Expression profile analysis of new candidate genes for the therapy of primary osteoporosis

Y. ZHANG, N. WANG, J. MA, X.C. CHEN, Z. LI, W. ZHAO

Department of Orthopedics, The Central Hospital Affiliated to Shenyang Medical College, City Shenyang, Province Liaoning, China

Abstract. – OBJECTIVE: Primary osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and density which can lead to an increased risk of fracture. Most of present treatments are effective for osteoporosis, but have limitations and side-effects. With the aging of the world population is increasing, the incidence of osteoporosis is rising. Therefore, the purpose of this study was to identify new candidate genes used as the therapeutic targets of primary osteoporosis.

MATERIALS AND METHODS: In this study, microarray data GSE35958 were downloaded from Gene Expression Omnibus, then the differentially expressed genes (DEGs) were identified by limma package. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed for both up- and down-regulated DEGs using DAVID. In addition, the transcription factor analysis was conducted for DEGs. The protein-protein interaction (PPI) network was constructed by STRING and Cytoscape. Finally, CFinder was used to analyze the PPI subnetwork.

RESULTS: Totally, 327 up-regulated DEGs and 396 down-regulated DEGs were identified. The DEGs such as EGFR and AKT1 were mainly enriched in the pathway of focal adhesion. EGFR was also involved in cell adhesion based on GO enrichment analysis. Functional analysis of DEGs indicated that 26 transcription factors were screened. Moreover, EGFR, AKT1 and transcription factor CTNNB1 were the key nodes with high degrees according to PPI network and sub-network.

conclusions: The literature suggested that AKT1, EGFR and CTNNB1 were closely related to osteoblastic differentiation and osteoclastogenesis. Some crucial DEGs such as EGFR, AKT1 and CTNNB1 might be connected with primary osteoporosis and could be used as therapeutic targets of osteoporosis.

Key Words:

Primary osteoporosis, Genes, Enrichment analysis, Protein-protein interaction network, Sub-network.

Introduction

Primary osteoporosis is a common bone disease that is characterized by a systemic impairment of bone mass, density and microarchitecture¹. Osteoporosis has no symptoms, but it will lead to an increased propensity of fragility fractures, and fractures most commonly occur in the spine, hip, or wrist². So osteoporosis is often diagnosed after the first clinical fracture has occurred³. The most important risk factors for osteoporosis are advanced age and gender besides a serious of other contributors, such as heredity, race and lifestyle⁴⁻⁶. The measurement of bone mineral density is an effective method to diagnose osteoporosis and to predict the risk of fracture⁷. Present antiresorptive and anabolic treatments are effective for osteoporosis, but most have limitations and side-effects⁸. Therefore, novel therapeutic targets are still needed for future osteoporosis treatments.

The basic pathogenetic mechanism of osteoporosis is an imbalance between bone resorption and bone formation². Both excessive bone resorption and inadequate bone formation result in osteoporosis, which are closely related to bone remodeling. Bone remodeling is the major activity of bone cells in the adult skeleton⁶ and comprises a coupled action of bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts)⁴. Several key molecules coordinate activities of osteoblasts and osteoclasts during bone remodeling². Hence, the cellular and molecular processes are new aspects used to study the pathophysiology of osteoporosis. As the essential regulator of osteoclast differentiation and activity, receptor activator of NF-κB ligand (RANKL) has been regarded as a standard therapy for osteoporosis^{9,10}. However, the studies about the impact of osteoblasts on the pathophysiology of osteoporosis have been relatively neglected. Osteoblasts derive from mesenchymal stem cells (MSC) which is the source for bone regeneration¹¹. The rate of bone formation is determined by the speed and effectiveness of MSC differentiating into mature osteoblasts². It is currently unknown if the molecular processes in MSC contribute to the inadequate bone formation of primary osteoporosis.

In this study, the microarray data GSE35958 were downloaded from Gene Expression Omnibus (GEO) database to detect new candidate genes for the therapy of primary osteoporosis in elderly people. Gene Ontology (GO) and KEGG pathway enrichment analysis were conducted for the screened differentially expressed genes (DEGs). Then analysis of transcription factor was performed for DEGs. In addition, protein-protein interaction (PPI) network and sub-network were constructed to identify the key genes related to osteoporosis.

