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Abstract. — OBJECTIVE: The human being
has evolved in close symbiosis with its own eco-
logical community of commensal, symbiotic and
pathogenic bacteria. After the intestinal micro-
biome, that of the oral cavity is the largest and
most diversified. Its importance is reflected not
only in local and systemic diseases, but also in
pregnancy since it would seem to influence the
placental microbiome.

MATERIALS AND METHODS: This is a liter-
ature review of articles published in PubMed
about Fusobacterium Nucleatum and both its
implications with systemic and oral health, ad-
verse pregnhancy outcomes, flavors perception
and its interference in the oral-nasal mucosal
immunity.

RESULTS: It is in maintaining the microbi-
ome’s homeostasis that the Fusobacterium nu-
cleatum, an opportunistic periodontal pathogen
of the oral cavity, plays a crucial role both as a
bridge microorganism of the tongue biofilm, and
in maintaining the balance between the differ-
ent species in the oral-nasal mucosal immuni-
ty also by taste receptors interaction. It is also
involved in the flavor perception and its detec-
tion in the oral microbiome of children from the
first days of life suggests a possible physiolog-
ical role. However, the dysbiosis can determine
its pathogenicity with local and systemic conse-
quences, including the pathogenesis of respira-
tory infections.

CONCLUSIONS: It is interesting to evaluate
its possible correlation with Sars-CoV-2 and
the consequences on the microflora of the oral
cavity, both to promote a possible broad-spec-
trum preventive action, in favor of all subjects
for whom, by promoting the eubiosis of the oral
microbiome, a defensive action could be envis-
aged by the commensals themselves but, above
all, for patients with specific comorbidities and
therefore already prone to oral dysbiosis.
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Introduction

The human beings are inseparable from their
own microbial community, with whom they have
evolved over millions of years, establishing a
perfect symbiotic relationship, essential for main-
taining a good state of health. Indeed, together
they form a real super-organism, where this sym-
biosis is maintained thanks to a dynamic balance.
This cooperation brings various benefits to the
host organism. It confers resistance to coloniza-
tion by pathogens, supporting both the defensive
systems and the antioxidant activity. Moreover, it
favors the correct functionality of the cardiovas-
cular and digestive systems, without forgetting
the important contribution to numerous metabol-
ic processes'.

This microbial community was called microbi-
ome by Nobel laureate Joshua Lederberg with the
intention of defining a real ecological community
of commensal, symbiotics and pathogenic bacte-
ria that literally share the body space with the hu-
man being. Futhermore, nowdays, it is also known
that the various microorganisms, the microbiota,
which make up the microbiome are not individual
single-cell organisms present in free form, but
they aggregate in an organized structure firmly
attached to the surfaces. This structure is the
biofilm, inside which there is both a close cooper-
ation and a healthy antagonism between different
species. Within the biofilm there is also a fruitful
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communication between the various components
through quorum-sensing. The presence of the
microbiome is essential for the human organism
in the same way as the set of cells that compose
it. In fact, it is now known how numerous factors
can influence this precious ecosystem which must
therefore be protected and considered as a whole
with the host organism?. Pregnancy, as well as
numerous systemic pathologies, is in fact closely
related to the health of the oral microbiome as its
alteration can cause adverse effects. Similarly,
respiratory tract infections seem to be associated
with oral health. Thus, it is questionable whether,
in the midst of the Covid-19 pandemic, the pre-
vention of oral dysbiosis can offer any advantag-
es. These hypotheses emerge from the analysis
of the literature concerning the Fusobacterium
nucleatum, an opportunistic bacterium of the oral
cavity, a pathogen, essential in the creation of the
biofilm at the level of the buccal cavity, tongue
and subgingival plaque’. Tt plays a key role in
the onset of periodontal pathology and is related
both to various systemic pathologies and to some
adverse effects in pregnancy. Therefore, it may
be interesting to evaluate its presence both during
gestation, a non-pathological clinical condition
associated with an alteration of the microbiome,
and in children from birth in order to investi-
gate its possible function. Moreover, the same
alteration of the microbiome can be decisive in
infectious diseases of the respiratory tract, such
as Sars-Cov-2, both at the pathogenetic level and
as a possible complication. A further correlation
between the two microorganisms to be analyzed,
is associated with the possible repercussions on
the olfactory system.

