Elevated miR-21 is associated with poor prognosis in non-small cell lung cancer: a systematic review and meta-analysis

Y. YUAN^{1,2}, X.-Y. XU², H.-G. ZHENG², B.-J. HUA²

¹Graduate School, Beijing University of Chinese Medicine, Beijing, China

Abstract. – OBJECTIVE: Increasing studies have investigated the prognostic value of high miR-21 expression in non-small cell lung cancer (NSCLC) with inconsistent results. We conducted this meta-analysis to explore whether the expression of miR-21 was associated with prognosis in NSCLC patients.

MATERIALS AND METHODS: We systematically searched Medline, EMBASE, Web of Science and Cochrane Library for relevant studies. Studies exploring the relationship between miR-21 expression and NSCLC prognosis and clinical pathology, and reporting enough data to get the hazard ratio (HR) and 95% confidence intervals (CIs), were included. Random- or fixed-effect models were employed to calculated pooled hazard ratios (HRs) or risk ratio and 95% confidence intervals (95% CIs).

RESULTS: A total of 28 eligible studies, including 24 for prognosis, 16 for clinicopathological features were identified. Our results revealed that elevated miR-21 was related to unfavorable overall survival (OS) in NSCLC (HR = 1.960, 95% CI = 1.510-2.554, p = 0.000). Similar results were found in disease-free survival, relapse-free survival, and cancer-special death. In a meta-analysis of clinical pathology, overexpressed miR-21 was significantly related to lung adenocarcinoma, larger tumor size, and advanced clinical stage.

CONCLUSIONS: Our meta-analysis suggested that miR-21 may function as an unfavorable biomarker of prognosis in NSCLC patients.

Key Words:

microRNA-21, Non-small cell lung cancer, Prognosis, Meta-analysis.

Abbreviations

NSCLC: non-small cell lung cancer; HRs: hazard ratios; CIs: confidence intervals; OS: overall survival; miRNAs: microRNAs; 3'-UTRs: 3'-untranslated regions; mRNAs:

messenger RNAs; miR-21: microRNA-21; CSD: cancer-special death; RFS: relapse-free survival; DFS: disease-free survival; PFS: progression-free survival; NOS: Newcastle-Ottawa Quality Assessment Scale; AD: adenocarcinoma; RR: risk ratio; SOCS1: suppressor of cytokine signaling 1; SOCS6: suppressor of cytokine signaling 6; PTEN: phosphatase and tensin homolog; PDCD4: programmed cell death 4.

Introduction

Lung cancer is the most common cancer, accounting for 12.9% (1.8 million) of the total newly diagnosed cancer cases globally1. It is also the leading cause of cancer-related mortality worldwide, estimated to be responsible for 1.59 million deaths (19.4% of the total). In spite of improvements in the treatment of lung cancer over the recent decades, the five-year survival rates are only 16.8%². Approximately 85% of all lung cancers are classified as non-small cell lung cancer (NSCLC)³. Due to the lack of effective detection methods and the aggressive nature of this disease, most NSCLC patients have advanced-stage and incurable disease at the initial diagnosis³. The median survival rates for advanced NSCLC patients treated with histology-driven and/or maintenance, platinum-based chemotherapy only ranges from 10-13.9 mouths⁴. Early detection is crucial to prolonging survival, and the identification of molecular markers is key to predict prognosis and design novel managements for NSCLC.

MicroRNAs (miRNAs), approximately 18-25 nucleotides long, are a class of small evolutionarily conserved non-coding RNAs, involving regulating target genes expression at post-transcriptional level⁵⁻⁹. Although miRNAs

²Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China

do not encode protein themselves, they bind to 3'-untranslated regions (3'-UTRs) of target messenger RNAs (mRNAs), resulting in mRNA degradation or translational repression¹⁰. Previous investigations¹¹⁻¹³ have shown that miRNA could predict tumor classification, prognosis and responses of therapies. MicroRNA-21 (miR-21), transcribed by RNA polymerase II, promotes tumor cell proliferation, migration and invasions^{14,15}. MiR-21 has been detected overexpressed in multiple malignancies including pancreatic cancer, esophageal cancer, colon cancer, and lung cancer¹⁶⁻¹⁹.

Although increasing studies have investigated the prognostic significance of high miR-21 expression in NSCLC, the results have been inconsistent. For example, Wang et al²⁰ suggested that high miR-21 was associated with a poor prognosis in NSCLC; however, Voortman et al²¹ found no correlation between miR-21 expression and overall survival (OS). To overcome the limitation of the single study, we conducted this systematic review to explore the prognostic value of miR-21 in NSCLC.

Materials and Methods

Search Strategy

We conducted a literature search using the databases including Medline, EMBASE, Web of Science and Cochrane Library from inception to 9 August 2017. The following terms were used: "lung cancer or lung carcinoma or lung neoplasm or lung adenocarcinoma or lung squamous cell carcinoma" and "miR-21 or miRNA-21 or miR-NA-21 or miR21 or miRNA21 or miRNA21" and "prognosis or prognostic or survival". The reference lists of included studies were also examined for additional trails. Two reviewers independently screened the titles and abstracts of all retrieved records to exclude irrelevant studies. The remaining studies were assessed by reading full-text. Any disagreement was resolved by consensus or by involving an arbiter.

Inclusion and Excluded Criteria

The inclusion criteria of this review were: (1) studies exploring the relationship between miR-21 expression and NSCLC prognosis and clinical pathology; (2) studies reporting enough data to get the hazard ratio (HR) and 95% confidence intervals (CIs); (3) studies published in English. Studies were excluded for: (1) duplicate studies;

(2) case reports, letters, reviews, conference abstracts, animal experiments and expert opinions; (3) studies with insufficient survival data; (4) not published in English.