Materials and Methods

Affymetrix Microarray Data

The gene expression profile data GSE35958 were extracted from the study of Benisch et al¹², which were deposited in Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/). In this study, human mesenchymal stem cells (MSC) of non-osteoporotic donors (79-89 years old) were obtained from bone marrow of femoral heads after total hip arthroplasty. The MSC of patients (79-94 years old) suffering from osteoporosis were isolated from femoral heads after low-energy fracture of the femoral neck. The microarray data included 4 samples of MSC from non-osteoporotic donors (normal group) and 5 samples of MSC from osteoporotic patients (osteoporosis group). The GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array was used as microarray platform.

Data Preprocessing and DEGs Screening

The raw data were preprocessed utilizing limma package in Bioconductor¹³ and affy annotation files from Brain Array Lab¹⁴. The pretreatment comprised background correction, quantile normalization and probe summarization of the microarray data, and the gene expression matrix was obtained eventually.

The normalized data were calculated by limma package. The genes with the $llog_2FCl > 1$ and p < 0.05 were considered as DEGs in osteoporosis group compared with normal group.

Enrichment Analysis and Functional Annotation of DEGs

DAVID (The Database for Annotation, Visualization and Integrated Discovery)¹⁵ is a comprehensive set of functional annotation tools used for enrichment analysis. So GO¹⁶ and KEGG pathway¹⁷ enrichment analyses of DEGs were performed using DAVID based on hypergeometric distribution algorithm. The *p*-value < 0.05 was chosen as the cut-off criterion for both GO and KEGG enrichment analysis.

The transcription factor analysis was performed using the TRANSFAC database¹⁸ to determine whether the DEGs were transcription factors.

Construction of PPI Network and PPI Sub-network Analysis

The online tool STRING version 9.1¹⁹ was used to search interaction relationships of the screened genes, and the confidence score > 0.9 was considered as the cut-off criterion. Then the Cytoscape²⁰ was applied to construct the PPI network based on the protein interactions. Researches showed that most complex biology networks are scale-free and contain a small number of highly connected nodes (hubs) and a large number of poorly connected nodes (non-hubs)^{21,22}. The hubs in PPI were obtained by the connectivity degree analysis.

CFinder²³ is a fast program locating and visualizing overlapping and can be used to predict functions of a single protein. The PPI subnetworks of DEGs were identified using clique percolation method (CPM) of CFinder. The clique size k = 4 was chosen as the cut-off criterion.

Results

DEGs analysis

The limma package was used for the identification of DEGs between osteoporosis group and normal group after preprocessing of microarray data. A total of 723 DEGs were obtained related to osteoporosis including 327 up-regulated DEGs and 396 down-regulated DEGs.

Table I. The top five Gene Ontology terms of differentially expressed genes (DEGs).

	Category	Term	Description	<i>p</i> -value	Genes
Up	BP	GO:0007155	cell adhesion	1.43E-13	EGFR, IBSP, PCDHGA12
1	BP	GO:0022610	biological adhesion	1.49E-13	EGFR, IBSP, PCDHGA9
	BP	GO:0007156	homophilic cell adhesion	1.59E-12	$PKD1\square PCDHGB7, PCDHGA8$
	BP	GO:0016337	cell-cell adhesion	3.34E-12	PKD1, EGFR, PCDHGA12
	MF	GO:0005509	calcium ion binding	3.61E-08	FKBP8, TRPV2, LTBP4
Down	MF	GO:0046914	transition metal ion binding	3.57E-05	PXDN, ILKAP, CMC1
	BP	GO:0016071	mRNA metabolic process	3.78E-05	UPF2, TRA2A, PRPF39
	MF	GO:0008270	zinc ion binding	4.01E-05	RSF1, RP9, ZNF518A
	CC	GO:0031981	nuclear lumen	6.36E-05	ING3, SDAD1, LMNB1
	CC	GO:0070013	intracellular organelle lumen	1.15E-04	CDC14B, INTS2, ANKRD1

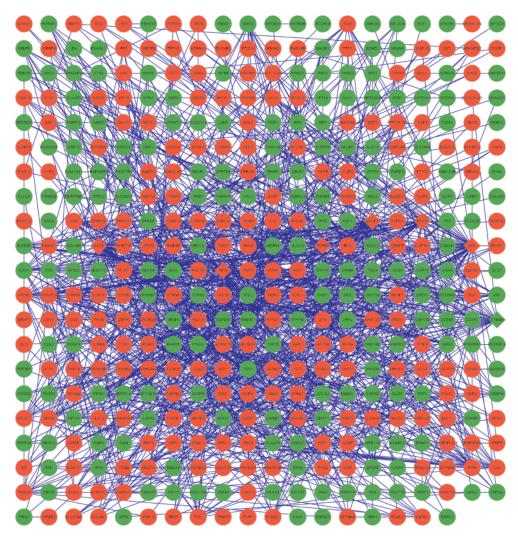
Note: Up represents up-regulated DEGs; Down represents down-regulated DEGs.

