Cytochrome c oxidase subunit VIIb as a potential target in familial hypercholesterolemia by bioinformatical analysis

G. LI^{1,2}, X.-J. WU¹, X.-Q. KONG¹, L. WANG³, X. JIN¹

Abstract. – OBJECTIVE: The aim of the study is to explore the potential familial hypercholesterolemia markers by comparing with healthy controls.

MATERIAL AND METHODS: We downloaded the gene expression profile GSE13985 from Gene Expression Omnibus database including five patients diagnosed with familial hypercholesterolemia (FH) and five age, sex, status matched controls. We applied t-test, Wilcox test and Fisher test in Multtest package of R language to identify the differentially expressed genes (DEGs) with p < 0.05 and llogFCl > 1, and constructed the interaction network of the top 3 up- and down-regulated genes using STRING. Besides, the modules of network were analyzed with Cytoscape and screened out with Mcode plugin, and the functional annotation of the genes involved in the modules was analyzed with BiNGO (Biological Networks Gene Ontology).

RESULTS: Firstly, totally 101 differentially expressed genes were identified in FH samples compared with control samples, the genes ranked in top 3 up- and down-regulated genes were selected. Then, basing on the interaction network of these selected genes, ribosomal L24 domain containing 1 (RSL24D1) and cytochrome c oxidase subunit VIIb (COX7B) showed a central position in the interaction network, and also exited in the modules of the network. The functional annotation of the genes in modules showed that COX7B was associated with oxidative phosphorylation.

CONCLUSIONS: COX7B might play vital roles in FH via oxidative phosphorylation system, and might be potential target in the treatment of FH.

Key Words:

Potential familial hypercholesterolemia markers, COX7B, Oxidative phosphorylation system.

Introduction

Hypercholesterolemia, which is a higher serum total cholesterol level, causes sclerotic changes in blood vessels and might result in colorectal cancer (CRC)¹. Familial hypercholesterolemia (FH) is an autosomal disorder characterized by increased levels of total cholesterol and low density lipoprotein cholesterol, and increased risk of premature coronary heart disease^{2,3}. Nowadays, with a prevalence of about one in 500 individuals, FH remains the most common monogenic disorder of lipoprotein metabolism⁴. In the United States, only 34% of patients with familial hypercholesterolemia were diagnosed⁵. And in Dutch, the incidence of FH among children is every 400 births⁶.

It is known that FH can result from mutations in the low density lipoprotein receptor gene (LDLR), apolipoprotein B-100 gene (APOB), and proprotein convertase subtilisin/kexin type 9 gene (PCSK9)7. LDLR mutation databases currently list more than 800 different mutations^{8,9}. Many different types of LDLR mutation have been identified in patients with FH worldwide, such as large rearrangements and mutations in the promoter region that affect gene transcription¹⁰. For the therapy of FH, some drugs are widely used, for example, ezetimibe as a cholesterol-absorption inhibitor11, torcetrapib as an inhibitor of cholesteryl ester transfer protein¹², and pravastatin¹³. However, the using of these drugs in treating for FM can reduce the levels of LDL cholesterol, but it cannot eliminate the disease and prevent the occurrence of carotid atherosclerosis completely.

In present study, in order to detect the potential key genes in FH and their possible functions, we analyzed the differentially expressed genes (DEGs) in FH samples with t-test, Wilcox test and Fisher test by comparing with control samples, and the top genes were selected to construct the interaction network with their potential target genes. Then, the

¹Department of Vascular Surgery, Shandong Provincial Hospital Aaffiliated to Shandong University, Jinan, P.R. China

²Department of Cardiovascular Surgery, The Central Hospital of Taian, Taian, P.R. China

³Department of Urology, The Central Hospital of Taian, Taian, P.R. China

modules in the network were analyzed, and the functional annotation of the genes involved in the modules were performed. We expected this research would provide more understanding and useful information for the treatment of FH.

Materials and Methods

Data Sources

The expression profile of GSE13985 was downloaded form Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/), including five patients diagnosed with FH and five age, sex, BMI and smoking status matched controls. The corresponding platform was GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array.

