor to enhance its open-probability, the sup-
pression of L-type calcium channel, and oxidative
interaction with Ca?> ATPase in the sarcoplasmic
reticulum to inhibit Ca® uptake.

The relationship Between
Angiotensin Il and ROS

As reviewed by Zablocki and Sadoshima®
angiotensin II (ATII) is a source of OS in hu-
man body, in fact it has the faculty to enhance

ROS production. ATII-induced ROS upregulate
growth factors and cytokines, activate kinases and
modulate gene expression activating transcription
factors. Moreover, ATII-induced OS can cause
mitochondrial damage and dysfunction.

In HF patients, OS markers are raised and
related to circulating ATII levels and are highest
in patients with increased ATII type 1 receptor
(ATIR) responsiveness to ATII due to homo-
zygosity for the ATIR A1166C gene polymor-
phism>?. The cleavage of angiotensinogen (AGT)
by renin requires a conformational change caused
by the formation of a disulfide bridge between two
cysteines as a result of oxidation™, suggesting the
presence of a positive feedback mechanism by
which ATII-induced ROS further increase ATII
formation®'. The link between ROS and ATII is
stronger than we previously thought.

OS plays an important role in ATII-induced
myocyte apoptosis, fibrosis and inflammation in
cardiac hypertrophy and ultimately in cardio-
myocyte contractile dysfunction®'.

ATII-induced apoptosis is mainly due to Nox
activation, with a production of ONOO- and con-
sequent DNA damage and p53 activation, lead-
ing to an increased Bax/Bcl-2 ratio, caspase-3
cleavage®. Since p53 also binds to and activates
the promoters of AGT and ATI1R> a mechanism
of self-amplification of ATII signaling has been
hypothesized. ROS generated by Nox are respon-
sible for other cascades, as previously reviewed®":
activation of Ca?'/calmodulin dependent kinases
(CaMK)-IT°¢%; the same CaMK-II phosphory-
lates class II histone deacetylases (HDACs:), espe-
cially HDAC4 which lead to the de-repression of
transcription factors linked to cardiac hypertro-
phy®-¢'; activation of NFkB, TGF-B, MMPs, and
growth factors, and consequently to increased
fibrosis, extracellular matrix degradation, and
tissue remodeling, and ultimately cardiac con-
tractile dysfunction?®- **%;

TNFa, activated by ATII, can favor proteolyt-
ic cleavage of xanthine dehydrogenases (XD) and
increased expression of xanthine oxidase (XO)”;
XO activity can also be regulated by substrate
availability”'. In addition, XO activity is directly
increased by ATII™. Several evidences show that
ROS can increase eNOS expression via activation
of redox-sensitive transcription factors or mRNA
transcript stabilization. However, TNFa, activat-
ed by ATII, may reduce eNOS expression™.

Metabolomic profiling and electron microsco-
py have demonstrated that mitochondrial biogen-
esis and morphology are altered in the presence
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of increased RAS component expression”">. Mi-
tochondrial autophagy is enhanced by ATII-in-
duced ROS™77. Moreover, ATII can increase the
expression of uncoupling proteins and decrease
the expression of mitochondrial respiratory chain
proteins”’8. ROS from other sources may cause
self-augmenting ROS release”, damaging mito-
chondrial components and oxidation of the mem-
brane permeability transition pore.

Different studies indicate that catalase ex-
pression and activity are alternately upregulated,
downregulated, or unchanged in the hearts of
patients with end-stage HF®**-**. This discrepancy
may be caused to differences in the patient pop-
ulations. Thioredoxin (Trx) can be oxidized, so
inhibited by ROS. It is upregulated by ATII in
patients with chronic HF®*%. Trx protects cardio-
myocytes against apoptosis via ubiquitination and
degradation of apoptosis signal-regulating kinase
18788 preventing oxidation-dependent nuclear ex-
port of HDAC4"®, and inhibiting ATII-induced
cardiac hypertrophy thanks to the upregulation
of miR-98/let-7 microRNAs (miR) and downreg-
ulation of cyclin D28,

The role of miR in ATII-induced hypertrophy
is one of the key point to understand the molec-
ular basis of this phenomenon. In rats with myo-
cardial hypertrophy, miR-181a is downregulated
increasing the ATGS5-induced cardiomyocytes
autophagy, which, in turn, enhances the expres-
sion of hypertrophic genes™.

What are the mechanisms by which ATII in-
duces OS? A better knowledge of the problem
has been obtained thanks to a great amount of
experiments in animals. Some of them consist in
ATII infusion and measurement of marker of OS,
some others, on the other hand, assess the link
between ATII and ROS, evidencing the decrease
of OS after angiotensin receptor blockers (ARB)
therapy. ATII infusion for 2 weeks, which causes
cardiac hypertrophy, doubled OH production in
mouse hearts acting on ATIR". In rats, increased
OS after MI overlaps with an increase in RAS
components in infiltrating macrophages, suggest-
ing the presence of local ATII production. This can
be blocked by treatment with an ARB??. Similarly,
ARB treatment has protective effects against myo-
carditis-induced HF and hypertensive diastolic HF
in rats and pacing-induced HF in dogs are related
to decrease in ROS production and OS%%%4,

As suggested, an important role in coronary
heart disease and its consequences is played by
ATIR, which can increase ROS and calcium
release, promoting heart damage®. Wang et al®
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demonstrated the beneficial effect of the ARB
Valsartan in culture of endothelial progenitor
cells, involved in repairing coronary damage in
coronary heart disease; this effect is due to the
inhibition of AT1R-induced apoptosis by regulat-
ing ROS and Ca?'. Moreover, Valsartan decreases
AT1R-induced activation of ERK and modulates
caspase-3, Bcl-2, p-elF2a, and CHOP.