Enrichment and Functional Analysis of DEGs

The top three enriched GO terms of up-regulated DEGs were mainly related to cell adhesion, included cell adhesion involving EGFR, IBSP and PCDHGA12, biological adhesion related to EGFR, IBSP and PCDHGA9, homophilic cell adhesion including PKD1, PCDHGB7 and PCD-HGA8 (Table I). The results of KEGG pathway enrichment analysis indicated that up-regulated DEGs were mainly enriched in pathways of focal adhesion (e.g. AKT1, EGFR and VEGFA), pancreatic cancer (e.g. EGFR, VEGFB and AKT1) and regulation of actin cytoskeleton (e.g. EGFR, MAP2K2 and INS-IGF2), as shown in Table II. Moreover, the top three GO terms of down-regulated DEGs included transition metal ion binding involving PXDN, ILKAP and CMC1, mRNA metabolic process related to UPF2, TRA2A and PRPF39, zinc ion binding including RSF1, RP9 and ZNF518A (Table I). However, down-regulated DEGs such as LSM5, THOC and TRA2A were only enriched in one pathway: spliceosome (Table II).

Transcription factor analysis of DEGs showed that 9 transcription factors were significantly down-regulated in MSC of osteoporotic patients, such as *PLAGL1*, *CTNNB1* and *EGR1*. Meanwhile, 17 transcription factors were found significantly up-regulated, such as *ERF*, *STAT4* and *SMARCB1* (Table III).

PPI Network and PPI Sub-Network Analysis


To systemically analyze the functions of DEGs in MSC of osteoporotic patients, the PPI network of DEGs was constructed using Cytoscape in accordance with protein interactions. From Figure 1, we discovered that the key nodes with highest degrees were TP53, INS, AKT1, CTNNB1, EGFR, VEGFA and TGFB1. The degrees of these proteins were all larger than 30.

The obtained core sub-network included 101 genes, as shown in Figure 2. The top five proteins with the high degrees were *AKT1* (degree = 46), *EGFR* (degree = 36), *VEGFA* (degree = 35), *INS* (degree = 35) and *TP53* (degree = 33).

Table II. The top five KEGG pathways of differentially expressed genes (DEGs).

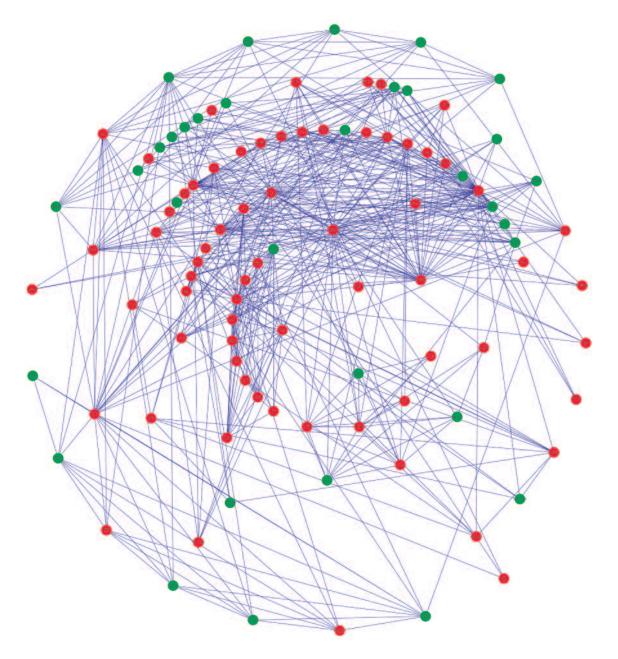
	Category	Term	Description	<i>p</i> -value	Genes
Up	KEGG	hsa04510	Focal adhesion	3.29E-08	AKT1, EGFR, VEGFA
_ ^	KEGG	hsa05212	Pancreatic cancer	6.19E-05	EGFR, VEGFB, AKT1
	KEGG	hsa04810	Regulation of actin cytoskeleton	2.13E-04	EGFR, MAP2K2, INS-IGF2
	KEGG	hsa05220	Chronic myeloid leukemia	5.42E-04	AKT1, CDKN1A, MAP2K2
	KEGG	hsa05219	Bladder cancer	0.00116	EGFR, VEGFB, TP53
Down	KEGG	hsa03040	Spliceosome	0.021787	LSM5, THOC, TRA2A
			*		

Note: Up represents up-regulated DEGs; Down represents down-regulated DEGs.