Pre-processing of Data and Screening the DEGs

Affy package¹⁴ in R language was used to transform the raw data into the recognizable expression profile data. Then, the missing parts of data were imputed¹⁵, and the complete data were standardized with Median standardization¹⁶. Next, we applied t-test, Wilcox test and Fisher test in Multtest package of R language¹⁷ to identify the differentially expressed genes (DEGs) between the familial hypercholesterolemia blood samples and control samples, with the p value < 0.05 and llogFCl > 1. And among the DEGs, the up-regulated genes and down-regulated genes, whose fold-change ranked within top 3, were screened out for further study.

Constructing the Interaction Network

Single gene does not often play roles in organism alone. In fact, the gene can interact with other genes to accomplish several function¹⁸. In this study, the up- and down-regulated genes stood in the front of the rank were screened, and the interaction network of these genes were constructed with STRING (Search for the Retrieval of Interacting Genes/Proteins) software¹⁹ to mine their target genes. This software provides uniquely comprehensive coverage, all interactions are provided with a probabilistic confidence score. Then, we counted the node degree of the genes in the interaction network, and selected the genes with high connectivity.

Analyzing the Modules in the Network

The modules of the whole network we obtained was analyzed with Cytoscape software²⁰,

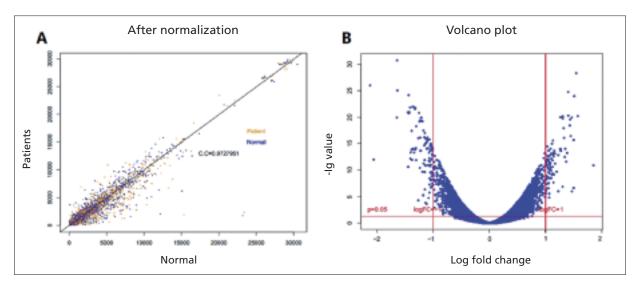
the modules were mined with MCODE (Molecular Complex Detection)²¹, and the functional annotation of the modules were performed with Biological Networks Gene Ontology tool (BiNGO) plugin²². The threshold of hypergeometric distribution of functional annotation was 0.05.

Results

Data Pre-Treatment

The primary data of chips exist some problems, such as background and probe design, so there are great differences between data of chips, and normalization is necessary for analysis. After normalization, the data had better correlation shown in Figure 1-A, the spots with different color represented the sample data of various groups. Besides, the fitting curves to data was almost near to standard diagonal, and the correlation coefficient of data in different samples was equal to 0.97.

Identification of the Differentially Expressed Genes


T-test, Wilcox test and Fisher test were applied to test the expression data of genes, the genes with p < 0.05 and llogFCl > 1 were identified as the DEGs, including up- and down-regulated genes. We selected top 3 gene expression values listed in Table I. In order to prove the p value and llogFCl whether conform to logic with different test, the VOLCANO plot was drawn (Figure 1-B). We could see that smaller p value was corresponding to larger llogFCl, this was logical according to the previous studies^{23,24}.

Interaction Network

The interaction network was constructed by combining with STRING database, according to the top 3 up- and down-regulated genes we obtained before, the result was shown in Figure 2. Then, the node degree was counted, and the genes ribosomal L24 domain containing 1 (RSL24D1) and cytochrome c oxidase subunit VIIb (COX7B) located on the top of the genes involved in the network, this suggested that the connective function of RSL24D1 and COX7B were important in the network.