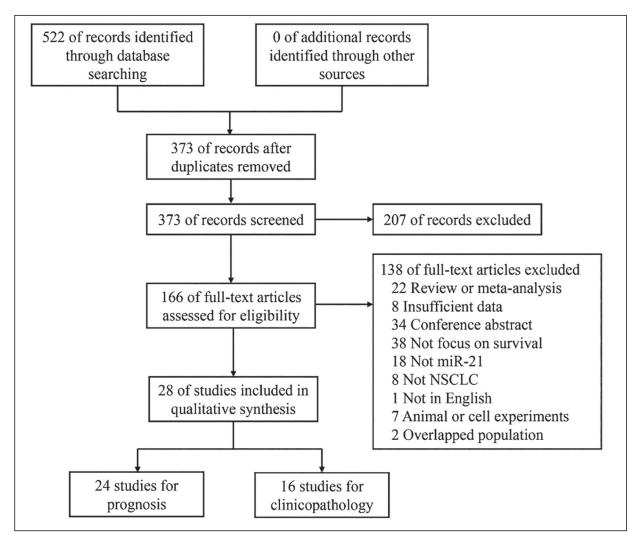
Data Extraction and Methodological Quality Assessment

Two reviewers independently screened all included studies to extract the following data: name of the first author, publication year, country of the study, duration, follow-up, sample size, histology, ages, stage, cut-off value, method of detection, specimen, survival outcomes, analysis, HR and 95% CIs of miR-21 expression for OS, CSD, RFS, DFS, and PFS. Only HRs and 95% CIs of multivariate analysis were abstracted when univariate and multivariate analysis were both provided. If only Kaplan-Meier curves were presented in the studies, we utilized Engauge Digitizer version 4.3 to obtain the survival data, and Tierney's method to calculate the HRs and 95% CIs²². The Newcastle-Ottawa Quality Assessment Scale (NOS) was employed to assess the quality of each included studies. There are 9 items in NOS including three aspects of selection, comparability and outcome. NOS scores \geq 6 were considered as high-quality studies. Any discrepancy will be resolved by discussion or by involving an arbiter.

Statistical Analysis

The HR and 95% CIs was employed to evaluate the prognostic efficiency of miR-21 on NSCLC. The overall HR > 1 and 95% CIs not overlapping in the forest plot indicated that NSCLC patients with elevated miR-21 had a poor prognosis, and HR < 1 and 95% CIs not overlapping in the forest plot implied a better survival. Assessment of heterogeneity was performed using Cochran's Q test and Higgins's I^2 ²³, I^2 < 50% and *p*-value > 0.10 suggesting no heterogeneity. In absence of heterogeneity, a fixed-effects model was used. Otherwise, the random-effects model was applied²⁴. Sensitivity was conducted by sequential omitting each study to examine the robustness of the results. Potential publication bias was evaluated by Begg's funnel plot and Egger's test²⁵. If significant publication bias existed, trim and fill method was performed to validate the robust of the meta-analysis results²⁶. All statistical analyses were calculated via Stata 13.0 (StataCorp, College Station, TX, USA). All two-tailed p-value < 0.05 was defined as statistically significance, except those for heterogeneity.

Results


Selection Process of Included Studies

As shown in the flow diagram (Figure 1), 522 articles were retrieved from Medline, EMBASE, Web of Science, and Cochrane Library databases. After the removal of duplicated articles, 373 articles were left. Next, we screened the titles and abstracts, 207 irrelevant articles were excluded. Subsequently, 166 of full-text articles were assessed for eligibility. 138 articles were excluded for the following reasons: 22 review or meta-analysis, 8 insufficient data, 34 conference abstracts, 38 not focus on survival, 18 not miR-21, 8 not NSCLC, 1 not in English, 7 animal or cell experiments, and 2 overlapped population. Among these, three articles²⁷⁻²⁹ involving overlapped population, only the most recently published article

(Robles, A. I. 2015) was included. Finally, 28 studies, 24 for prognosis and 16 for clinicopathological, were included in this meta-analysis.

Characteristics of Included Studies

Together, 24 eligible studies with a sample size of 3118 were used for analysis of prognosis, while 16 studies with 2131 patients were employed for analysis of clinicopathology. The main characteristics of eligible articles for prognosis were listed in Table I^{20,21} ^{27,30-50}. The Newcastle-Ottawa Scale (NOS) was used for quality assessment, and the NOS scores ranged from 5 to 9 (Table II). Among all cohorts, China (n=21) was the main source region, followed by USA (n=2) and Japan (n=2). Among 24 studies, 18 cohorts focused on primary outcome (OS), 13 cohorts focused on secondary outcomes: 5 for

Figure 1. Flow diagram of study selection process.

Continued

Table I. Characteristics of the included studies used for survival analysis.

- 1														
	NOS	∞	∞	7	7	5	5	∞	7	6	∞	6	6	7
	Analysis	M	M	K-M	U	×	M	M	U	U	\bowtie	×	×	M
	Survival outcomes	DFS	SO	OS, RFS	OS, RFS	CSD	RFS	SO	SO	SO	DFS	SO	OS, DFS	CSD
	Specimen	Plasma	Plasma	Tissues	Tissues	Tissues	Tissues	Tissues	Serum	Tissues	Tissues	Serum	Tissues	Tissues
	Method	qRT-PCR	qRT-PCR	qRT-PCR	qRT-PCR	NanoString	NanoString	qRT-PCR	qRT-PCR	qRT-PCR	qRT-PCR	qRT-PCR	qRT-PCR	qRT-PCR
	Cut-off value	median	NA	median	1.297	NA	NA	median	0.85	median	NA	S	2	4.49
	Stage	III-I	VI-I	III-I	VI-I	П	П	VI-I	VI-I	VI-I	III-I	III-I	I-IV	EIII
	Age, years (Range)	Mean 71 (32-88)	Mean ± SD 58.49 ± 9.95	> 65 (65), ≤ 65 (59)	65.7	Range (32-88)	Range (39-76)	≥ 60 (38), < 60 (22)	59	$\geq 60 (36),$ < 60 (34)	$\geq 60 (25),$ $< 60 (33)$	Median 57 (40–71)	≥60(25), <60(23)	Mean ± SD 55.9± 15.1
	Histology	NSCTC	NSCLC	NSCLC	NSCLC	AD	AD	NSCLC	NSCLC	NSCLC	NSCLC	NSCLC	NSCLC	NSCLC
	Sample	195	196	124	114	91	113	09	82	70	58	88	48	216
	Follow up, mouths (Range)	Median 20 (0.5-37)	Median 14.4 (3.43-36.87)	NA	Mean 46.3 (1-204)	NA	NA	NA	NA	24	Up to 2010.11	52.16 (1–73)	39	Up to 2015.12
	Duration	2012.7- 2015.7	2012.10- 2014.12	1998-2004	NA	1999-2012/ 1988-2003	1998-2008	2001-2007	2008.1- 2009-12	2008.1- 2008.5	2009.1- 2009.10	2003-2005	2004-2005	2008.1-
	Country	Japan	China	Taiwan	USA	USA/ Norway	Japan	China	China	China	China	China	Greece	China
	Study	Dejima 2017³º	Liu 2017 ³¹	Lin 2015 ³²	Begum 2015 ³³	Robles 2015 a ²⁷	Robles 2015 b ²⁷	Wang 2013 ³⁴	Le 2012 ³⁵	Liu 2012 ³⁶	Gao 2012 ³⁷	Wang 2011 ³⁸	Markou 2008 ³⁹	Wang 2017 ²⁰

Table 1 /Continued/. Characteristics of the included studies used for survival analysis.