The role of NADPH-oxidase in this relation-
ship is one of the most elaborate and complex,
involving especially Nox2 and Nox4. Radical
production induced by Nox2 involves ion chan-
nels, contributing to myocardial contractile dys-
function®”'%2, as confirmed in models of knockout
mice®>%13 However, data on Nox4 are conflict-
ing; in fact, in young mice neither the overexpres-
sion nor the suppression of Nox4 results in any
baseline abnormality'®!%104,

In vitro and in vivo studies in rats and mice
have shown that ATII treatment stimulates an
increase in ROS production in the heart that is
significantly inhibited by diphenylene iodonium
(DPI, an inhibitor of flavoproteins such as Nox),
apocynin (a Nox inhibitor), or dominant negative
Rac, but not by NG-nitro-L- arginine methyl
ester (L-NAME, a NOS inhibitor), rotenone (a
complex-I mitochondrial electron chain inhibi-
tor), or XO inhibitors, suggesting that Nox is the
major source of ATIl-induced ROS in cardio-
myocytes?0-5%7378:105106-108 -~ Thig jncrease in Nox
activity and oxidative stress is not detected in
female mice*. Similarly, rats known to have in-
creased ATII levels, such as Ren2 and hyperten-
sive Dahl salt-sensitive rats, show an ATIR-de-
pendent increase in ROS generation, inhibited
by DPI>71%  ATII increases translocation of
p47phox to the membrane™%7¢, as well as mem-
brane-associated Racl GTP-binding activity'®,
both of which are involved in Nox2 activation.
Furthermore, RAS inhibition by ACE inhibitors
or ARBs favors the downregulation of Nox sub-
units p22phox, Nox2, p47phox, and p67phox in
rats and mice with pathological cardiovascular
conditions®7>7894110-12 " Fipally, it has been re-
cently described that atorvastatin can ameliorate
heart oxidative stress in heart-failured Wistar rats
by blocking the system of Racl/p47phox/p67phox
and the subsequent ROS release!'. The scientific
community has produced poor evidence of XO
role in the binomium ROS-ATII. One of the few
studies'* shows how in mice with ATII-induced
diastolic dysfunction allopurinol reduces oxida-
tive stress and improves cardiac function in a
blood pressure-independent manner.
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Another important player is eNOS, whose
expression is downregulated in the hearts of
spontaneously hypertensive stroke-prone rats,
but upregulated to normal levels in the presence
of RAS inhibition'®. NOS inhibition removes
the protective effect of treatment with losartan,
against left ventricular remodeling in hamsters
with cardiomyopathy, and I/R injury in Dahl
salt-sensitive rats''®!', suggesting that NOS ac-
tivity is protective against the effects of ATIL.
Likewise, adenoviral gene transfer of the human
eNOS gene into rat hearts after MI resulted in
increased cardiac NO production and reduced
cardiac ROS generation and remodeling''®. How-
ever, in rat aortas, ATII treatment enhances
eNOS expression and decreases NO production,
indicating the presence of eNOS uncoupling'"’;
furthermore, treatment with captopril normalizes
the growth in eNOS expression observed in the
LVs of hamsters with chronic congestive HF',
Losartan treatment increases eNOS expression
and NO production in the cardiomyocytes of
obese rats, while in control animals it has the
opposite effect'?’, suggesting that the relationship
between ATII signaling and eNOS function may
be context-dependent.

A large piece of research on this topic has
focused its attention on mitochondrial role. Mi-
tochondrial DNA copy number is not modified
by ATII stimulation of cultured neonatal rat car-
diomyocytes'”’, while ATII-treated mice express
a significantly decreased mtDNA copy number
and increased mtDNA deletions, as well as a poor
mitochondrial respiratory capacity and increased
mitochondrial damage’™ accompanied by hyper-
trophy, fibrosis, and diastolic dysfunction.

Another line of research concerns the eval-
uation of antioxidants. In rats subjected to MI,
MnSOD expression in the infarct area and activ-
ity of both MnSOD and Cu/ZnSOD are reduced.
Treatment with RAS inhibitors abolished these
effects'?’. In rats with MI-induced congestive
HEF, the activities of SOD, catalase, and GPx are
all diminished, but only the GPx activity is im-
proved by losartan treatment'??, suggesting that
ATII is involved in the downregulation of GPx,
but not of the other antioxidants, in this model.
Treatment with an ACE inhibitor increases GPx
activity in rats with chronic MI™!. However,
GPx expression and activity do not change in
ATIl-stimulated rat cardiac fibroblasts and HF
patients®*-#2122124 " while GPx mRNA expression
is increased during the transition to congestive
HF in hypertensive Dahl salt-sensitive rats (re-

versible by treatment with an ARB)*. Moreover,
catalase is downregulated in the hearts of AGT
transgenic mice and in cardiomyocytes treat-
ed with ATII'®. In spontaneously hypertensive
stroke-prone rats, expression and activity of Mn-
SOD are unchanged, but those of Cu/ZnSOD
are decreased. This phenomenon is mitigated by
treatment with an ACE inhibitor and abolished by
ARB treatment!'’’,

An important modulator of antioxidant tissue
response is represented by sirtuins.

Sirtuins and Oxidative Stress in Heart

Sirtuins are a group of proteins included in
class III histone deacetylases, which use one
molecule of NAD+, as a co-substrate, during each
deacylation cycle'?®. Silent information regulator
2 (SIR2) from Saccharomyces cerevisiae is the
first sirtuin protein identified, it has also been
found in Caenorhabditis elegans and in Dro-
sophila melanogaster'**'*’. Sirtuins play a role
in several mammalian processes, such as aging
(with anti-aging functions), transcription apop-
tosis, oxidative stress and inflammation. There
are seven mammalian sirtuins, SIRT1-7, which
are localized in separate cellular compartments.
SIRT3, which has the greatest deacetylating ac-
tivity, SIRT4 and SIRTS are located in mito-
chondria and, in this site, they control metabolic
enzymes and moderate oxidative stress'?®. SIRT],
SIRT6 and SIRT7 are nuclear sirtuins, they regu-
late genes expression epigenetically'®.