Modules Analysis in Network and Functional Annotation

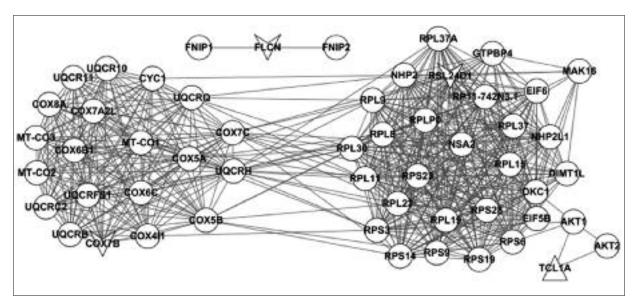
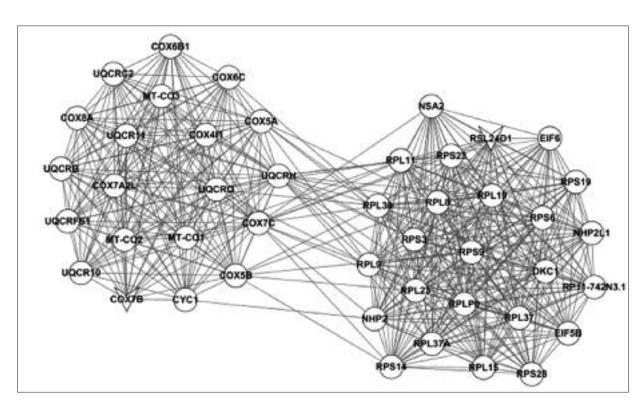

Cytoscape software was applied to analyze the modules of the network we obtained before. After being mined with MCODE and annotated

Figure 1. The expression association graph of the differentially expressed genes (A) and the Volcano plot of the differentially expressed genes (B).

Table I. The top 3 up- and down-regulated genes among the differentially expressed genes (DEGs).

Gene symbol	ID_REF	<i>t</i> -test	Wilcox	Fisher	logFC
RSL24D1	222465_at	0.012339	0.036145	2.76E-17	-1.65193
COX7B	202110_at	0.038268	0.036145	1.28E-21	-1.64387
FLCN	235250_at	0.017768	0.021177	4.45E-18	-1.45301
IGHD	230877_at	0.034049	0.011925	5.60E-14	1.451809
TCL1A	39318_at	0.02652	0.036145	2.76E-17	1.471415
IGHD	213674_x_at	0.026028	0.036145	1.90E-17	1.57356

Figure 2. The interaction network of the selected top genes with their potential target genes. Inverse triangular represented the down-regulated genes, and regular triangle displayed the up-regulated genes.


with BiNGO, the modules we mined were seen in Figure 3, and the functional annotation of the genes involved in the modules were analyzed shown in Table II. In Figure 2, the genes RSL24D1 and COX7B were also included in the modules. The result of functional annotation showed that oxidative phosphorylation (p = 1.80E-07), respiratory electron transport chain (p = 3.47E-07), ribosomal small subunit biogenesis (p = 6.89E-07), energy derivation by oxidation of organic compounds (p = 1.72E-06) and cellular protein metabolic process (p = 2.60E-06) were significantly enriched (Table II). COX7B was also enriched in the function of oxidative phosphorylation.

Discussion

In present study, the data were downloaded from GEO database (http://www.ncbi.nlm.nih.gov/geo/), and the DEGs of the FH samples were identified by comparing with control samples, including upand down-regulated genes. Meanwhile, the top 3 genes were selected, and the interaction network of these genes was constructed with their potential target genes. The two genes RSL24D1 and

COX7B were the top of the genes involved in the network according to the node degree of the genes. In addition, the modules were mined and the functional annotation of genes in modules was analyzed, the node degree of RSL24D1 and COX7B also stood at the top of the genes in the modules. Moreover, COX7B was associated with the function of oxidative phosphorylation, which was the most significant function in the modules.

Cytochrome c oxidase (COX), which is a fundamental mitochondrial respiratory chain MRC complex (CIV), comprises three mitochondrialencoded proteins (COX1, COX2, and COX3) that combine with ten nuclear-encoded proteins, including COX4, COX5A, COX5B, COX6A, COX6B, COX6C, COX7A, COX7B, COX7C, and COX8, to form the mature holocomplex in humans^{25,26}. COX7B as the only X-linked gene encodes a poorly characterized structural subunit of cytochrome c oxidase²⁷, has been reported its down-regulation in Medaka result in microcephaly and microphthalmia²⁸. The over-expression of COX7B and high positive rate were observed in nasopharyngeal carcinoma (NPC), suggesting COX7B might be the putative molecular markers of NPC29. In glioma cells treated with temozolomide and the combination of Y15 and

Figure 3. The modules of the network included the top genes among all the differentially expressed genes. Inverse triangular represented the down-regulated genes, and regular triangle displayed the up-regulated genes.