NOS	S	7	8	7	∞	∞	∞	7	9	8	5	S
Analysis	NA	M, K-M	M	M	\mathbb{Z}	M	NA	K-M	K-M	K-M	K-M	K-M
Survival	SO	OS, PFS	CSD	SO	SO	SO	SO	OS, PFS	DFS	SO	OS, DFS	SO
Specimen	Tissues	Tissues	Tissues	Tissues	Tissues	Tissues	Tissues	Tissues	Tissues	Serum	Tissues	Tissues
Method	qRT-PCR	qRT-PCR	ISH	qRT-PCR	qRT-PCR	qRT-PCR	qRT-PCR	qRT-PCR	qRT-PCR	qRT-PCR	qRT-PCR	ISH
Cut-off value	median	S	NA	1.47	1.4	median	median	6.964	median	1.21	median	NA
Stage	VI-I	III-I	I-IIIA	III-I	III-I	VI-I	III-1	VI-I	VI-I	NA	III-I	NA
Age, years (Range)	Median 66.8 (43-83)	Median 47.9 (25–84)	Median 67 (28-85)	> 63 (15), < 63 (15)	> 64 (23), < 64 (24)	Median 63.5 (39-78)	< 55 (191), 55-64 (272), > 64 (168)	Median 67 (46-85)	Mean 63.98 (44~80)	Mean 57.61 (44-71)	NA	NA
Histology	AD	NSCLC	NSCTC	SCC	NSCLC	NSCTC	NSCLC	NSCLC	NSCLC	NSCLC	NSCLC	NSCTC
Sample	17	204	335	30	47	78	631	80	47	80	80	34
Follow up, mouths (Range)	NA	46.7 (5.0–71.0)	Median 105 (73-234)	Up to 2009.9.30	Up to 2009.7.28	Up to 2012.12.31	∞	32 (7-98)	NA	12-48	NA	NA
Duration	NA	2001.3- 2007.12	1990-2004	2014.2- 2015.1	2004.2- 2006.1	2007.11-2010.3	NA	2005- 2012	NA	2012.1- 2013.12	NA	1999.1- 2007.8
Country	Brazil	China	Norway	China	China	China	14 countries	Italy	China	China	China	China
Study	Cinegaglia 2016 ⁴⁰	Tian 2016 ⁴¹	Stenvold 2014 ⁴²	Gao 2011 ⁴³	Gao 2010 ⁴⁴	Li 2017 ⁴⁵	Voortman 2010 ²¹	Capodanno 2013 ⁴⁶	Shen 2014 ⁴⁷	Zhao 2015 ⁴⁸	Xue 2016 ⁴⁹	Yang 2015 ⁵⁰

Abbreviations: NA, not applicable; NSCLC, non-small cell lung cancer; AD, adenocarcinoma; SCC, squamous cell carcinoma; qRT-PCR, quantitative real-time polymerase chain reaction; ISH, In situ hybridization; OS, overall survival; DFS, disease-free survival; RFS, relapse-free survival; CSD, cancer-special death; PFS, progression-free survival; NOS, Newcastle-Ottawa Quality Assessment Scale, M, Multivariate analysis; U, Univariate analysis; K-M, Kaplan-Meier survival curves.

Table II. Quality indicators from the Newcastle-Ottawa scale.

Study		Selectior	1	C	omparab	le		Outcome ssessmer		Score	
	1	2	3	4	5	6	7	8	9		
Dejima, H. 2017	*	*	*	*	*	*	*	*		8	
Liu, Q. Y. 2017	*	*	*	*	*	*	*	*		8	
Lin, T. C. 2015	*	*	*		*	*	*	*		7	
Begum, S. 2015	*	*	*		*	*	*	*		7	
Robles, A. I. 2015 a		*	*		*		*	*		5	
Robles, A. I. 2015 b		*	*		*		*	*		5	
Wang, X. C. 2013	*	*	*	*	*	*	*	*		8	
Le, H. B. 2012		*	*	*	*	*	*	*		7	
Liu, X. G. 2012	*	*	*	*	*	*	*	*	*	9	
Gao, W. 2012	*	*	*	*	*	*	*	*		8	
Wang, Z. X. 2011	*	*	*	*	*		*	*	*	8	
Markou, A. 2008	*	*	*	*	*	*	*	*	*	9	
Wang, X. 2017	*	*	*		*	*	*	*		7	
Cinegaglia, N. C. 2016		*	*		*		*	*		5	
Tian, L. 2016	*	*	*		*	*	*	*		7	
Stenvold, H. 2014	*	*	*		*	*	*	*	*	8	
Gao, W. 2011	*	*	*		*	*	*	*		7	
Gao, W. 2010		*	*	*	*	*	*	*		7	
Li, Y. W. 2017	*	*	*	*	*	*	*	*		8	
Voortman, J 2010	*	*	*	*	*	*	*	*		8	
Capodanno, A. 2013	*	*	*		*	*	*	*		7	
Shen, H. 2014	*	*	*		*		*	*		6	
Zhao, W. 2015		*	*	*	*	*	*	*	*	8	
Xue, X. Y. 2016		*	*		*		*	*		5	
Yang, Z. H. 2015		*	*		*		*	*		5	
Chiou, Y. H. 2015	*	*	*		*		*	*		6	
Zhao, Q. 2015	*	*	*		*		*			5	
Yang, J. S. 2015	*	*	*		*	*	*			6	
Ye, M. 2017	*	*	*		*	*	*			6	

disease-free survival (DFS), 3 for relapse-free survival (RFS), 3 for cancer-special death (CSD), and 2 for relapse-free survival (PFS). Besides, 16 studies focused on clinicopathology.