Oral Microbiome Before and
After Pregnancy

After the intestinal microbiome, that of the
oral cavity is the largest and most diverse in the
human body. It hosts more than 700 species of
microorganisms that find an excellent habitat in-
side the mouth where they can colonize different
surfaces including teeth, gums, the gingival sul-
cus, the palate and the lips*. Among these loca-
tions, the teeth represent a very particular area as,
unlike the mucous membranes, they do not fall
apart and can therefore represent a perfect district
for a firm bacterial adhesion. It is precisely this
heterogeneity of surfaces within the oral cavity
that justifies a well-varied microbiome. In fact,
very different microbial species can be found,
belonging to as many as 12 phyla: Actinobacte-

ria, Bacteroidetes, Chlamydiae, Chloroflexi, Fir-
micutes, Fusobacteria, Gracilibacteria (GNO02),
Proteobacteria, Spirochaetes, SR1, Synergistetes,
and Saccharibacteria (TM7)°.

The colonization by such a large number of
species is also favored by other factors such as
an optimal temperature (about 37°C), adequate
hydration (saliva and crevicular fluid), a favor-
able pH (about 6.5-7) and a richness of nutrients
including proteins present in saliva, glycoproteins
and the crevicular fluid. The maintenance of ho-
meostasis despite the presence of a high microbial
load, is normally guaranteed by the close collab-
oration between the host’s immune system and
the set of resident microorganisms. Indeed, there
is the pro and anti-inflammatory activity of the
various bacterial species and the presence in the
saliva and in the crevicular fluid of both nutrients
for the microbiota itself and of molecules with
antimicrobial action including type A immuno-
globulins, lactoferrin and nitrates'.

Furthermore, both the cells of the epithelial
mucosa of the oral cavity and those of the im-
mune system act directly and indirectly in main-
taining the balance within the microbiome®. In
fact, there is a close collaboration: the mucosal
cells express a series of antimicrobial peptides,
such as B-defensins, also capable of stimulating
APCs’, meaning the Antigen Presenting Cells.
These cells, in turn, activate the specific immune
response. The mucosal cells also express chemo-
kines, necessary for the recruitment of mono-
cytes and neutrophils, and cytokines, which are
also essential for the specific immune response®.

In the study by Krisanaprakornkit et al’ it has
been shown that the production of these mole-
cules by the cells of the gingival epithelial mu-
cosa occurs both in response to an inflammatory
stimulus and thanks to the continuous stimulation
operated by the microbiota. Indeed, purely peri-
odontopathogenic microorganisms such as Por-
phyronomas (P. gingivalis) do not show the afore-
mentioned properties, as the attempt to escape the
human immune system is one of the determining
factors of virulence. In fact, elevated numbers of
certain oral bacteria, especially P. gingivalis, has
been correlated with higher incidence of major
fatals diseases like pancreatic cancer and liver
cirrhosis . With regard to this, in recent years,
the correlation between oral microbiota and sys-
temic diseases has been studied in greater depth.
Even if further investigation is needed", with the
contribution of new analytical techniques like, for
example metagenomics and culturomics, is now
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possible to identify a large number of bacterial
species that was hardly detectable before!? %,
This complex balance between the immune sys-
tem and the microbiome is fundamental for the
well-being of every humans. While its alteration,
the so-called dysbiosis, can determine systemic and
local pathological situations. It can cause mainly
periodontal pathology, meaning a chronic inflam-
mation of the periodontium, gum, periodontal liga-
ment and alveolar bone'>'¢. The importance of this
balance is demonstrated by the fact that a possible
therapeutic intervention is the total removal of the
resident altered flora rather than the insertion of
specific predatory bacteria of pathogenic species'”.
Indeed, the composition of a healthy oral mi-
crobiota is quite stable after its complete mat-
uration in childhood, albeit with numerous in-
ter-individual variables. Nevertheless, there are
several factors that can perturb its composition,
including the important variation of the hormon-
al structure that occurs during pregnancy, some
metabolic disease such as diabetes mellitus, the
use of antibiotics, stress, diet, smoking, oral hy-
giene, the different composition of saliva and par-
ticular genetic characteristics of each individual.
During pregnancy, a woman’s high hormone
levels can cause important changes that can lead
to an immune-compromised state'®. This could
be responsible for both the higher susceptibility
to infections and for an alteration of the oral
microbiota, with a subsequent higher gum in-
flammability and bleeding'® to which is added a
decrease in the amount of saliva'>. The variation
observed in the composition of the microbiome
appears to be constant throughout gestation, as
shown by DiGiulio et al?®, then subsequently by
Balan et al*! since this change seems to be caused
mainly by the innate peculiar characteristics of
each woman. In addition, studies aimed at ana-
lyzing the composition of the oral microbiome
during gestation have shown that in pregnant
women, both in conditions of good oral health
and in pathological situations, there is an increase
in pathogenic species. This highlights how the
modification of the microbiota is the necessary
starting condition for the onset of an eventual pa-
thology?!. In fact, some bacteria of the microbiota
itself would seem to initiate and promote progres-
sion towards periodontal pathology by exacer-
bating the host’s immune response***. To detect
this, Balan et al®!, found that during pregnancy
there is an increase in pathogenic taxa in the
genus Prevotella, Streptococcus and Veillonella,
contrary to a prevalence of the genus Haemoph-