Table II. Functional annotation of the genes included in the nodules.

GO-ID	corr <i>p</i> -value	х	Description
6119	1.80E-07	7	Oxidative phosphorylation
22904	3.47E-07	6	Respiratory electron transport chain
42274	6.89E-07	4	Ribosomal small subunit biogenesis
34470	6.89E-07	8	ncRNA processing
15980	1.72E-06	7	Energy derivation by oxidation of organic compounds
44267	2.60E-06	20	Cellular protein metabolic process
34660	2.82E-06	8	ncRNA metabolic process
55114	1.14E-05	11	Oxidation reduction
19538	1.14E-05	21	Protein metabolic process
44260	1.99E-05	24	Cellular macromolecule metabolic process
44085	2.71E-05	13	Cellular component biogenesis
42255	4.35E-05	3	Ribosome assembly
43170	5.51E-05	25	Macromolecule metabolic process
9987	9.71E-05	38	Cellular process
6396	1.90E-04	9	RNA processing
28	2.01E-04	2	Ribosomal small subunit assembly
42257	3.90E-04	2	Ribosomal subunit assembly
6123	6.31E-04	2	Mitochondrial electron transport, cytochrome c to oxygen
9060	9.25E-04	3	Aerobic respiration
30218	1.83E-03	3	Erythrocyte differentiation
34101	2.63E-03	3	Erythrocyte homeostasis
70925	3.61E-03	3	Organelle assembly
1522	4.98E-03	2	Pseudouridine synthesis
44238	6.45E-03	25	Primary metabolic process
16070	8.03E-03	9	RNA metabolic process
22618	9.12E-03	3	Ribonucleoprotein complex assembly
30099	1.54E-02	3	Myeloid cell differentiation
48872	1.54E-02	3	Homeostasis of number of cells
31118	1.76E-02	1	rRNA pseudouridine synthesis
45738	1.76E-02	1	Negative regulation of DNA repair
42256	3.39E-02	1	Mature ribosome assembly
16310	3.39E-02	7	Phosphorylation
6610	4.77E-02	1	Ribosomal protein import into nucleus
30490	4.77E-02	1	maturation of SSU-rRNA
2309	4.77E-02	1	T cell proliferation involved in immune response
9451	4.81E-02	2	RNA modification

temozolomide, COX7B was also up-regulated significantly³⁰. Meanwhile, COX7B as a differentially expressed gene was identified in female residents in a Cd-polluted area by comparing with matched residents in a non-Cd-polluted area³¹. And our study revealed a potential function in familial hypercholesterolemia. Thus, these evidences suggested that COX7B might be a key gene not only in microcephaly, microphthalmia and cancer, but also in FH and controlling oxidative stress response.

As we all know, oxidative phosphorylation is the mainly biological process and function in mitochondria of organism, and molecular defects in oxidative phosphorylation system can cause mitochondrial dysfunction³². Defects in the oxidative phosphorylation system can result in devastating multisystem diseases, and recent years

have been detect genetic mutations in mitochondrial and nuclear genes³³. In previous studies, mtDNA, which encodes genes essential for oxidative phosphorylation, was one of the risk factors of cardiovascular disease, basing on the generation of increased reactive oxygen and nitrogen species³⁴. Furthermore, increased expression of cytochrome oxidase gene might be related to early Alzheimer's disease³⁵, and Parkinson's disease was reported as a systemic disorder of oxidative phosphorylation³⁶. In fact, regulating mammalian cytochrome c oxidase and its substrate cytochrome c is representative activity for the entire oxidative phosphorylation system³⁷. Our research also indicated that COX7B significantly enriched in oxidative phosphorylation. Hence, we speculated that COX7B might play roles in FH via oxidative phosphorylation system.