Meta-Analysis of OS

18 studies with 2063 patients were included in the meta-analysis of OS. Due to significant heterogeneity (I^2 =77.2, p=0.000), the random-effect model was employed. The result revealed that elevated miR-21 was expected to predict unfavorable OS when compared with the low expressed miR-21 in NSCLC (Figure 2, hazard ratio (HR)=1.960, 95% CI=1.510-2.544, p=0.000). In view of heterogeneity, subgroup analyses were conducted according to the potential confounders, such as study region, clinical stage, sample size, analysis method, specimen, and cut-off of miR-21 (Table III). When stratified by study region, only studies conducted in China showed that high expressed miR-21 was associated with poor OS, with significant

heterogeneity (HR=2.101, 95% CI=1.581-2.793, p=0.000; I²=68.9%, random-effect model). As for the subgroup analysis of clinical stage, patients with high expressed miR-21 were expected to suffer unfavorable OS in stage I-III (HR=1.827, 95% CI=1.203-2.777, p=0.005; I²=90.1%, random-effect model), and similar result was observed in stage I-IV (HR=2.069, 95% CI=1.598-2.680, p=0.000; I²=0.0%, fixed-effect model). As for subgroup analysis of sample size, there was not association observed between elevated miR-21 and OS in studies with sample size > 100 (HR=1.747, 95% CI=0.933-3.272, p=0.081; $I^2=91.1\%$, random-effect model), while the result in studies with sample size < 100 showed that elevated miR-21 was an unfavorable factor for prognosis (HR=2.064, 95% CI=1.566-2.719, p=0.000; I²=53.9%, random-effect model). As for studies assessed by multivariate analysis, the result revealed that high miR-21 was significantly related to poor OS (HR=2.315, 95% CI=1.590-3.370, p=0.000; I²= 81.3%, ran-

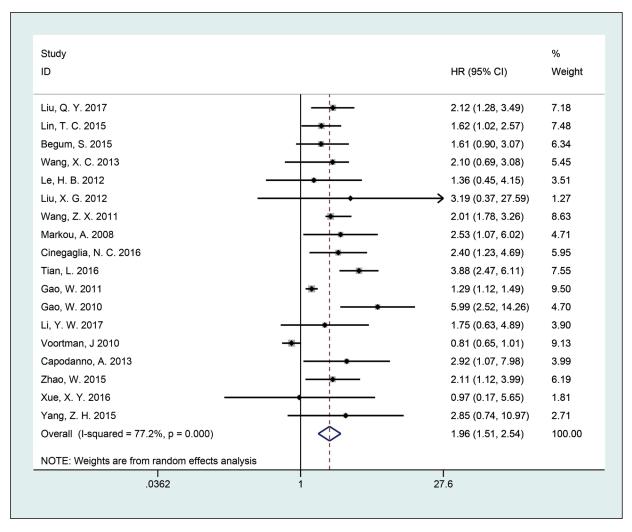


Figure 2. The correlation between miR-21 and overall survival in non-small cell lung cancer.

dom-effect model). Similarly, significant association was observed between elevated miR-21 and poor OS in studies with datum extracted from Kaplan-Meier survival curves (HR=1.888, 95% CI=1.354-2.634, p=0.000; $I^{2}=0.0\%$, fixed-effect model). However, a similar result was not observed in the researches assessed by univariate analysis. As for subgroup analysis of specimen, Liu et al³⁶ examined miR-21 expression in both blood and tissue, and we divided them into subgroup of blood and tissue, respectively. High expressed miR-21 was significantly associated with poor OS in blood group (HR= 2.057, 95% CI=1.632-2.592, p=0.000; I²=0.0%, fixed-effect model), and similar result was seen in group of tissue (HR=1.985, 95%CI=1.435-2.746, p=0.000; I²=79.9%, random-effect model). As for subgroup analysis of cut-off of miR-21, elevated miR-21

was expected to predict poor OS in median group (HR=1.542, 95% CI=1.151-2.065, p=0.004; I²=68.3%, random-effect model). A similar result was seen in group of non-median (HR=2.544, 95% CI=1.712-3.782, p=0.000; I²= 60.2%, random-effect model).

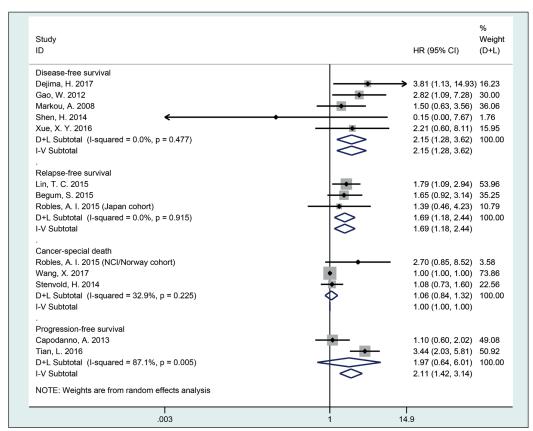
Meta-Analysis of DFS/RFS/CSD/PFS

5 studies reporting DFS, 3 reporting RFS, 3 reporting CSD and 2 covering PFS were included into this meta-analysis (Figure 3). Significant association was observed between elevated miR-21 and DFS (HR=2.154, 95% CI=1.281-3.624, p=0.004; I²=0.0%, fixed-effect model), RFS (HR=1.693, 95% CI=1.176-2.437, p=0.005; I²=0.0%, fixed-effect model), and CSD (HR=1.002, 95% CI=1.001-1.003, p=0.000; I²=32.9%, fixed-effect model). PFS was not related to miR-21.

Table III. The main results of subgroup analysis.

Analysis	Category	Study (n)	Model	HR(95%CI)	Z	Р	Heterogeneity		
							P	P_h	
Study region	China	13 (1173)	Random	2.101 (1.581-2.793)	5.11	0.000	68.9%	0.000	
	Other countries	5(890)	Random	1.736 (0.940-3.207)	1.76	0.078	81.0%	0.000	
Clinical stage	I-III	7(1204)	Random	1.827 (1.203-2.777)	2.82	0.005	90.1%	0.000	
	I-IV	9(745)	Fixed	2.069 (1.598-2.680)	5.51	0.000	0.0%	0.971	
Sample size	>100	5(1269)	Random	1.747 (0.933-3.272)	1.74	0.081	91.1%	0.000	
	<100	13(794)	Random	2.064 (1.566-2.719)	5.15	0.000	53.9%	0.011	
Analysis method	Multivariate analysis	8(751)	Random	2.315 (1.590-3.370)	4.38	0.000	81.3%	0.000	
	Univariate analysis	3(226)	Fixed	1.615 (0.959-2.721)	1.80	0.072	0.0%	0.790	
	K-M survival curves	5(398)	Fixed	1.888 (1.354-2.634)	3.74	0.000	0.0%	0.703	
Specimen	Blood	5(516)	Fixed	2.057 (1.632-2.592)	6.12	0.000	0.0%	0.789	
	Tissue	14(1617)	Random	1.985 (1.435-2.746)	4.14	0.000	79.9%	0.000	
Cut-off of miR-21	Median	10(1250)	Random	1.542 (1.151-2.065)	2.91	0.004	68.3%	0.001	
	Non-median	6(583)	Random	2.544 (1.712-3.782)	4.62	0.000	60.2%	0.028	

Abbreviations: P denotes p value for statistical significance based on Z test; Ph denotes p value for heterogeneity based on Q test; HR, hazard ratio; CI, confidence interval.