ilus, Neisseria, Rothia and Streptococcus found
by various studies in non-pregnant women?*%,
The above studies indicates the results of similar
investigations carried out previously®®. Similarly,
an increase in pathogenic faxa has also been
observed at level of species in pregnant women,
especially of Prevotella species, Porphyromonas
gingivalis and Fusobacterium nucleatum®. How-
ever, if the abundance of periodontal-pathogenic
species is associated with the high frequency of
gingivitis during pregnancy?', the species most
closely associated with gingival bleeding were
poorly represented. This could be explained by
the fact that, given the polymicrobial nature of
periodontal pathologies and the high complexity
of the microbiome also due to the identification
of new species, as confirmed by Patini et al?’, it is
not only the most present species that determine
the balance of the ecosystem but the complex of
interactions between the various components?,
In addition to this, it would seem that for
the progression from gingivitis, an initial and
reversible inflammatory state of the soft tis-
sues surrounding the tooth, to a significant
pathological stage such as periodontitis, certain
environmental factors are also decisive, includ-
ing diet and poor oral hygiene. Indeed, it is
common for women to change their diet during
pregnancy, especially initially, with a strong
carbohydrates’ imbalance and that, given the
gingival sensitivity and possible nausea, oral
hygiene is neglected?. All these changes can
favor the increase of plaque, within which spe-
cific niches of anaerobiosis are favored where
some pathogenic species proliferate more eas-
ily. This progression towards a pathological
condition must be prevented not only to pre-
serve the health of the oral cavity but also to
avoid adverse outcomes in pregnancy’’. In
this regard, a significant species is represented
by the Fusobacterium nucleatum, a commensal
bacterium of the oral cavity. It is one of the
most abundant species in the gingival sulcus,
gram-negative, anaerobe, with a possible role
as a modulator of the taste and the odor of
some foods*** that, however, could have a
pathological connotation. In reality, F. nuclea-
tum is frequently involved in several forms of
periodontal problems®*. Indeed, the increase
of severity of the periodontal pathology and the
inflammation corresponds to an increase of the
presence of the bacterium!'s. Furthermore, this
bacterium can also determine systemic effects,
especially adverse effects in pregnancy?'.