Conclusions

We identified the DEGs in the FH samples by contrasting with control samples, and COX7B as the core gene in the interaction network of the top 3 up- and down-regulated genes. In addition, COX7B also existed in the modules of the network we analyzed, and was significantly enriched in the function of oxidative phosphorylation. Therefore, COX7B was supposed to be key gene in the FH, it might play vital roles via oxidative phosphorylation system and may be a new target for the treatment of FH. However, the specific function of COX7B in FH needs to further study in future.

Acknowledgements

The research was supported by the fundings: (1) Natural science foundation of Shandong province: ZR2012HM063; (2) Specialized Research Fund for the Doctoral Program of Higher Education of China 20090131110059.

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

- Herbey I, Ivankova N, Katkoori V, Mamaeva O. Colorectal cancer and hypercholesterolemia: review of current research. Exp Oncol 2005; 27: 166-178.
- Austin MA, Hutter CM, Zimmern RL, Humphries SE. Familial hypercholesterolemia and coronary heart disease: a HuGE association review. Am J Epidemiol 2004; 160: 421-429.
- HUTTER CM, AUSTIN MA, HUMPHRIES SE. Familial hypercholesterolemia, peripheral arterial disease, and stroke: a huge minireview. Am J Epidemiol 2004; 160: 430-435.
- LIYANAGE KE, BURNETT JR, HOOPER AJ, VAN BOCKXMEER FM. Familial hypercholesterolemia: epidemiology, Neolithic origins and modern geographic distribution. Crit Rev Clin Labo Sci 2011; 48: 1-18.
- Higgins M. Epidemiology and prevention of coronary heart disease in families. Am J Med 2000; 108: 387-395.
- WIEGMAN A, RODENBURG J, DE JONGH S, DEFESCHE JC, BAKKER HD, KASTELEIN JJP, SUBRANDS EJG. Family history and cardiovascular risk in familial hypercholesterolemia: data in more than 1000 children. Circulation 2003; 107: 1473-1478.
- Austin MA, Hutter CM, Zimmern RL, Humphries SE. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol 2004; 160: 407-420.

- HEATH KE, GAHAN M, WHITTALL RA, HUMPHRIES SE. Low-density lipoprotein receptor gene (LDLR) world-wide website in familial hypercholesterolaemia: update, new features and mutation analysis. Atherosclerosis 2001; 154: 243-246.
- 9) STENSON PD, BALL EV, MORT M, PHILLIPS AD, SHIEL JA, THOMAS NS, ABEYSINGHE S, KRAWCZAK M, COOPER DN. Human gene mutation database (HGMD®): 2003 update. Hum Mutat 2003; 21: 577-581.
- SOUTAR AK, NAOUMOVA RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovas Med 2007; 4: 214-225.
- 11) Kastelein JJP, Akdim F, Stroes ESG, Zwinderman AH, Bots ML, Stalenhoef AFH, Visseren FLJ, Subrands EJG, Trip MD, Stein EA, Gaudet D, Duivenvoorden R, Veltri EP, Marais AD, de Groot E. Simvastatin with or without Ezetimibe in Familial Hypercholesterolemia. N Engl J Med 2008; 358: 1431-1443.
- 12) KASTELEIN JJP, VAN LEUVEN SI, BURGESS L, EVANS GW, KUIVENHOVEN JA, BARTER PJ, REVKIN JH, GROBBEE DE, RILEY WA, SHEAR CL, DUGGAN WT, BOTS ML. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med 2007; 356: 1620-1630.
- 13) WIEGMAN A, HUTTEN BA, DE GROOT E, RODENBURG J, BAKKER HD, BULLER HR, SUBRANDS EJ, KASTETEIN JJ. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA 2004; 292: 331-337.
- 14) GAUTIER L, COPE L, BOLSTAD BM, IRIZARRY RA. Affyanalysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20: 307-315.
- FUJITA A, SATO J, RODRIGUES L, FERREIRA C, SOGAYAR M. Evaluating different methods of microarray data normalization. BMC Bioinformatics 2006; 7: 469.
- TROYANSKAYA O, CANTOR M, SHERLOCK G, BROWN P, HASTIE T, TIBSHIRANI R, BOTSTEIN D, ALTMAN RB. Missing value estimation methods for DNA microarrays. Bioinformatics 2001; 17: 520-525.
- Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S. Bioinformatics and computational biology solutions using R and Bioconductor. Vol. 746718470. Springer, New York, 2005.
- 18) Tong AHY, Drees B, Nardelli G, Bader GD, Bran-NETTI B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 2002; 295: 321-324.
- 19) SZKLARCZYK D, FRANCESCHINI A, KUHN M, SIMONOVIC M, ROTH A, MINGUEZ P, DOERKS T, STARK M, MULLER J, BORK P. Jensen LJ, von Mering C. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011; 39: D561-D568.
- 20) SHANNON P, MARKIEL A, OZIER O, BALIGA NS, WANG JT, RAMAGE D, AMIN N, SCHWIKOWSKI B, IDEKER T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498-2504.