Meta-Analysis of Clinicopathology

There are 13 trials with 1920 patients reported the correlation between miR-21 and histology, and the pooled outcome indicated that high miR-21 was related to adenocarcinoma (AD, risk ratio (RR)=1.157, 95% CI: 1.051-1.273, p=0.003; I^2 =39.4%, fixed-effect model). The relationship of miR-21 and tumor size was reported in 10 studies with 1630 patients, and a significant association was seen between elevated miR-21 and larger tumor size (RR=1.169, 95% CI: 1.041-1.312, p=0.008; I^2 =26.2%, fixed-effect model). 10 studies with 1660 patients reported correlation

between miR-21 and stage, and the conjoined result declared that high miR-21 was significantly related to stage III+IV (RR=1.401, 95% CI: 1.137-1.728, p=0.002; I²=75.9%, random-effect model). However, miR-21 was not significantly associated with age, gender, smoking, epidermal growth factor receptor (EGFR), lymph node metastasis, lymphatic invasion and differentiation (Table IV).

Sensitivity Analysis and Publication Bias

Sensitivity analysis was conducted by sequential omitting each study to assess the robustness of OS. Result suggested that no point estimate of

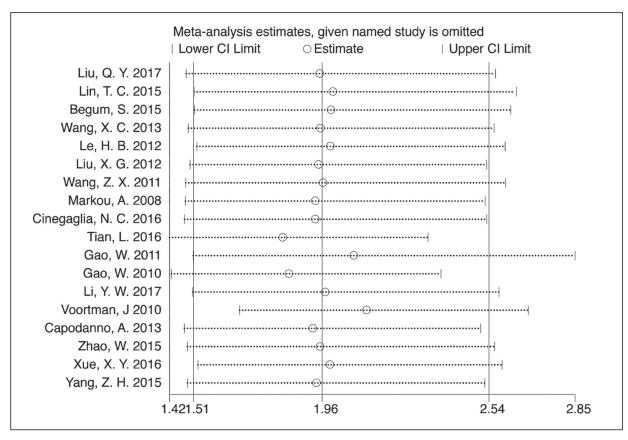
Figure 3. The correlation between miR-21 and disease-free survival, relapse-free survival, cancer-special death and progression-free survival in non-small cell lung cancer.

Table IV. Summary of the association of miR-21 and clinopathological parameters in non-small cell lung cancer

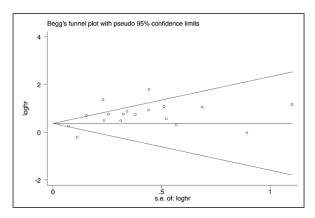
Category	Study (n)	Model	RR(95%CI)	Z	Р	Heterogeneity		
						P	P _h	
Age (>65 vs. ≤65)	14(1890)	Fixed	0.939(0.850-1.037)	1.25	0.213	24.7%	0.188	
Gender (Male vs. Female)	15(2083)	Fixed	1.028(0.934-1.131)	0.56	0.578	20.1%	0.230	
Histology (AD vs. non-AD)	13(1920)	Fixed	1.157(1.051-1.273)	2.99	0.003	39.4%	0.071	
Smoking (Yes vs. No)	11(1093)	Random	0.853(0.695-1.047)	1.52	0.129	56.6%	0.011	
EGFR (+ vs)	3(453)	Random	0.588(0.174-1.992)	0.85	0.394	91.8%	0.000	
Tumor size (≥3 cm vs. <3 cm)	10(1630)	Fixed	1.169(1.041-1.312)	2.64	0.008	26.2%	0.202	
Lymph node metastasis (+ vs)	13(1878)	Random	1.203(0.942-1.538)	1.48	0.139	80.9%	0.000	
Lymphatic invasion (+ vs)	3(884)	Fixed	1.164(0.999-1.357)	1.95	0.051	0.0%	0.835	
Differentiation (Well or Moderate vs. poor)	7(754)	Fixed	0.906(0.767-1.071)	1.16	0.248	36.2%	0.152	
Stage (III+IV vs. I+II)	10(1660)	Random	1.401(1.137-1.728)	3.16	0.002	75.9%	0.000	

Abbreviations: P denotes p value for statistical significance based on Z test; P_h denotes p value for heterogeneity based on Q test; RR, risk ratio; CI, confidence interval; EGFR, epidermal growth factor receptor.

the omitted individual dataset lay outside the 95% CI of the pooled analysis based on the overall HR estimate of OS (Figure 4).


Begg's funnel plot and Egger's test were applied to evaluate the publication bias of the studies used for calculating OS. The funnel plot was asymmetrical. The p-value calculated from Egger's test suggested the presence of publication bias (p=0.016) among these studies (Figure 5). The trim and fill analysis showed that 8 non-published studies were needed to balance the funnel plot (Figure 6). The adjusted HR and 95% CI attenuated but remains significant (pooled HR=1.376, 95% CI=1.067-1.773, p=0.014, random effects), thereby suggesting that the potential publication bias had minimal impact on the overall outcome.

Discussion


MiR-21 is one of the most highly expressed miRNA, which can promote tumor progression according to downregulate the expression of suppressor of cytokine signaling 1 (SOCS1), suppres-

sor of cytokine signaling 6 (SOCS6), phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4)^{49,51}. Many researches have focused on the prognostic value of miR-21 in NSCLC but with contradictive results. Thus, we conducted this meta-analysis to comprehensively assess the survival value miR-21 in NSCLC, hoping to draw a proper conclusion.

In our study, results suggested that patients with elevated of miR-21 had a poor OS compared with the others with low expressed miR-21 in NSCLC. In subgroup analysis of study region, the correlation between high miR-21 and unfavorite OS was only observed in studies conducted in China. In the group of other countries, mostly studies (4/5) revealed that high miR-21 was related to shorter OS except the investigation of Voortman et al²¹ (HR=0.81, 95% CI=0.650-1.010), which was conducted in 14 countries with 631 patients. However, Gallach et al19 and Markou et al⁵² detected that high miR-21 was an unfavorable factor for OS in Spain (p < 0.0001) and Greece (p=0.037), but were excluded from the meta-analysis for only reporting the relevant

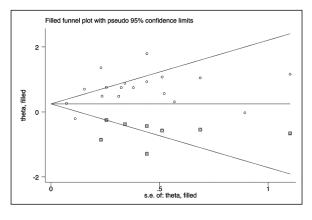

Figure 4. Sensitivity analysis of the influence of each individual study on the pooled hazard ratios (HRs) for the relationship between miR-21 and overall survival by omitting individual studies.