Figure 1. Protein-protein interaction network of differentially expressed genes (DEGs). Red nodes represent up-regulated DEGs; green nodes represent down-regulated DEGs; rhombus nodes represent key nodes.

Discussion

In this study, bioinformatics methods were used to identify potential biomarkers for clinical therapy of primary osteoporosis. The results showed that 723 DEGs were obtained in osteoporosis group compared with normal group. The up-regulated DEGs such as *AKT1* and *EGFR* were mainly enriched in the pathway of focal adhesion. Moreover, the results of GO enrichment analysis showed that the up-regulated DEGs such as *EGFR* and *PCDHGA12* were involved in cell adhesion. Transcription factors such as *CTNNB1*, *EGR1* and *STAT4* were identified by transcription factor analysis of DEGs. In addition, genes with high degrees were obtained according to the


PPI network and sub-network, such as AKT1, EGFR and CTNNB1.

The pathway enrichment analysis showed that *AKT1*, *EGFR* were enriched in the pathway of focal adhesion which could regulate the osteogenic differentiation of human mesenchymal stem cells²⁴. Furthermore, it has been reported that focal adhesion kinase signaling may be altered in osteoporotic osteoblasts compared with normal osteoblasts²⁵. In addition, *AKT1* and *EGFR* were the key nodes with high degrees based on the PPI network and sub-network in our study. AKT, also termed protein kinase B (PKB), is a serine/threonine kinase has emerged as one of the most critical and versatile protein kinases at the core of human physiology and disease^{26,27}.

Table III. The transcription factors analysis of differentially expressed genes (DEGs).

	TF counts	TF genes
Down	9	EGR1, EMX2, PLAGL1, CTNNB1, ELF1, ZNF44, ZHX1, SKIL, FOXC1
Up	1 /	ERF, STAT4, SMARCB1, HSF1, NR1D1, BCL3, SMAD3, PML, JUND, NFKB2, FOSL2, FOXC2, IRF3, RARG, HMGA1, ELK3, MAZ

 $Note: Up\ represents\ up-regulated\ DEGs; Down\ represents\ down-regulated\ DEGs; TF\ represents\ transcription\ factor.$

Figure 2. Protein-protein interaction (PPI) sub-network of differentially expressed genes (DEGs). Red nodes represent upregulated DEGs; green nodes represent down-regulated DEGs.

It is also known as a key protein in the signaling of potent bone anabolic factors^{28,29}. There have three mammalian isoforms (AKT1-3) and AKT1 is the major AKT isoform in bone cells³⁰. Mukherjee et al³¹ discovered that Akt1 was both a negative regulator of osteoblast differentiation and a robust positive mediator of osteoblast-coupled osteoclastogenesis in mice by experimental verification. Another study in mice indicated that Akt1 was the crucial regulator of osteoblasts and osteoclasts, and Akt1 deficiency could cause decreased bone mass and formation³⁰. All the evidences demonstrated that AKT1 might have an essential role in osteoporosis. However, the studies on the function of AKT1 in human beings were relatively little. Therefore, further studies were needed to verify the potential role of AKT1 in human osteoporosis.

In the present work, EGFR was also enriched in cell adhesion by the GO enrichment analysis. Previous studies reveal that the cell adhesion of MSC and osteoblasts are closely associated with the bone regeneration^{32,33}. EGFR (epidermal growth factor receptor) is one member of transmembrane growth factor receptor proteins³⁴. EGFR and its ligands form a complex EGFR networks which paly critical roles in key progresses of biology, such as growth, differentiation, survival, tissue homeostasis and repair³⁵. In addition, the EGFR system has been reported to regulate the release of angiogenic factors in MSC³⁶. Reports also showed³⁷ that EGFR network was closely associated with bone biology and pathology, for example it affected osteoblastic bone formation and bone mass in different ways. Recently, Zhu et al³⁸ found that EGFR system suppressed osteoblast differentiation and have crucial functions in skeletal homeostasis. Consequently, we speculated that EGFR system might be crucial in the treatment of osteoporosis.