Initial studies which tried to know sirtuins
“signature” on oxidative stress in animal hearts
were focused on SIRTI. SIRT1 is decreased in
the heart of 12 or 15-month mice. There is also
a significant decline in left ventricular systolic
function until 18 months of age in the C57BL/6J
mice'”. The expression of SIRT1, AMP-depen-
dent kinase (AMPK) and MnSOD decrease in
the old mice (aged 12 months) in comparison
with younger mice (3 months); however, nico-
tinammide phosphoribosyl transferase (Nampt),
an enzyme involved in many processes includ-
ing a positive regulation of NOS, is increased.
The expression of phospho-AMPK/total AMPK
is significantly reduced in the old mice™’. A
study®! with transgenic mice has revealed that
increased expression of SIRT1 in heart prevent-
ed programmed cell death and aging-associated
alterations. In a hamster model of chronic HF,
the induction by resveratrol of nuclear SIRTI
increases MnSOD levels in cardiomyocytes and
enhances resistance against oxidant load, reduces
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oxidative stress and suppresses apoptosis'*. It is
clear that SIRT1 has an antioxidant role in all
these situations.

New evidences show that SIRT3 has a rele-
vant value in HF pathophysiology. SIRT3” mice
develop, spontaneously, cardiac hypertrophy,
more pronounced compared with non-transgen-
ic control, with increasing age'*'*. SIRT3 has
various targets in mitochondria, which are hy-
peracetylated in SIRT3” mice. In this situation
it has been shown that many pathways (fatty acid
oxidation, glucose oxidation, Krebs cycle and
oxidative phosphorylation) slow down with sub-
sequent myocardial energy depletion'**"¥’. An-
other important mechanism, which can explain
the previous data, may be an imbalance between
ROS production and expression and activity of
antioxidant enzymes: SIRT3" mice show, in fact,
increased levels of 4-hydroxynonenal (HNE)
and thiobarbituric reactive substances (TBARS),
which are indexes of lipid peroxidation'**'3*. In-
creased fibrosis in aged SIRT3”7" mice may be
related to a disinhibition of TGF-I signaling and
hyperacetylation of glycogen synthase kinase 3f3
(GSK3p) by SIRT3 deficiency, resulting in in-
creased expression of pro-fibrotic genes'®. Other-
wise, overexpression or pharmacological activa-
tion of SIRT3 can improve and even block cardiac
hypertrophy and interstitial fibrosis in response to
pressure overload or hypertrophy induction with
ATII infusion!®*136140  This is probably due to
the prevention of a drop in catalase and MnSOD
expression after ATII infusion, likely related to
an increase in transcription factor forkhead box
(FOX) O3a signaling'**. Moreover, SIRT3 is able
to deacetylate MnSOD, increasing its activity and
attenuating oxidative stress"**. Protection from
oxidative stress may also attenuate activation of
the ROS-sensitive MAPK/ERK and PI3K/AKT
signaling pathways, which are known to play a
major role in the development of cardiac hyper-
trophy'*'. Indeed, SIRT3 expression is reduced
and global mitochondrial protein lysine acetyla-
tion is increased in rodent models of heart failure,
suggestive of impaired SIRT3 activity'*?. This
may be the consequence of an alteration in per-
oxisome proliferator-activated receptor gamma
co-activator (PGC)-1a-SIRT3 signaling or NAD+
depletion or a decrease in the NAD+/NADH ra-
tio. PARP-1, which overacts in heart failure, uses
NAD+ as a co-substrate'®, narrowing SIRT3 pos-
sible activity. In the last decade, several studies
have been published on this topic in human being.
SIRT1 improves heart tolerance against ischemia
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and oxidative stress enhancing eNOS'". SIRT1/
FoxO3a controls the transcription of Sod2'. Lu
et al®® demonstrate that SIRT 1 expression in
left atrium is downregulated in heart-failured pa-
tients, moreover MnSOD, Trx1 and Bcl-xL, some
of the most important molecules in SIRT1-signal-
ling, are all decreased in advanced heart failure.
FoxOl, a transcriptional factor which can mod-
ulate the expression of MnSOD, is decreased.
On the other hand, the expression of Bax, which
is a protein involved in pro-apoptotic signal, is
increased in the same patients; this is probably
due to the increase of acetylated p53°. AMPK
and Nampt, both involved in the activation of
SIRT1, are reduced in advanced heart failure!*°.
Besides heart situation, even peripheral blood one
has been analyzed, showing that the transcript of
SIRT1 in leukocytes significantly decreases in
patients with compensated and decompensated
HF'"“¢ furthermore, as a result of redox balance
disorder in HF, SIRT1 mRNA levels correlate
negatively with oxidative stress index and total
oxidant status, and positively with serum total
antioxidant status and HDL levels in both pa-
tient groups with cHF and dHF'¢. Finally, it is
important to know that the antioxidant properties
of SIRT1 in the heart are partially mediated by
FGF21'%7,

The Role of FGF21

Fibroblast growth factor 21 (FGF21) is a pro-
tein mainly produced in the liver, which regulates
glucose homeostasis, ketogenesis and insulin sen-
sitivity'®8. These functions are provided by the
interaction with FGF receptors especially FGFrl
and FGFr4'41%0,

Plenty of information has been given by mouse
models. In FGF2I-null mice hearts biological
markers of oxidative stress are altered"’. FGF21
has a protective effect on myocardium after the
I/R injury, which is based on oxidative damage''.
In FGF21-null mice the enhancement in apoptotic
rate is related with Ucp3 downregulation. Acti-
vation of Ucp3 protects the heart against ROS
damage'*?. In fact, Ucp3-null mice develop exag-
gerated apoptotic cell death and enhanced signs
of cardiac damage'>'33, Tt is possible that Ucp3
play an important role activating the protective
action of FGF21 against cardiac oxidative stress
under conditions of cardiac hypertrophy.

SIRT1 and pro-oxidative stimuli can induce
FGF21 expression. One of the most representative
example is lipopolysaccharide (LPS) one: Lps is an
oxidative inducer'®, which can also induce Fgf21
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in cardiomyocytes; secreted FGF21 promotes the
expression of antioxidant genes (e.g., UCP2, UCP3,
and Sod?2) and prevents ROS formation. Therefore,
FGF21 stimulates the same response by acting in
an autocrine manner'®. ERK pathway has a prima-
ry role in the transcriptional control of Sod2"' and
FGF21 activates the ERK pathway in the heart'*.
Therefore, the secreted FGF21 may act through the
ERK pathway to activate Sod2 and prevent ROS
formation in the context of SIRT1 overexpression.
However, SIRT1 mRNA levels are not found to be
induced in failing human hearts; it is possible that
the up-regulation of FGF21 in failing hearts may
still be mediated by post-transcriptional changes
in SIRT1.