Figure 5. Funnel plot of publication bias for studies reporting overall survival.

p-value. Therefore, more cohort studies should be carried out to explore the prognostic value of miR-21 in NSCLC in countries other than China. Five studies were included in subgroup of sample size > 100 with a negative result (HR=1.747, 95% CI=0.933-3.272, p=0.081). The lower limit of 95% CI (0.933) was close to 1. Maybe more studies carried out with sample size > 100 will get a positive outcome of correlation between high miR-21 and poor OS.

Patients with high expressed miR-21 examined whether in blood or in tissue, were expected to suffer a shorter OS. To our knowledge, miRNAs may enter circulation mainly from microvesicles/ exosomes derived from tumor cell^{53,54}. Microvesicles, shed from many cell types, can transfer miRNA to other cell types and generate the similar function^{55,56}. And study had shown that some miRNAs was overexpressed in microvesicles shed from tumor cells than inside the cells⁵⁶.

Figure 6. Funnel plot adjusted with trim and fill method for studies reporting overall survival.

However, Hu et al⁵⁷ reported that some miRNAs, which overexpressed in lung cancer tissue, were not detectable in the serum. The results from Hu et al⁵⁷ might suggest that the predictive role of serum miRNAs could be independent from tissue specimen. Our meta-analysis suggested that miR-21 not only in tissue but also in circulation was a significant prognostic biomarker. Otherwise, as a noninvasive and easily detected biomarker in circulation, miR-21 may be used to investigate the response of therapies in NSCLC. Zhu et al⁵⁸ found that overexpressed plasma miR-21 was predictive of insensitivity in patients with advanced lung AD to first-line pemetrexed and platinum-based chemotherapy. But the mechanisms of all the above results need to be additional explored.

In our study, significant association between elevated miR-21 and DFS, RFS and CSD was observed. However, similar result was not seen in PFS. The negative outcome of correlation between miR-21 and PFS might result from the fewer number of the included study and smaller sample size. More prospective cohort studies should be conducted to explore whether high miR-21 predict poor PFS in NSCLC.

Synthesized data of association between miR-21 and clinicopathology features indicated that overexpressed miR-21 was significantly related to AD, larger tumor size and advanced clinical stage. Our results were consistent with study conducted by Liu et al³⁶ which was excluded from meta-analysis of clinicopathology due to insufficient data.

Four previous articles⁵⁹⁻⁶² have explored the value of miR-21 expression in prognosis of NS-CLC, and concluded that elevated miR-21 was associated with poor OS in NSCLC. Novelty of our meta-analysis are threefold. First, in the four meta-analyses, not only NSCLC but also other cancers (breast cancer, colorectal cancer, pancreatic cancer and so on)60 were included and other miRNAs (miR-155, miR-126, miR-200c and so on)^{59, 61, 62} were included. With other cancers and miRNAs, most of them only explore the relationship between miR-21 and OS in NSCLC. Our review only included studies involving miR-21 and NSCLC, and explored more prognostic indicators, like DFS, CSD, RFS and PFS. Our review firstly found that overexpressed miR-21 is associated with poor DFS, RFS and with higher CSD (Figure 3). Moreover, comparing Chinese people and other countries' people, we found that elevated miR-21 related to shorter OS is more suitable for Chinese people. (Table III) Second, we conducted meta-analysis between miR-21 and clinicopathology in NSCLC firstly, and found that overexpressed miR-21 was significantly associated with AD, larger tumor size and advanced clinical stage. (Table IV) Larger tumor size, and advanced clinical stage are common variables associated with tumor progression. Therefore, NSCLC patients, especially AD patients, with these factors would benefit most from evaluation of miR-21 expression to make clinical decisions. Third, lots of important studies involving miR-21 and prognosis in NSCLC were not included in the four meta-analysis. With more reasonable search strategy, we included 24 studies to explore the value of miR-21 expression in prognosis of NSCLC. However, Zhan et al⁵⁹ only included 7 studies, Zhu et al60 including 3, Yang et al61 including 5 and Wang et al⁶² including 7. Overall, with expanded prognostic indicators (including OS, DFS RFS, CSD, PFS), clinicopathology, and an updated inclusion of recent studies, which were not included by the four meta-analyses, our study (3118 patients for prognosis, 2131 patients for clinicopathology) is responsible for a more robust conclusion with a larger sample size. There are several potential limitations in our meta-analysis. Firstly, publication bias was detected according to Begg's funnel plot and Egger's test in our meta-analysis. Publication bias might result from: studies with positive results were more likely to be published than negative results; only studies published in English were included in this meta-analysis. The trim and fill analysis was performed to validate the robust of the meta-analysis results. However, different conclusions did not appear with and without trim and fill analysis. Secondly, some studies did not provide HRs and 95% CIs of multivariate analysis, we had to calculate HRs and 95% CIs from Kaplan-Meier curves or univariate analysis, which might slightly be different from the actual HRs. Thirdly, heterogeneity existed across studies. A random-effect model was employed to take variation into consideration, and we carried out subgroup analysis to control the influence of the heterogeneity. Sensitivity analysis suggested that no point estimate of omitted individual study lay outside the 95% CI of the pooled analysis.

Conclusions

Our meta-analysis revealed that elevated miR-21 is an unfavorable predictor of OS, DFS, RFS and CSD in NSCLC. Moreover, overexpressed miR-21 was significantly related to AD, larger tumor size and advanced clinical stage. Therefore, high miR-21 is a promising prognostic biomarker for NSCLC, especially for AD.

Acknowledgements

This work was supported by the National Natural Science Foundation (81774294).

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- TORRE LA, BRAY F, SIEGEL RL, FERLAY J, LORTET-TIEULENT J, JEMAL A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87-108.
- XIA H, QU XL, LIU LY, QIAN DH, JING HY. LncRNA MEG3 promotes the sensitivity of vincristine by inhibiting autophagy in lung cancer chemotherapy. Eur Rev Med Pharmacol Sci 2018; 22: 1020-1027.
- WOOD DE. National comprehensive cancer network (NCCN) clinical practice guidelines for lung cancer screening. Thorac Surg Clin 2015; 25: 185-197.
- CUFER T, KNEZ L. Update on systemic therapy of advanced non-small-cell lung cancer. Expert Rev Anticancer Ther 2014; 14: 1189-1203.
- BARTEL DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297.
- LAGOS-QUINTANA M, RAUHUT R, LENDECKEL W, TUSCHL T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853-858.
- LAU NC, LIM LP, WEINSTEIN EG, BARTEL DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 858-862.
- LEE RC, FEINBAUM RL, AMBROS V. The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854.
- LEE RC, AMBROS V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294: 862-864.
- RODRIGUEZ A, GRIFFITHS-JONES S, ASHURST JL, BRADLEY A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14: 1902-1910.
- 11) LIM LP, LAU NC, GARRETT-ENGELE P, GRIMSON A, SCHEL-TER JM, CASTLE J, BARTEL DP, LINSLEY PS, JOHNSON JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769-773.