A. Dessi, A. Bosco, R. Pintus, G. Orru, V. Fanos

The Placental Microbiome

For years the fetal environment has been con-
sidered sterile but to date, despite numerous
debates®’, there are several scientific evidence
that have demonstrated the presence of a placen-
tal microbiome®*, It is less abundant than the
gut microbiome but very metabolically active,
composed mainly of non-pathogenic commensal
phila including: Firmicutes, Tenericutes, Pro-
teobacteria, Bacterioides e Fusobacteria. This
microbiome appears to be very similar to the oral
microbiome®® given the conspicuous presence of
microorganisms such as Fusobacterium, Strepto-
coccus, Prevotella, Neisseria e Porphyromonas.
At the basis of this similarity there would be the
hypothesis that commensal bacteria of the oral
cavity reach the placenta by hematogenous route
(low-grade bacteremia). This condition is exacer-
bated in the presence of pathologies, mainly on
an inflammatory basis, of the oral cavity. Further-
more, this finding would be consistent with the
association between some pathogenic species of
the oral cavity and adverse effects in pregnancy
such as preterm birth, chorioamnionitis, neonatal
sepsis, preeclampsia and newborn mortality**-3,
A different composition of the placental micro-
biome has also emerged in preterm vs. full-term
pregnancies, further confirming the correlation
between the microbiome and fetal health®**. Fur-
thermore, Prince et al® confirmed both the dif-
ferent composition of the placental microbiome
between at term and preterm pregnancies and the
similarity with the oral microbiome and its pos-
sible correlation with adverse effects. Moreover,
they detect a different bacterial metabolism in
presence of chorioamnionites. Indeed, in full-
term pregnancies with chorioamnionitis a de-
crease in the metabolism of butyrate and ribofla-
vin has been observed. Butyrate has been shown
to suppress inflammation in the gut***® and a
decrease in riboflavin has been associated with
an increase in inflammation. Thus, these changes
in placental bacterial metabolism of full-term
pregnancies can cause the histological inflamma-
tion observed. While, in preterm pregnancies, the
pentose phosphate pathway and the metabolism
of the glycerophospholipids were significantly
decreased in association with chorioamnionitis. It
should be noted that glucose is necessary for the
pentose phosphate pathway and in preterm preg-
nancies with chorioamnionitis there is a decrease
in glucose in the amniotic fluid®. Moreover, a de-
crease in the metabolism of the glycerophospho-
polipids can cause an increase in arachidonic ac-

id, which in turn promotes inflammation and the
synthesis of prostanoids, potentially responsible
for the induction of labor. Therefore, not only the
alterations in the microbiome lead to inflamma-
tion, but these alterations can also stimulate the
prostanoids to induce preterm labor. The different
metabolic pathways observed in the microbiomes
of at term and preterm pregnancies may be due
to the different bacterial taxa associated with
the two conditions. In fact, the results show that
at term subjects with chorioamnionitis can have
more homogeneous alterations in the microbiome
of the placental membrane in association with
inflammation. Contrary to what is observed in
preterm, in particular those with severe chorio-
amnionitis, where a high variability in taxa relat-
ed to severe inflammation was found. Neverthe-
less, it was not possible to correlate these altered
metabolisms with the individual bacterial taxa
detected. In any case, the result is completely new
compared to what emerged previously. In fact, it
would seem to highlight that, probably, the tissue
alterations found at the placental level are mainly
attributable to an altered bacterial metabolism
rather than the presence of specific taxa®.

The Oral Microbiome of the Newborn

As mentioned in the previous paragraph, the
microbial colonization would already begin in the
fetal period. However, immediately after birth, the
infant’s oral microbiome is strongly influenced
by the surrounding environment. In this scenario,
the contribution of the different microbiomes of
the mother (vaginal, intestinal and cutaneous), the
mother’s milk or formula and the infant’s immune
system may be primarily determinant. While, the
first foods offered to the baby may be subsequent-
ly determinant®'. At birth, the first influence
on the oral microbiome of the newborn is due to
the type of birth®***. Indeed, if vaginal birth is
responsible for a more conspicuous enrichment of
the nascent microbiome with different taxa among
which Prevotella, Lactobacillus, Sneathia, Bacte-
rioides and TM7 prevail, the C-section determines
a smaller colonization, among which Propionibac-
terium, Corynebacterium, Staphilococcus, Slakia
e Veillonella predominate™*°,