The Hormonal Control
of Antioxidants

Thyroid Hormones

We previously reviewed how antioxidant sys-
tems are influenced by thyroid hormones, both
in ovarian physiopathology'”” and in relationship
with non-thyroidal illness'*®. Both the extremes of
thyroid function (hyper- and hypo-) can induce
OS'™, but probably with different mechanisms:
augmented ROS production in hyperthyroidism
and decreased antioxidant system in hyperthy-
roidism. OS can be responsible of some compli-
cations of hyperthyroidism at tissues level'®. The
presence of the phenolic group makes thyroid
hormones per se oxidant agents'®’. The synthesis
of thyroid hormones is coupled with oxidore-
active reactions, leading to the production of
H,O,. This potentially dangerous mechanism is
contrasted by unic anatomical conformation of
thyroid follicles, which are separated from circu-
lation. Therefore, the risk of oxidative damage is
confined in these structures called thyroxisome.
A special role is covered by selenoproteins and
membrane oxidases, contributing to lowering
radical species inside the cell'®. The importance
of such oxidases is confirmed by cases of hypo-
thyroidism due to mutation of DUOX or DUOXA
genes in the literature''**. Moreover complex
molecular mechanisms, involving cytokine re-
lease and other oxidases, such as NOX4, have
been hypothesized in Hashimoto’s thyroiditis ad
also in thyroid neoplasia'®>1.

An important review'®” described other phe-
nomenon contributing to OS: among these an
increased NO production, due to augmented
Nitric Oxide Synthase (NOS) gene expression.

NO, which is arterial vasodilator and endothelial
protector, becomes dangerous in an oxidant mi-
lieu, due to the production of peroxinitrites and
preferential expression of eNOS'Y”. Moreover the
activation of hepatic NF-kB with the consequent
increase in cytokines levels induces ROS pro-
duction.

Besides, some mechanisms try to counteract
oxidative status induced by thyroid hormones
through autoloop feedback. For example an anti-
oxidan role can be exerted by Uncoupling Protein
(UCP)-2 and -3'%!, The regulation of UCP is
quite complex and recognizes a major role of T,
in comparsion to T,"*'"!, while a repression of
UCP, causing ROS increase, is exerted by estro-
gens'”. Finally mitochondria damaged by oxida-
tive stress are removed by mitoptosis process'”
also regulated by peroxisome proliferator-activat-
ed receptor gamma coactivator-1, which in turn is
upregulated by T, administration'™.

As a consequence, thyroid hormones influ-
ence lipid composition of tissues and consequent-
ly the susceptibility to OS. However, the response
is tissue-specific, and discrepant effects of T, and
T, have been reported.

Index of lipid-peroxidation (TBARS and lip-
id hydroperoxydes) have been shown in liver
of rats made hyperthyroid by T, administra-
tion'*>""+1”> However a four-week T, treatment
did not induce the same results'”. Similarly in
other organs like testes, hyperthyroidism did
not modify lipo-peroxidation, inducing, on the
contrary, an increase of cabonyls'”’. In addition
T, and T, exerted differential effects on antiox-
idant enzymes in different tissues'’®. Vitamin E
reduced the damaging action of peroxyl radicals
through the preservation of polyunsaturated fat-
ty acids in biological membranes and the low-
ering of NADPH oxidase action'™. The thyroid
itself can be damaged by OS; this phenomenon
1s evident in case of 10odine excess, studied both
in vitro and in animals models fed with a diet
rich in iodide' ™. On the same wavelength
another study has shown how iodide stimulates
hydrogen peroxide generation in thyroid slices
and, at high concentrations, induces the apopto-
sis of the thyroid cell'®!.

Moving from tissues to systemic level, hyper-
thyroidism has been associated with low circulat-
ing levels of alpha-tocopherol'®*'** and CoQ,,"**'**
in humans. Thus CoQ,, has been defined as a
sensitive index of tissue effects due to thyroid
hormones, in situations such as treatment with
amiodarone'® and low T, syndrome'.
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On the other hand, conflicting data have
been collected on hypothyroidism and OS in
humans. The lower metabolic rate in hypothy-
roidism should induce lower ROS generation,
however other mechanisms are operative, for
example the marked increase in lipoprotein plas-
ma levels and the reduction in vit. E due to
blockage of beta-carotene conversion. In a group
of patients with primary hypothyroidism it has
been detected high plasma levels of NO and
malondialdehyde (MDA), the last one a marker,
formed by lipo-peroxidation, of OS, SOD levels
not significantly different from controls ones and
a diminshed activity of paraoxonase (PON)-1, an
antioxidant enzyme synthetized in the liver'®”. An
interesting hypothesis emphasizes the possibil-
ity that in hypothyroid patients the pro-oxidant
environment could take part in the development
of atherosclerosis. Elevated MDA levels were
also detected in subclinical hypothyroidism'®. In
this scenery the alteration of oxidative status is
primarily due to to the decrease in antioxidants
levels, secondarily the altered lipid metabolism,
demonstred by a significant correlation among
LDL-cholesterol, total cholesterol triglyceride
levels and MDA. Total antioxidant status (TAS)
was similar in overt hypothyroidism, subclinical
hypothyroidism and controls.

Augmented TSH directly produces OS'®. Oth-
er works show lipid peroxidation, indicated by
MDA levels, and protein oxidation, evidenced
by protein carbonyls elevation, both in overt
and subclinical hypothyroidism'’. Both the TSH
increase and the MDA elevation contribute to
protein damage. Finally, different investigations
described NO elevation'"'?2,

Data on other parameters are more conflict-
ing. Both in hypo- and hyperthyroidism PON-1
activity has been found decreased'”®, while in
other studies no significant differences have been
detected in comparison to controls''. Increased
levels of antioxidant (SOD, CAT, Vitamin E),
but also TBARS have been reported®. All these
parameters correlated with T, and the correlation
between T, and CAT remained significant also
when corrected for total cholesterol. The discus-
sion is present even for TBARS levels, which
are elevated in both overt and subclinical hypo-
thyroidism for some investigatios'*>!'®3, but some
others did not detected this finding!'?"!%,

Another insolved topic is whether OS is relat-
ed to hypothyrodism per se or to the alterations
of lipid profile caused by thyroid disfunction,
as above stated. Santi et al'”’ reported OS, in
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particular an increase of TBARS and CAT and
an arylesterase decrease, in subclinical hypo-
thyroidism, but they attributed this pattern to
hypercholesterolemia.