CTNNB1 was both the transcription factor in DEGs and key nodes in PPI network. β-catenin, encoded by the CTNNB1, is the key downstream component of the canonical Wnt pathway. The activation of the canonical Wnt/β-catenin pathway regulates osteoblastic differentiation in human mesenchymal stem cells^{39,40}. Moreover, β-catenin exerts the dosage-dependent regulation of osteoclastogenesis⁴¹. Thus, β-catenin signaling has been the potential therapeutic target for novel treatment of osteoporosis^{2,42}. The essential role of β-catenin in osteoporosis also validated the reliability of our analysis.

Conclusions

We analyzed the gene expression profiles of the elderly people with and without osteoporosis to identify key disease-related genes. Some important DEGs such as AKT1, EGFR and CTNNB1 were closely associated with osteoblast differentiation and bone formation. So they might be used as potential therapeutic targets of osteoporosis. However, these genes were only analyzed by bioinformatics methods, and validation studies were still needed.

Acknowledgements

We wish to express our warm thanks to Fenghe (Shanghai) Information Technology Co., Ltd. Their ideas and help gave a valuable added dimension to our research.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- KILBANSKI A, ADAMS-CAMPBELL L, BASSFORD T, BLAIR SN, BODEN SD, DICKERSIN K, GIFFORD DR, GLASSE L, GOLDRING SR, HRUSKA K, McCAULEY LK, RUSSELL WE. Osteoporosis prevention, diagnosis, and therapy. J Am Med Assoc 2001; 285: 785-795.
- RACHNER TD, KHOSLA S, HOFBAUER LC. Osteoporosis: now and the future. Lancet 2011; 377: 1276-1287.
- Unnanuntana A, Gladnick BP, Donnelly E, Lane JM. The assessment of fracture risk. J Bone Joint Surg 2010; 92: 743-753.
- PIETSCHMANN P, RAUNER M, SIPOS W, KERSCHAN-SCHINDL K. Osteoporosis: an age-related and gender-specific disease—a mini-review. Gerontology 2009; 55: 3-12.
- Melton III LJ. Epidemiology worldwide. Endocrin Metab Clin 2003; 32: 1-13.
- RAISZ LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005; 115: 3318-3325.
- Cummings SR, Bates D, Black DM. Clinical use of bone densitometry: scientific review. J Am Med Assoc 2002; 288: 1889-1897.
- SIRIS ES, SELBY PL, SAAG KG, BORGSTRÖM F, HERINGS R, SILVERMAN SL. Impact of osteoporosis treatment adherence on fracture rates in North America and Europe. Am J Med 2009; 122: S3-S13.
- 9) KHOSLA S. Minireview: The OPG/RANKL/RANK system. Endocrinology 2001; 142: 5050-5055.

- MANOLAGAS SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000; 21: 115-137.
- VALTIERI M, SORRENTINO A. The mesenchymal stromal cell contribution to homeostasis. J Cell Physiol 2008; 217: 296-300.
- 12) Benisch P, Schilling T, Klein-Hitpass L, Frey SP, Seefried L, Raaijmakers N, Krug M, Regensburger M, Zeck S, Schinke T, Amling M, Ebert R, Jakob F. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One 2012; 7: e45142.
- DIBOUN I, WERNISCH L, ORENGO CA, KOLTZENBURG M. Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics 2006; 7: 252.
- 14) GAUTIER L, COPE L, BOLSTAD BM, IRIZARRY RA. affy analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20: 307-315.
- 15) HUANG DA W, SHERMAN BT, LEMPICKI RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44-57.
- 16) ASHBURNER M, BALL CA, BLAKE JA, BOTSTEIN D, BUTLER H, CHERRY JM, DAVIS AP, DOLINSKI K, DWIGHT SS, EPPIG JT, HARRIS MA, HILL DP, ISSEL-TARVER L, KASARSKIS A, LEWIS S, MATESE JC, RICHARDSON JE, RINGWALD M, RUBIN GM, SHERLOCK G. Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25-29.
- KANEHISA M, GOTO S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28: 27-30.
- 18) MATYS V, FRICKE E, GEFFERS R, GÖSSLING E, HAUBROCK M, HEHL R, HORNISCHER K, KARAS D, KEL AE, KEL-MAR-GOULIS OV, KLOOS DU, LAND S, LEWICKI-POTAPOV B, MICHAEL H, MÜNCH R, REUTER I, ROTERT S, SAXEL H, SCHEER M, THIELE S, WINGENDER E. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003; 31: 374-378.
- 19) FRANCESCHINI A, SZKLARCZYK D, FRANKILD S, KUHN M, SHMONOVIC M, ROTH A, LIN J, MINGUEZ P, BORK P, VON MERING C, JENSEN LJ. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013; 41: D808-D815.
- 20) SAITO R, SMOOT ME, ONO K, RUSCHEINSKI J, WANG PL, LOTIA S, PICO AR, BADER GD, IDEKER T. A travel guide to Cytoscape plugins. Nat Methods 2012; 9: 1069-1076.
- NEWMAN MEJ. The structure and function of complex networks. SIAM Rev 2003; 45: 167-256.
- 22) OH DS, TROESTER MA, USARY J, Hu Z, He X, FAN C, WU J, CAREY LA, PEROU CM. Estrogen-regulated genes predict survival in hormone receptor—positive breast cancers. J Clin Oncol 2006; 24: 1656-1664.
- ADAMCSEK B, PALLA G, FARKAS IJ, DERENYI I, VICSEK T. CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 2006; 22: 1021-1023.