However, although there is a significant ex-
posure to a large number of microorganisms,
the colonization of the infant’s oral microbiome
will follow specific evolutionary stages during
which only certain species will become resident.
In any case, the effects of the first colonizations
will influence the formation of a complex ma-
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ture ecosystem in adulthood®. This necessary
maturation process provides in the first months
(0-3 months) a rapid colonization, immediately
after birth, by the so-called “pioneer colonizers”.
These are normally aerobic or facultative anaer-
obic bacteria, including the genus Streptococcus
spp., Staphylococcus spp. and Actinomyces. They
facilitate the colonization by other species®’, such
as Fusobacterium to which E. coli, Pseudomo-
nas, Lactobacillus crispatus and Lactobacillus
gasseri are added, through the production and
excretion of by-products of their metabolism* .
The predominance of the genus Streptococcus,
especially of S. epidermidis and S. salivarius, is
due to several factors. One is the abundance of
an optimal substrate for the genus such as the
oligosaccharides present in milk togheter with
the cleavage capacity of immunoglobulins Al
(IgA), abundant in the oral cavity but especial-
ly in breast milk®-®2. They also have the ability
to adhere to the mucous membranes to which
we must add the fact that streptococci are the
most abundant microorganisms in breast milk®.
Regarding this, Timby et al®® showed that up to
four months, breastfed babies have a more varied
and richer microbiome even if at 12 months this
difference is canceled. However, in breastfed in-
fants, specific microbial communities are present
even at 12 months, which are totally absent in
formula-fed babies, supporting the possible long-
term contribution of breastfeeding®.

In the following months (3-6 months) the “sec-
ond colonizers” appear, such as Granulicatella,
Rothia and Haemophilus. There is a further in-
crease in biodiversity with the eruption of the first
teeth which shows the predominance of different
species, such as Streptococcus mutans, Fusobac-
terium, TM7, SR1, Tenericutes and Synergistetes,
more closely related to potentially cariogenic
microbiomes®%, This variation is most likely fa-
vored by both the appearance of not flaking new
tissues, the teeth, responsible for the formation
of a new specific microbial ecosystem of dental
plaque, and by the influence of the external en-
vironment®7”!, However, this evolution represents
a fundamental condition for achieving a good
biodiversity of the oral microbiome, which thus
becomes more and more varied to be stabilized
definitively in the transition to adulthood. Nev-
ertheless, further investigations are needed to
better understand the influence of the external
environment on the oral microbiome. Indeed,
scientific evidence regarding how the oral micro-
biome develops during early childhood and how

the external environment influences this complex
ecological system is scarce”. Just as much as
the contribution of genetic heritage should be
further investigated, on which studies are con-
flicting. On the one hand, some research on twins
(high-throughput sequencing and fingerprinting
methods)’*” seem to attribute no role to the ge-
netic component. On the other hand, other stud-
ies (twin cohort studies)’*” have highlighted the
possibility of inheriting specific taxa, potentially
associated with a greater onset of oral cavity
diseases.

The Role of Fusobacterium Nucleatum

The Fusobacterium nucleatum is a Gram-neg-
ative anaerobic bacterium, belonging to the Fu-
sobacteriaceae family, phylum Fusobacteria. It is
one of the most abundant species in the oral cav-
ity of many human beings’™ since birth, suggest-
ing not only a relevant biological role in the oral
microbiome but also possible broader spectrum
effects. In fact, research on the first colonizers of
the newborn’s buccal cavity reported the presence
of the F. nucleatum already in the first months
(0-3) with a progressive increase associated with
growth®. Furtermore, Angius et al”’ aimed at
analyzing the presence and the role of anaerobic
bacteria associated to the periodontal pathology
in mothers and their offspring, highlighted how
92.5% of the mothers resulted to be positive to
F. nucleatum. Research on biofilm formation has
also highlighted how Fusobacterium nucleatum
evolved in close association not only with human
cells and tissues but also in relation to the oral
microbiota. In fact, it would seem to play a key
role both in health and in the pathology of the
buccal cavity’.