We evidenced low Total Antioxidant Capac-
ity (TAC) levels in hypothyroid patients and
increased CoQ, plasma levels in secondary hypo-
thyroidism. This latter finding can be explained
reminding the metabolic role of CoQ,; in the mi-
tochondrial respiratory chain and its consequent
reduced cell use in patients with hypothyroidism.
In secondary hypothyroidism, the scenery is more
complex due to concomitant alterations of other
pituitary-dependent axes, which can have differ-
ent effects on CoQ, and its plasma levels. Low
CoQ,, plasma concentrations have been found in
hypoadrenalism and acromegaly, however, when
they are associated with hypothyroidism, this
latter has a overwhelming effect™'*®.

Another work in patients affected by subclin-
ical hypothyroidism secondary to Hashimoto’s
thyroiditis didn’t show any significant difference
in MDA levels between patients and controls;
however, after using the pro-oxidant 2,2’-azo-
bis-(2-amidinopropane) hydrochloride MDA lev-
els were strongly augmented in hypothyroid pa-
tients. This response was not followed by any
change in LDL fraction: in fact, the production of
MDA induced by copper was reduced only in pa-
tients with overt hypothyroidism, while it was not
significantly different from controls in subclinical
hypothyroidism'”. Since both tissue and systemic
inflammation are present in thyroiditis, these stud-
ies should be interpreted with caution.

The procedures by which hypothyroidism
is induced affect the OS findings. Decreased
OS in heart?® and kidney?” was detected in
hypothyroidism obtained by surgical thyroid
resection in rats. Drug-induced hypothyroidism
was linked with increased lipo-peroxidation in
amygdala?* and hippocampus in rats?**2%, [t
seemed that other cerebral areas, including the
cerebellum, remained unaffected?®, but this
was not confirmed in other studies?**?%. Sim-
ilarly, in animals, methimazole treatment is
associated with cell damage in various organs
(heart, kidney, lung, liver and spleen), while
thyroidectomy does not***. However some au-
thors think that the organ damage is not conse-
quent to the hypothyroidism per se, but to the
drug itself?0>-2%,

In the latest years, the focus has been given on
the OS induced damage in organs such as liver,
bone, skeletal muscle and particularly the heart'™.
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The metabolism of cardiomyocytes depends on
serum T,, in fact in these cells the deiodinase
activity is lacking®”’.

Increased, decreased or unmodified levels of
total SOD, Mn-SOD, Cu, Zn-SOD, GPx, GSH,
Vitamin E, CoQ,, CoQ,, and TAC have been
reported in cardiomyocytes in response to hypo-
thyroidism'”. These results indicate that the eval-
uation of a single OS parameter is not a reliable
index of cardiomyocytes oxidative status and the
evaluation of TAC depends on the measurement
method used.

Growth Hormone

Data concerning the role of anti-oxidants and
GH/IGF-1 axis are still not completely under-
stood.

GH modulates functions and life cycle of
defense cell systems. In human polymorphonu-
clear neutrophils (PMNSs), cultured in vitro, GH
pretreatment inhibits apoptosis by down-regula-
tion of Fas expression. However, it up-regulates
intermediate reactive oxygen production, stimu-
lated by phorbol myristate acetate system?®. This
potentially harmful aspect is counterbalanced by
enhanced life span, therefore the authors conclud-
ed that GH may increase host defense. Reactive
oxygen intermediate production is also augment-
ed in cultured monocytes; no effect was reported
on apoptosis in monocytes or lymphocytes. It has
been shown that GH can have a deleterious effect
on OS, both increasing ROS production®” and re-
ducing antioxidants like glutathione®'’. Therefore,
the role is not clearly established.

As rat models is concerned, Wister rats were
tested after caloric restriction during a 6 weeks
period, resulting in decreased ROS production
and oxidative DNA damage in heart mitochon-
dria; this was reverted by insulin treatment and
by GH/insulin administration®!. However, in the
liver, GH and insulin decreased mitochondri-
al ROS generation, while increased oxidative
damage to mitochondrial DNA. GH and insulin
decreased three different markers of oxidative
liver protein modifications, but increased lipop-
eroxidation-dependent markers, probably by the
increasing of phospholipid unsaturation. There-
fore, GH seems to drive both pro-oxidant and
protective effects, depending on parameters and
tissue considered.

Ames dwarf mice (df/df), which are deficient
in GH, prolactin and TSH, have a longer lifespan,
where transgenic mice with GH overexpression
show premature ageing and reduced life-time.

The evaluation of antioxidant systems showed
lower liver levels of glutathione and ascorbate
in dwarf animals; TAC activity in dwarf liver
and kidney, instead, was higher than in the other
groups, suggesting that GHD mice may contrast
oxidative stress more efficiently than normal or
GH-overexpressing mice?°.

This hypothesis was not in agreement with
the observations of Hauck et al*'? in long-liv-
ing GH receptor/binding protein gene knockout
(GHR-KO) mouse. The authors discovered lower
SOD and higher GPX in kidney; GHR-KO mice
had lower TAC and higher LP males and were
also more susceptible to paraquat toxicity. In
contrast, LP was higher only in female mice. In
the liver, female GHR-KO mice had lower GPX.
Even if the authors concluded that the longevity
in this experimental model was not due to an
improved free-radical scavenging, at least in liver
and kidney, their experiments showed an import-
ant sex-related modulation of these systems and a
differential response of various tissues.