- 24) SALASZNYK RM, KLEES RF, WILLIAMS WA, BOSKEY A, PLOPPER GE. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res 2007; 313: 22-37.
- 25) Perinpanayagam H, Zaharias R, Stanford C, Brand R, Keller J, Schneider G. Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts. J Orthop Res 2001; 19: 993-1000.
- DATTA SR, BRUNET A, GREENBERG ME. Cellular survival: a play in three Akts. Genes Dev 1999; 13: 2905-2927.
- MANNING BD, CANTLEY LC. AKT/PKB signaling: navigating downstream. Cell 2007; 129: 1261-1274.
- 28) Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by β-catenin-dependent and-independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 2005; 280: 41342-41351.
- 29) GHOSH-CHOUDHURY N, ABBOUD SL, NISHIMURA R, CELESTE A, MAHIMAINATHAN L, CHOUDHURY GG. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem 2002; 277: 33361-33368.
- 30) Kawamura N, Kugimiya F, Oshima Y, Ohba S, Ikeda T, Saito T, Shinoda Y, Kawasaki Y, Ogata N, Hoshi K, Akiyama T, Chen WS, Hay N, Tobe K, Kadowaki T, Azuma Y, Tanaka S, Nakamura K, Chung UI, Kawaguchi H. Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS One 2007; 2: e1058
- 31) MUKHERJEE A, ROTWEIN P. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development. Mol Cell Biol 2012; 32: 490-500.
- 32) HIDALGO-BASTIDA LA, CARTMELL SH. Mesenchymal stem cells, osteoblasts and extracellular matrix proteins: enhancing cell adhesion and differentiation for bone tissue engineering. Tissue Eng Part B Rev 2010; 16: 405-412.
- 33) Lo KW, Ashe KM, Kan HM, Lee DA, Laurencin CT. Activation of cyclic AMP/protein kinase: A signaling pathway enhances osteoblast cell adhesion on biomaterials for regenerative engineering. J Orthop Res 2011; 29: 602-608.
- 34) HERBST RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004; 59: 21-26.
- HOLBRO T, HYNES NE. ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 2004; 44: 195-217.
- 36) De Luca A, Gallo M, Aldinucci D, Ribatti D, Lamu-RA L, D'Alessio A, De Filippi R, Pinto A, Normanno N. Role of the EGFR ligand/receptor system in the secretion of angiogenic factors in mesenchymal stem cells. J Cell Physiol 2011; 226: 2131-2138.

- 37) SCHNEIDER MR, SIBILIA M, ERBEN RG. The EGFR network in bone biology and pathology. Trends Endocrinol Metab 2009; 20: 517-524.
- 38) ZHU J, SHIMIZU E, ZHANG X, PARTRIDGE NC, QIN L. EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix. J Cell Biochem 2011; 112: 1749-1760.
- 39) BARON R, RAWADI G. Targeting the Wnt/betacatenin pathway to regulate bone formation in the adult skeleton. Endocrinology 2007; 148: 2635-2643.
- 40) ZHOU S. TGF- β regulates β -catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J Cell Biochem 2011; 112: 1651-1660.
- 41) Wei W, Zeve D, Suh JM, Wang X, Du Y, Zerwekh JE, Dechow PC, Graff JM, Wan Y. Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol Cell Biol 2011; 31: 4706-4719.
- 42) HOEPPNER LH, SECRETO FJ, WESTENDORF JJ. Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets 2009; 13: 485-496.