Mutualistic Symbiosis in the Oral Cavity
The direct interactions of Fusobacterium nu-
cleatum with the tissues of the human body can
vary from a neutral or positive effect, as a sym-
biont of the human oral cavity, to a pathological
one, as an opportunist’®. The positive aspects of
the presence of F. nucleatum within the human
oral cavity are inseparable from its role within
the biofilm. Actually, it showed to have a mutu-
alistic relationship with the other members of the
oral microbiome”™. Indeed, F. nucleatum plays
a fundamental role, acting both as an essential
structural support in the formation of the bio-
film and as a mediator of interactions both with
the microbiota itself and with the host tissues.
It therefore represents a bridge microorganism
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which, thanks to the particular elongated bacillus
structure, allows the connection between the first
colonizers of dental plaque, mainly aerobi-fac-
ultative anaerobes, such as Streptococcus spp.
and the “second colonizers”, purely anaerobic,
including Porphyromonas gingivalis and Aggre-
gatibacter actinomycetemcomitans™ in the for-
mation of dental plaque®, a clear example of a
polymicrobial biofilm. In fact, where there is an
absence of Fusobacterium nucleatum, the lack of
“second colonizers” is reported®'.

Having said that, if on the one hand the elon-
gated shape of Fusobacterium nucleatum is cru-
cial in its function as a “bridge” between the
different colonizers of the plaque, the presence
of particular adhesion molecules, adhesins, is
necessary to mediate and directly organize the
interactions with both the tissues of the host
and those among the various components of the
microbiota such as, for example, Streptococcus
mutans and Candida albicans®*, favoring their
permanence inside the oral cavity. However, it
should be emphasized that, within the biofilm,
there are not only the aforementioned physical
interactions but also metabolic interactions. Un-
fortunately, data on these phenomena are scarce
due to the considerable difficulty of reproducing
this complex communication network in vitro and
the few studies on F. nucleatum’™.

A further implication of the presence of F. Nu-
cleatum within the microflora of the oral cavity is
the modulation of the perception of taste of some
compounds, the cysteine-S-conjugates, present in
many vegetables. According to Starkenmann et
al*, it would be the anaerobic component of the
microbiota, especially Fusobacterium nucleatum,
the main architect of the transformation of these
compounds into volatile thiol derivatives. This
transformation would therefore be responsible for
a persistent sulfhydryl odor-taste following the
ingestion of certain foods. It provides another
dimension to the taste perception of food* closely
related to the health of the oral microbiome, in
turn associated with diet. The study by Angius et
al”” highlighted how in the mouth of children the
growth-related increase in F. nucleatum and in
sulfur compounds could suggest a possible phys-
iological role of the bacterium in infants from the
first days of life, probably associated with taste
perception.

Furthermore, there are various scientific ev-
idence that have highlighted how the presence
of Fusobacterium nucleatum is influenced by
numerous external factors. Smoking is in fact

responsible for an increase in the bacterium both
in physiological and pathological conditions®*¢.
While, subjects suffering from severe forms of
periodontitis and those with uncontrolled type 2
diabetes show a more conspicuous presence of F.
nucleatum®’.