Another interesting model is the Apo-e” mice,
characterized by marked hyperlipidemia which
nduces atherosclerosis. It was used to explore
the role of IGF-1 on atherogenesis. The infusion
of IGF-1 for 12 weeks ameliorated atheroscle-
rotic plaques with a concomitant reduction of
urinary 8-isoprostane, index of OS at systemic
level?®. Very interestingly, these effects were
not reproduced by the infusion with GH-releas-
ing-peptide-2 (GHRP2) capable of stimulating
both GH and IGF-1, suggesting that GH per se
can contrast the positive action of IGF-1?"*. The
last observation suggests the effect of GH could
be dose related.

Male Wister rats treated by aortic stenosis
to induce heart failure, a model with high OS,
showed beneficial effects of 1 mg/kg GH admin-
istration (lower lipoperoxidation, higher glutathi-
one peroxidase), while the opposite was observed
after 2 mg/kg GH?". In apparent contrast, mice
with IGF-IR inactivation had a mean elongation
of lifespan in comparison to wild-type mice and a
better resistance to OS?'%. However, this model is
similar to animals undergoing caloric restriction,
therefore suggesting a link with caloric status of
the former?'”.

Studies on humans, concerning mechanisms
of oxidative stress, have been conducted both
in prepubertal and adult GH deficiency (GHD).
Pre-pubertal GHD showed significantly reduced
Lag phase and vitamin E, with a correlation be-
tween these parameters and IGF-1 or IGFBP-3;
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on the contrary MDA was significantly increased
and inversely correlated with IGF-1/IGFBP-3%%.
The study was repeated after 1 year of rGH ther-
apy, which induced an increase in Lag phase and
a decrease in MDA, which reached normal levels.

Observations in GHD patients, by Scacchi
et al?"®, found higher peroxide levels and lower
Lag phase, measured by a fluorescence kinetic
method; no correlation was observed, at baseline,
with IGF-1 levels. The patients were retested
after a 4 months rGH treatment: peroxide levels
decreased and Lag time increased, reaching val-
ues of controls; a correlation with IGF-1 — direct
in the case of LAG time and indirect in the case
of lipoperoxides — was restored. Therefore, the
short-term GH administration enhanced anti-ox-
idative patterns, at a dose, which increased, but
not fully normalized, IGF-1 levels. These results
may appear in contrast with Smith et al*?° data:
neutrophil O,  generating capacity measured in
a group of GHD adults was found to be lower
than in normal controls, and it was raised by GH
treatment. Moreover, adult GHD was associated
with reduced lipid peroxidation, evaluated both
as plasma lipid hydroperoxides, measured with
ferrous oxidation with xylenol orange assay, and
as LDL susceptibility to peroxidation, measured
with copper-catalyzed Lag phase. Reduced lipid
peroxidation and impaired PMN O, generation
were reverted with a 3-month rGH treatment.
But these findings were coupled with a high-
er LDL- cholesterol and triglyceride and lower
HDL-cholesterol**°.

Similarly to the above reported data in ex-
perimental animals, it has been reported that
human centenarians can be carrier of mutation
in the IGF-IR gene*”'. However, patients with
GH receptor deficiency, which had severe IGF-1
deficiency, did not shown any any effect on life-
time duration, even if presented lower diabetes
and cancer incidence®?2.

Previously we presented our data in a group
of 7 adult GHD, aged 24-77 years, with hypopi-
tuitarism due to empty sella, removal of non-se-
creting tumors or craniopharyngioma. Our study
did not show significant differences with normal
subjects; however, this could indicate a “relative”
deficiency of antioxidants, if referred to the al-
tered lipid pattern and increased cardiovascular
risk of these subjects’.

DHEAS
As regards DHEAS, some data are available
on exogenous DHEA, that can exert a dual ef-
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fect (antioxidant or pro-oxidant) depending on
the dose and tissue specificity?***4. It prevents
oxidative injury in obstructive jaundice in rats.
When administered to male Wistar rats it pro-
duces significant differences in some parameters
of oxidative stress in rat hearts, suggesting a
pro-oxidant answer in this model**.

DHEA treatment may reduce weight gain and
lypogenesis in rats*?®, delay atherosclerosis in
rabbits*?’, increase insulin sensitivity**® and insu-
lin secretion in rats**’ and reduce cardiac fibrosis
in diabetic rats*°.

Several studies have shown a potential antiox-
idant effect of DHEA. Yorek et al*' stated that
DHEA reduces plasma thiobarbituric acid-reactive
substances (TBARS) and superoxide anion produc-
tion in arterioles from diabetic rats, while Aragno et
al*? observed ROS reduction in hearts from diabetic
rats treated with DHEA. It also narrows oxidative
stress-induced skeletal muscle damage in diabetic
rats”. In vitro studies have shown direct effects
of DHEA on oxidative stress parameters: DHEA
reduces NF-«xB activation in endothelial cells treated
with TNFoa?*, and stimulates endothelial cells prolif-
eration”* and protects them against apoptosis*®. The
results of in vivo and in vitro studies have shown that
DHEAS limits lipid peroxidation®’**, Moreover, 0x-
idative stress parameters in plasma and in peripheral
blood mononuclear cells in diabetic subjects are
meaningfully decreased by DHEA treatment®®.

DHEA treatment also prevents oxidative
stress in obstructive jaundice in rats by increasing
SOD activity in liver*??, enhances SOD activity
in aorta from aged rats**’, and in liver from dia-
betic rats**'. DHEA treatment in ovariectomized
rats, an experimental model of menopause, has
positive effects on oxidative balance, in fact it
reduces ROS (assessed by superoxide anion con-
tent in aorta of rats), increasing the expression of
Cu/Zn-SOD (downregulated in this model), and
enhancing eNOS phosphorylation and NO pro-
duction; according to this, it improves vascular
function and reduces blood pressure**.

Goy et al**® have demonstrated that serum
DHEAS levels are positively correlated to BMI in
postmenopausal women, furthermore BMI nega-
tively correlates with the MDA/DHEAS ratio and
can be a possible predictor of this ratio. MDA/
DHEAS ratio can be used as a marker of oxida-
tive stress in postmenopausal women.