- CALIN GA, CROCE CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857-866.
- 13) NANA-SINKAM P, CROCE CM. MicroRNAs in diagnosis and prognosis in cancer: What does the future hold? Pharmacogenomics 2010; 11: 667-669.
- 14) CAI X, HAGEDORN CH, CULLEN BR. Human microR-NAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10: 1957-1966.
- 15) MENG F, HENSON R, WEHBE-JANEK H, GHOSHAL K, JACOB ST, PATEL T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133: 647-658.
- 16) LEE EJ, GUSEV Y, JIANG J, NUOVO GJ, LERNER MR, FRANKEL WL, MORGAN DL, POSTIER RG, BRACKETT DJ, SCHMITTGEN TD. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007; 120: 1046-1054.
- 17) FEBER A, XI L, LUKETICH JD, PENNATHUR A, LANDRENE-AU RJ, WU M, SWANSON SJ, GODFREY TE, LITLE VR. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 2008; 135: 255-260, 260.
- 18) SCHETTER AJ, LEUNG SY, SOHN JJ, ZANETTI KA, BOWMAN ED, YANAIHARA N, YUEN ST, CHAN TL, KWONG DL, AU GK, LIU CG, CALIN GA, CROCE CM, HARRIS CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299: 425-436.
- 19) GALLACH S, JANTUS-LEWINTRE E, CALABUIG-FARINAS S, MONTANER D, ALONSO S, SIRERA R, BLASCO A, USO M, GUIJARRO R, MARTORELL M, CAMPS C. MicroRNA profiling associated with non-small cell lung cancer: next generation sequencing detection, experimental validation, and prognostic value. Oncotarget 2017; 8: 56143-56157.
- 20) Wang X, Zhang Y, Zhi X. Correlation between microRNA expression, clinicopathological characteristics, and prognosis in patients with non-small cell lung cancer: a retrospective study. Thorac Cancer 2017; 8: 511-516.
- 21) VOORTMAN J, GOTO A, MENDIBOURE J, SOHN JJ, SCHETTER AJ, SAITO M, DUNANT A, PHAM TC, PETRINI I, LEE A, KHAN MA, HAINAUT P, PIGNON JP, BRAMBILLA E, POPPER HH, FILIPITS M, HARRIS CC, GIACCONE G. MicroRNA expression and clinical outcomes in patients treated with adjuvant chemotherapy after complete resection of non-small cell lung carcinoma. Cancer Res 2010; 70: 8288-8298.
- 22) TIERNEY JF, STEWART LA, GHERSI D, BURDETT S, SYDES MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007; 8: 16.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560.
- LAU J, IOANNIDIS JP, SCHMID CH. Quantitative synthesis in systematic reviews. Ann Intern Med 1997; 127: 820-826.

- 25) EGGER M, DAVEY SG, SCHNEIDER M, MINDER C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634.
- DUVAL S, TWEEDIE R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56: 455-463.
- 27) ROBLES AI, ARAI E, MATHE EA, OKAYAMA H, SCHETTER AJ, BROWN D, PETERSEN D, BOWMAN ED, NORO R, WELSH JA, EDELMAN DC, STEVENSON HS, WANG Y, TSUCHIYA N, KOHNO T, SKAUG V, MOLLERUP S, HAUGEN A, MELTZER PS, YOKOTA J, KANAI Y, HARRIS CC. An integrated prognostic classifier for stage i lung adenocarcinoma based on mRNA, microRNA, and DNA methylation biomarkers. J Thorac Oncol 2015; 10: 1037-1048.
- 28) AKAGI I, OKAYAMA H, SCHETTER AJ, ROBLES AI, KOHNO T, BOWMAN ED, KAZANDJIAN D, WELSH JA, OUE N, SAITO M, MIYASHITA M, UCHIDA E, TAKIZAWA T, TAKENOSHITA S, SKAUG V, MOLLERUP S, HAUGEN A, YOKOTA J, HARRIS CC. Combination of protein coding and noncoding gene expression as a robust prognostic classifier in stage I lung adenocarcinoma. Cancer Res 2013; 73: 3821-3832.
- 29) SAITO M, SCHETTER AJ, MOLLERUP S, KOHNO T, SKAUG V, BOWMAN ED, MATHE EA, TAKENOSHITA S, YOKOTA J, HAUGEN A, HARRIS CC. The association of microR-NA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clin Cancer Res 2011; 17: 1875-1882.
- Dejima H, Iinuma H, Kanaoka R, Matsutani N, Kawamura M. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of nonsmall cell lung cancer. Oncol Lett 2017; 13: 1256-1263.
- 31) LIU Q, YU Z, YUAN S, XIE W, LI C, HU Z, XIANG Y, WU N, WU L, BAI L, LI Y. Circulating exosomal microR-NAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 2017; 8: 13048-13058.
- 32) LIN TC, LIN PL, CHENG YW, WU TC, CHOU MC, CHEN CY, LEE H. MicroRNA-184 deregulated by the MicroRNA-21 promotes tumor malignancy and poor outcomes in non-small cell lung cancer via targeting CDC25A and c-Myc. Ann Surg Oncol 2015; 22 Suppl 3: S1532-S1539.
- 33) BEGUM S, HAYASHI M, OGAWA T, JABBOURE FJ, BRAIT M, IZUMCHENKO E, TABAK S, AHRENDT SA, WESTRA WH, KOCH W, SIDRANSKY D, HOQUE MO. An integrated genome-wide approach to discover deregulated microRNAs in non-small cell lung cancer: clinical significance of miR-23b-3p deregulation. Sci Rep 2015; 5: 13236.
- 34) WANG XC, WANG W, ZHANG ZB, ZHAO J, TAN XG, Luo JC. Overexpression of miRNA-21 promotes radiation-resistance of non-small cell lung cancer. Radiat Oncol 2013; 8: 146.
- 35) LE HB, ZHU WY, CHEN DD, HE JY, HUANG YY, LIU XG, ZHANG YK. Evaluation of dynamic change of serum miR-21 and miR-24 in pre- and post-operative lung carcinoma patients. Med Oncol 2012; 29: 3190-3197.