- BADER GD, HOGUE CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003; 4: 2.
- 22) MAERE S, HEYMANS K, KUIPER M. BINGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005; 21: 3448-3449.
- 23) Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 2003; 4: 210.
- 24) Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 2006; 7: 55-65.
- CARR HS, WINGE DR. Assembly of cytochrome c oxidase within the mitochondrion. Acc Chem Res 2003; 36: 309-316.
- 26) FONTANESI F, SOTO IC, HORN D, BARRIENTOS A. Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am J Physiol Cell Physiol 2006; 291: C1129-C1147.
- 27) FORNUSKOVA D, STIBUREK L, WENCHICH L, VINSOVA K, HANSIKOVA H, ZEMAN J. Novel insights into the assembly and function of human nuclear-encoded cytochrome c oxidase subunits 4, 5a, 6a, 7a and 7b. Biochem J 2010; 428: 363-374.
- 28) Indrieri A, van Rahden Vanessa A, Tiranti V, Morleo M, Iaconis D, Tammaro R, D'Amato I, Conte I, Maystadt I, Demuth S, Zvulunov A, Kutsche K, Zeviani M, Franco B. Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. Am J Hum Genet 2012; 91: 942-949.
- 29) XIONG S, WANG Q, ZHENG L, GAO F, LI J. Identification of candidate molecular markers of nasopharyngeal carcinoma by tissue microarray and in situ hybridization. Med Oncol 2011; 28: 341-348.

- 30) HUANG G, HO B, CONROY J, LIU S, QIANG H, GOL-UBOVSKAYA V. The microarray gene profiling analysis of glioblastoma cancer cells reveals genes affected by fak inhibitor Y15 and combination of Y15 and Temozolomide. Anticancer Agents Med Chem 2014; 14: 9-17.
- 31) DAKESHITA S, KAWAI T, UEMURA H, HIYOSHI M, OGUMA E, HORIGUCHI H, KAYAMA F, AOSHIMA K, SHIRAHAMA S, ROKUTAN K, ARISAWA K. Gene expression signatures in peripheral blood cells from Japanese women exposed to environmental cadmium. Toxicology 2009; 257: 25-32.
- HAINES TH, DENCHER NA. Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett 2002; 528: 35-39.
- SMEITINK J, VAN DEN HEUVEL L, DIMAURO S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2001; 2: 342-352.
- 34) BALLINGER SW, PATTERSON C, YAN C-N, DOAN R, BUROW DL, YOUNG CG, YAKES FM, VAN HOUTEN B, BALLINGER CA, FREEMAN BA. Hydrogen peroxide—and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 2000; 86: 960-966.
- 35) Manczak M, Park B, Jung Y, Reddy PH. Differential expression of oxidative phosphorylation genes in patients with Alzheimer's disease. Neuromol Med 2004; 5: 147-162.
- 36) SHOFFNER JM, WATTS RL, JUNCOS JL, TORRONI A, WALLACE DC. Mitochondrial oxidative phosphorylation defects in Parkinson's disease. Ann Neurol 1991; 30: 332-339.
- 37) HÜTTEMANN M, LEE I, PECINOVA A, PECINA P, PRZYKLENK K, DOAN J. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr 2008; 40: 445-456.