It’s also important to underline that the ad-
ministration of supra-pharmacologic doses of
DHEA, as demonstrated by Emer et al*** induces
various histologic cardiac lesions in rats includ-
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ing misshapen cell nuclei, leukocytic infiltrates
and disorganized myocardial fibers. Further-
more, echocardiography shows increased left
ventricular posterior wall thickness, ejection
fraction (EF), and fractional shortening (FS).
Left venticular internal diameter in systole
(LVIDS) was increased with no concomitant
increase in left ventricular internal diameter
in diastole (LVIDD). Moreover, such doses of
DHEA increases TBARS, SOD and glutathione
peroxidase (GSH-Px) levels; the last two mod-
ifications are probable rescue mechanisms to
counteract oxidative stress induction.

Testosterone

Testosterone (T) is the predominant and most
important androgen, playing a major role in the de-
velopment of the male reproductive system?*2%¢,
but it’s involved in anabolic processes making it
fundamental in relation with myocardial function
and contractility. Previously we reviewed a dual
action of T on radical production, depending on
doses and kind of cellular model studied’.

The role of T in determining redox-status
of biological systems is well documented in
animals. Eleawa et al**’ demonstrated that tes-
tosterone deficiency in orchidectomized (ORX)
rats produced a reduction of CAT, SOD and
increased levels of MDA in comparison with
controls. Moreover, the administration of T im-
proved levels of the same parameters in treated
ORX rats if compared with non-treated ORX
ones.

Interesting differences are noted when they
considered myocardial contractility parameters
on isolated myocardium. ORX rats showed sig-
nificant decrease in left ventricular developed
pressure (LVDP) and the peaks of the positive
and negative pressure derivatives compared to
controls; treatment with T in ORX rats seemed
to improve myocardial contractility®*’.

Several studies have underlined the effect of
T as a pro-oxidants factor. Chignalia et al**® re-
ported that T induces ROS generation in cultured
Vascular Smooth Muscle Cells (VSMC), with
greater production of ROS in cells from hyper-
tensive compared with normotensive animals, by
upregulation of Nox4?*®, T metabolites, such as
6p-hydroxytestosterone generated by cytochrome
p450 activity, contribute to ATII-induced hyper-
tension and its associated cardiac damage. All
changes are accompanied by increasing of NA-
D(P)H oxidase activity and ROS generation®*.
Similarly, Xanthine oxidase, source of superoxide

production, is stimulated by T via activation of
Androgen Receptor (AR) and the PI3 kinase-Akt
signaling cascade®”.

Finally, Skogastierna et al**' demonstrated that
supra-physiologic dose of T induced NO produc-
tion and oxidative stress in healthy volunteers, by
evaluation of NO metabolites in urine samples
after 48h administration of 500 mg of testoster-
one enantate.

On the contrary, previous in vivo studies have
shown a protective T effect: men with coronary
artery disease (CAD) have significantly lower
concentrations of bioavailable T than men with
normal angiograms®?2, and prevalence of hypo-
gonadism in a group of men with CAD is about
twice that observed in the general population®*,
Hypotestosteronemia is associated with an ath-
erogenic lipid profile (elevated low density lipo-
proteins and triglycerides, decreased high density
lipoprotein), high fibrinogen with a hypercoagu-
lable state, an increase in insulin resistance and
hyperinsulinaemia, and higher systolic and dia-
stolic blood pressure**. When T is instilled into
the left coronary artery, vasodilatation ensues
and coronary flow increases*”. More importantly,
acute administration of intravenous T improves
exercise tolerance and reduces angina threshold
in men with CAD*%%’. Non-genomic effects of
T on vascular smooth muscle cells were more
extensively studied?.

Therefore, the impact of T on oxidative stress
is strictly dependent on the experimental model,
with an optimal hormonal level that could bal-
ance both the detrimental effects of deficiency
and excess.

Heart Failure as a Multihormonal
Disease

HF has been depicted as a multi-hormonal
disease®”. The imbalance between anabolic and
catabolic system, in favor of catabolism, is a key
feature of patients with severe chronic heart fail-
ure. This is related to the activation of inflamma-
tory and neuroendocrine systems, to symptoms,
exercise tolerance and the onset of cachexia?®-262,
An example of these hormonal changes comes
from the phenomenon of cardiac cachexia. There
is no uniformly accepted definition of cardiac
cachexia, but it can be considered as a weight
reduction> 10% compared to normal®®2%, Tt has
been observed that the alteration of the balance
of anabolic and catabolic systems with preva-
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lence of catabolic ones, which leads to cachexia,
and neuro-hormonal activation (such as catechol-
amine increase) are linked each other*”. It has
also been demonstrated that cachexia in patients
with chronic heart failure is also associated with
acquired GH resistance. This resistance, which
also justifies the poor biochemical response to
substitution therapy in some cases, seems to be
related to a reduction in tissue distribution of GH
receptors?®,

The anabolic hormone deficiency is charac-
terized by a distortion in the GH/IGF-1 axis.
However, this phenomenon is more complex,
including abnormalities in adrenal and gonadal
axes??%, In healthy men, these hormonal abnor-
malities are a crucial element of the normal aging
process, even though they are related to adverse
consequences such as sexual dysfunction, de-
pression, abdominal obesity, metabolic syndrome
and cardiovascular disease’®. In male population,
deficiencies in circulating levels of DHEAS and
IGF-1 are associated with an increased risk of
both cardiovascular and total mortality and re-
duced levels of IGF-1 promote the development
of heart failure in older patients?*%-2¢7,

An important report of 208 males with chron-
ic heart failure has demonstrated a high preva-
lence of reduced serum concentrations of anabol-
ic hormones in this population. The 3 hormones
analyzed reflect the main anabolic endocrine
axes: the gonadal, adrenal and somatotropic axes.
It has been shown that reduced levels of total T,
DHEAS and IGF-1 are strong markers of worse
prognosis independently of conventional risk fac-
tors for cardiovascular disease?. A lack of T was
observed in the group of younger men with heart
failure (<45 years) in 39% of cases. In this group,
the hormonal deficiency is particularly meaning-
ful as it significantly affects the quality of life.
In the group of men >66 years, total T deficiency
was found in 1/3 of cases. This group also pres-
ents a higher prevalence of HF. DHEAS and IGF-
1 deficiencies were present in most heart-failured
patients in all the groups under 65 years.