- 36) LIU XG, ZHU WY, HUANG YY, MA LN, ZHOU SQ, WANG YK, ZENG F, ZHOU JH, ZHANG YK. High expression of serum miR-21 and tumor miR-200c associated with poor prognosis in patients with lung cancer. Med Oncol 2012; 29: 618-626.
- 37) GAO W, Lu X, LIU L, XU J, FENG D, SHU Y. MiRNA-21: a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biol Ther 2012; 13: 330-340.
- 38) WANG ZX, BIAN HB, WANG JR, CHENG ZX, WANG KM, DE W. Prognostic significance of serum miR-NA-21 expression in human non-small cell lung cancer. J Surg Oncol 2011; 104: 847-851.
- 39) MARKOU A, TSAROUCHA EG, KAKLAMANIS L, FOTINOU M, GEORGOULIAS V, LIANIDOU ES. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 2008; 54: 1696-1704.
- 40) CINEGAGLIA NC, ANDRADE SC, TOKAR T, PINHEIRO M, SEVERINO FE, OLIVEIRA RA, HASIMOTO EN, CATANEO DC, CATANEO AJ, DEFAVERI J, SOUZA CP, MARQUES MM, CARVALHO RF, COUTINHO LL, GROSS JL, ROGATTO SR, LAM WL, JURISICA I, REIS PP. Integrative transcriptome analysis identifies deregulated microRNA-transcription factor networks in lung adenocarcinoma. Oncotarget 2016; 7: 28920-28934
- 41) TIAN L, SHAN W, ZHANG Y, LV X, LI X, WEI C. Up-Regulation of miR-21 expression predicate advanced clinicopathological features and poor prognosis in patients with Non-Small cell lung cancer. Pathol Oncol Res 2016; 22: 161-167.
- 42) STENVOLD H, DONNEM T, ANDERSEN S, AL-SAAD S, VALKOV A, PEDERSEN MI, BUSUND LT, BREMNES RM. High tumor cell expression of microRNA-21 in node positive non-small cell lung cancer predicts a favorable clinical outcome. BMC Clin Pathol 2014; 14: 9
- 43) GAO W, SHEN H, LIU L, XU J, XU J, SHU Y. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 2011; 137: 557-566.
- 44) GAO W, Yu Y, CAO H, SHEN H, LI X, PAN S, SHU Y. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 2010; 64: 399-408.
- 45) LI Y, ZHANG H, DONG Y, FAN Y, LI Y, ZHAO C, WANG C, LIU J, LI X, DONG M, LIU H, CHEN J. MiR-146b-5p functions as a suppressor miRNA and prognosis predictor in non-small cell lung cancer. J Cancer 2017; 8: 1704-1716.
- 46) CAPODANNO A, BOLDRINI L, PROIETTI A, ALI G, PELLIC-CIONI S, NICCOLI C, D'INCECCO A, CAPPUZZO F, CHELLA A, LUCCHI M, MUSSI A, FONTANINI G. Let-7g and miR-21 expression in non-small cell lung cancer: correlation with clinicopathological and molecular features. Int J Oncol 2013; 43: 765-774.

- 47) SHEN H, ZHU F, LIU J, XU T, PEI D, WANG R, QIAN Y, LI Q, WANG L, SHI Z, ZHENG J, CHEN Q, JIANG B, SHU Y. Alteration in Mir-21/PTEN expression modulates gefitinib resistance in non-small cell lung cancer. PLoS One 2014; 9: e103305.
- 48) ZHAO W, ZHAO JJ, ZHANG L, XU QF, ZHAO YM, SHI XY, XU AG. Serum miR-21 level: a potential diagnostic and prognostic biomarker for non-small cell lung cancer. Int J Clin Exp Med 2015; 8: 14759-14763.
- 49) XUE X, LIU Y, WANG Y, MENG M, WANG K, ZANG X, ZHAO S, SUN X, CUI L, PAN L, LIU S. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2016; 7: 84508-84519
- 50) Yang Z, Fang S, Di Y, Ying W, Tan Y, Gu W. Modulation of NF-kappaB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PLoS One 2015; 10: e121547.
- 51) BAFFA R, FASSAN M, VOLINIA S, O'HARA B, LIU CG, PALAZZO JP, GARDIMAN M, RUGGE M, GOMELLA LG, CROCE CM, ROSENBERG A. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 2009; 219: 214-221.
- 52) MARKOU A, SOURVINOU I, VORKAS PA, YOUSEF GM, LI-ANIDOU E. Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer 2013; 81: 388-396.
- 53) CHEN X, BA Y, MA L, CAI X, YIN Y, WANG K, GUO J, ZHANG Y, CHEN J, GUO X, LI Q, LI X, WANG W, ZHANG Y, WANG J, JIANG X, XIANG Y, XU C, ZHENG P, ZHANG J, LI R, ZHANG H, SHANG X, GONG T, NING G, WANG J, ZEN K, ZHANG J, ZHANG CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18: 997-1006.
- 54) Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WJ, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10: 1470-1476.
- THERY C, ZITVOGEL L, AMIGORENA S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2: 569-579.
- 56) VALADI H, EKSTROM K, BOSSIOS A, SJOSTRAND M, LEE JJ, LOTVALL JO. Exosome-mediated transfer of mR-NAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654-659.
- 57) Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, Chen Y, Xu L, Zen K, Zhang C, Shen H. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 2010; 28: 1721-1726.
- 58) ZHU J, QI Y, WU J, SHI M, FENG J, CHEN L. Evaluation of plasma microRNA levels to predict insensitivity of patients with advanced lung adenocarcinomas

- to pemetrexed and platinum. Oncol Lett 2016; 12: 4829-4837.
- 59) ZHAN B, LU D, LUO P, WANG B. Prognostic value of expression of MicroRNAs in non-small cell lung cancer: a systematic review and meta-analysis. Clin Lab 2016; 62: 2203-2211.
- 60) ZHU W, XU B. MicroRNA-21 identified as predictor of cancer outcome: a meta-analysis. PLoS One 2014; 9: e103373.
- 61) Yang M, Shen H, Qiu C, Ni Y, Wang L, Dong W, Liao Y, Du J. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer 2013; 49: 604-615.
- 62) WANG Y, LI J, TONG L, ZHANG J, ZHAI A, XU K, WEI L, CHU M. The prognostic value of miR-21 and miR-155 in non-small-cell lung cancer: a meta-analysis. Jpn J Clin Oncol 2013; 43: 813-820.