Pathogen of the Oral Cavity

The interactions of the Fusobacterium nuclea-
tum with the host tissues can have pathological
characteristics, in fact it is one of the key bacteria
in the onset of periodontal pathology. Specifi-
cally, understanding the pathogenetic role of F.
nucleatum can be complex, also considering its
role as a commensal in the oral cavity®. It can
in fact mediate, through numerous adhesins®*®?,
the colonization and the bacterial dissemination
together with other pathogenic periodontium spe-
cies. At the same time, adhesins can exacerbate
the host response” favoring the establishment of a
highly inflammatory environment by stimulating
a massive release of inflammatory cytokines such
as IL-6, IL-8 and TNF. Although the virulence
factors associated with this bacterium are nu-
merous, there are in fact endotoxins, such as LPS
and some proteases necessary for the antagonism
with other bacterial species®, the adhesins seem
to play a key role. The best knowns are FadA,
RadD, Fap2 and aid1”', responsible for mediating
the adhesion both with the host tissues and be-
tween different bacteria, allowing the formation
of the polymicrobial biofilm. In addition, in the
study by Fardini et al®?, it emerged that FadA
also behaves as invasion. Indeed, through the
link with endothelial vascular cadherins, it can
increase endothelial permeability favoring sys-
temic dissemination. A further virulence factor
associated with the presence of adhesins, is the
induction of cell death in human lymphocytes
by Fap2 and RadD. It was also highlighted by
Signat et al®®, that the Fusobacterium nucleatum
can directly induce the release, by the gingival
tissue, of particular antimicrobial peptides such
as B-defensins 2. At the same time, this bacterium
be very sensitive to B-defensins 3 thus showing
a behavior in some ways different from others
predominantly pathogenic periodontium species.
Indeed, in conditions of eubiosis it shows a weak
action on the immune system and a high sensi-
tivity to numerous cytokines”*°. It seems to be
part of the commensal bacteria’s task to keep the
host’s defenses active without being excessively
dangerous. Nevertheless, by acting as a structural
“bridge” in the bacterial biofilm, F. nucleatum
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can cause an excessive increase in the anaerobic
flora (second colonizers) favoring the growth of
a dysbiotic microflora®. In fact, from the study
by Socransky et al”’, in the analysis of more than
13,000 samples of subgingival periodontal plaque,
two main groups of bacteria emerged: red and or-
ange. The red group, consisting of P. gingivalis,
Treponema denticola, and Tannerella forsythia,
it is characterized by a high pathogenic potential
and correlated to clinical indices of periodontal
pathology such as pocket depth index (PPD),
probing bleeding index (PBI). While the orange
one, of which Fusobacterium Nucleatum belongs,
is decisive both in favoring the colonization by
the red group and in determining the progression
of periodontal pathology. It is probable that in
this context of alteration of the microbiome, there
is both an imbalance towards an inflammatory
state presumably related to an exacerbation of
the host response and to the co-aggregation be-
tween different microbial species. These are both
determining factors in the progression towards
periodontal pathology. For example, it has been
shown that Fusobacterium nucleatum increases
the invasiveness of P. gingivalis®®*®. Tt could be
due to a close cooperation between the two spe-
cies, which leads to the escape from the human
body’s immune system, and the creation of a
highly inflammatory environment. Studies on
this synergy are various, however the factors in-
volved seem to be numerous. On the one hand, a
dysregulation of the inflamosome'” could be the
cause of the excessive reaction triggered by the
host organism. However, the creation by F. nu-
cleatum of lipid rafts through which it allows the
entry of P. gingivalis into the cells of the human
body®® seems to be only one of the mechanisms
through which F. Nucleatum mediates the host in-
vasion by other pathogens. Despite the abundant
literature, there are still numerous mechanisms
to be clarified. Therefore, as emerged from the
study by Tefiku et al’', certainly F. nucleatum
plays a key role in pathologies of the oral cavity,
however it is not possible to state with certainty
whether its role is dominant or secondary.

Correlation with Adverse Affects in
Pregnancy and Systemic Pathologies

The correlation between Fusobacterium nu-
cleatum and adverse affects in pregnancy is sup-
ported by numerous scientific evidence'®", like-
wise there are numerous researches that correlate
poor oral health to abortions, neonatal mortality,
preterm births, preeclampsia and chorioamnioni-

tis!o1%  As previously discussed, two factors are
very likely to be decisive: the first concerns the
hormonal changes typical of gestation that ex-
pose the future mother to an alteration of the oral
microbiome' and the second concerns the strong
similarity observed between the placental and the
oral microbiome?. In 2012, with the aim of evalu-
ating the epidemiological evidence on the impact
of periodontal disease on adverse pregnancy out-
comes and identifying its potential mechanisms,
the first consensus document was drawn up in
synergy between the EFP and the AAP!Y". To date,
compared to the past, the evidence supporting the
correlation between periodontal pathology and
adverse affects in pregnancy has been strength-
ened. The scientific literature of the last century
regarding the association between adverse effects
in pregnancy and F. nucleatum was limited by the
need to use culture media that sometimes do not
allow the detection of some bacterial species!®!1°,
Nevertheless, in recent years, the use of inno-
vative techniques such as 16S-23S rRNA gene
intergenic transcribed spacer region, has resulted
in significant progress that has led to a more solid
correlation between F. nucleatum and preterm
birth®!"!, Tt was also possible to highlight the
presence, in the saliva samples of the mother with
preterm birth, of the same strain of F. nucleatum
found in the gastric aspirate of the newborn'.
These findings also support previous studies on
the different microbiome observed in term and
preterm pregnancies'”, as discussed above.