The deficiencies of these hormones are not
just a surrogate of the severity of the underlying
disease. The only significant association was be-
tween a reduction in total T and DHEAS and the
symptoms of heart failure according to NYHA
classes. IGF-1 levels remained low despite the
NYHA class. Moreover, nor T neither IGF-1
correlated with left ventricular function indexes
such as LVEF or NT-proBNP. These last two
parameters were only related to the circulating
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levels of DHEAS. The presence of multi-hormon-
al deficiencies in men affected by chronic heart
failure leads to a worse prognosis>®.

DHEAS deficiency is an independent risk
factor for ischaemic heart disease and a predictor
of increased mortality for all causes®**®. There are
no data on the relationship between total T levels
and mortality. However, it has been noted that
low levels of T are an independent determinant
of endothelial dysfunction in men: in fact total
and free T levels are related to %flow-mediated
dilatation (FMD) independently of age, BMI,
hypertension, hyperlipidemia, diabetes mellitus
and smoke. Whereas, DHEAS levels were not
significantly related to %FMD?®, Increased total
and cardiovascular mortality and increased inci-
dence of heart failure can be seen in IGF-1 deficit.
In addition, a progressive association between the
number of altered anabolic axes and 3-year mor-
tality for all causes has been reported. Patients
with alterations of at least two endocrine axes
had the worst survival, with a 3-year mortality
rate of 50% and 75% in those with alterations
corresponding respectively to two and three hor-
monal axes?’. These observations demonstrate
the clinical utility of considering all three ana-
bolic hormonal axes in the overall assessment
of long-term prognosis of patients with chronic
heart failure in addition to parameters such as the
NYHA class, ejection fraction, NT-proBNP, and
renal function, classically used in these patients.
However, these alterations have been stated in
observational studies and need further examina-
tion to understand the mechanisms that may be
responsible for.

The origin of age-related decline in anabolic
hormones remains uncertain. One hypothesis is
that the aging process leads to a constant exac-
erbation of inflammatory processes with high
circulating levels of cytokines that can inhibit
the secretion of sex steroids from gonads and
breast. It is presumed that reduced DHEA se-
cretion in patients with chronic heart failure is
due to insulin resistance and hyperinsulinemia.
Insulin resistance is frequently detected in heart
failure. In fact in comparison with subjects with
normal blood glucose levels, insulin values in
patients with heart failure were higher. Fur-
thermore, insulin resistance is also related to
the severity of heart failure. Insulin is a physi-
ological inhibitor of DHEA secretion in healthy
subjects?”. Therefore, it is clear that alterations
in major anabolic hormone axes contribute to a
worse prognosis in patients with chronic heart
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failure. Studies on the elderly with DHEAS and
T deficiency have been performed to see if hor-
mone replacement therapy could successfully
modify body composition, sexual function, and
psychological state in the aging process. Restor-
ing normal T levels with substitution therapy
can improve muscle mass, prevent osteoporosis,
improve mental status and improve libido espe-
cially in older patients?”'. Malkin et al?’”> have
noticed that 12-month replacement therapy with
men with heart failure results in an improvement
in NYHA class and functional capacity measur-
able through walking test.

Due to the fundamental role of hormones in
modulating antioxidant systems, as above de-
scribed, in our opinion OS could be the link
between hormone deficiencies and HF.

As a personal experience (preliminary un-
published data), in order to evaluate the re-
lationships between anabolic hormones and
indexes of OS and the impact on HF, we have
studied a group of 21 patients (18 males 3 fe-
males, age 49-73 years) affected by HF (NYHA
II-111; EF<40%), evaluating metabolic param-
eters (glycaemia, total and fractioned choles-
terol, uric acid, triglycerides, proteins), hor-
monal parameters (IGF-1, DHEAS, T, freeT,,
freeT,, TSH, NT-proBNP) and total plasma
antioxidant capacity (TAC). TAC was evalu-
ated by a spectrophotometric method, using
H,O,-metmyoglobin system, which, interacting
with the chromogen ABTS, induces the appear-
ance of its radical forms with a latency phase

(LAG) proportional to antioxidant content of
the sample?”>*’*. Hormones were measured by
enhanced chemiluminesce assay.

The most prevalent hormonal deficiencies
were those of IGF-1 (83%) and DHEAS (82%).
The association of multiple hormonal deficiencies
correlated with levels of NT-proBNP (no deficit,
n=5, 882+483.1; one deficit, n=5, 787+307.4,
two deficits, n=4, 4199.3+2167.7; three or four
deficits, n=7, 7968.8+£5123.9 pg/ml). LAG values
were significantly elevated in patients with one
or more deficit vs. patients with normal hormone
pattern (106+11,3 vs. 66.7£6.7 s), but while pa-
tients with single hormonal deficiency showed
the greatest levels (123.3+6.7), suggesting a
compensatory increase in antioxidant systems,
while no further increase was observed with
the worsening of hormonal picture (two defi-
cits, 106.7+31; three or four deficits 92.5+20.1)
(Figure 1).

Therefore, we can hypothesize that OS in ear-
ly stages can be counteracted by defense mech-
anisms, but multiple hormone deficiencies are
unable to balance the worsening of OS and con-
sequently the course of illness.

Conclusions

These preliminary data, while indicating that
multiple hormonal deficiencies are associated
with the severity of HF, suggest that an increased
antioxidant defense can be observed in patients

160
140
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100
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"

& nodeficit

1 deficit

& 2 deficit
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Figure 1. Mean + SEM values of plas-
ma LAG (measure of total antioxidant ca-
pacity, expressed in sec) in patients with
chronic heart failure, divided according to
the absence or presence of multiple hor-
mone deficits.

3949



A. Mancini, E. Vergani, C. Bruno, G. Olivieri, C. Di Segni, et al.

with only one anabolic hormone deficiency, but
this system could not be effective in contrasting
the ingravescence of the hormonal picture, per-
haps contributing, in a reciprocal way, to influ-
ence hormone levels themselves.

The relevance of the topic of OS and its modu-
lation by hormones confirms the systemic involve-
ment in progression of HF and opens the field of
longitudinal researches combining antioxidants ad-
ministration and hormonal replacement therapies.
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