A further contribution to understand the pos-
sible origin of the detected infections and the un-
derlying mechanisms was provided by preclinical
studies on murine specimens, thanks to which it
was possible to highlight how adhesin-invasin Fa-
dA mediates the crossing of the placental barrier.
Indeed, to date, years after the first consensus
document of the EFP and the AAP from which
two possible mechanisms underlying the placen-
tal infection emerged, the hypothesis of hema-
togenous dissemination of oral microorganisms
and their metabolites seems to prevail with con-
sequent immune and inflammatory reaction at the
level of the fetal-placental unit!'*. Even stillbirths
and the chorioamnionites®***!'>!"® were related to
the presence of F. nucleatum. In 2010, Han et al*°
have in fact described the first case of neonatal
mortality in the presence of chorioamnionitis
associated with Fusobacterium nucleatum. They
ascertained the oral origin of the infection found
at the level of the fetal-placental unit, correlating
it with a weakening of the immune defenses as-
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sociated with a respiratory infection contracted
by the woman a few days earlier. The role of the
weakening of the host’s immune defenses, related
to the fact that many infections are actually much
more complex than previously thought due to the
possible polymicrobial origin®®, suggests that the
commensal bacteria as well as the interactions
between various microorganisms can have a deci-
sive impact on both the development of virulence
and the outcome of the infection.

Finally, other adverse effects in pregnancy
potentially related to the presence of F. nuclea-
tum such as neonatal sepsis'’’ and preeclampsia''®
have been found but they need further studies®.

Table I summarizes the main studies regard-
ing the association between Fusobacterium nu-
cleatum and its possible adverse effects during
pregnancy.

As reported in a recent review'® the Fusobacte-
rium nucleatum is also associated with numerous
systemic pathologies such as some pathologies of
the gastro-intestinal tract including inflammatory
bowel disease''”!2°, IBD, colorectal cancer'?'-'?,
CRC, and appendicitis?™'?. It has also been
found in atherosclerotic plaques'*'*. It has been
related also to rheumatoid arthritis'®, to Alzhei-
mer’s disease'**, to Lemierre’s syndrome', to
brain aneurysms'*® and to some respiratory tract
infections'.

It is therefore clear how this pathogen can sys-
tematically spread in numerous districts of the
organism. It could be due to the high adhesive
capacity and to the different virulence mecha-
nisms, however it is clear how its presence and
its dissemination are closely associated with the
state of health of the individual.

F. Nucleatum and Bitter Taste Receptors

The role of the gut microbiome as a modulator
of human food preferences has been suggested by
different authors, but the evidence with oral micro-
biota remains poorly defined, even if is known that
the oral microbe community is strongly affected
by human dietary habits. In this context, recent
studies on dental calculi, indicate a significant
difference in the periodontal bacteria titer between
samples from preindustrial-era and modern ones'’.
The data suggest that socioeconomic conditions
and different alimentary habits have determined
a significant increase of periodontal pathogens in
recent tooth biofilm. This discrepancy could be
linked to the noticeable increase in degenerative
diseases in the modern age. Recently, the taste
receptor system has been related to oral-nasal

microbiota in a dual function. In the first instance
the taste perception and consequently food choic-
es, nutrition, and eating behavior. But, in another
perspective, this interaction acts as the mediation
of infective respiratory and oral diseases; in par-
ticular, significant evidence is recently reported for
the bitter taste receptors T2R. These receptors are
commonly present in the oral cavity where they
signal in the presence of toxic substances. For ex-
ample, T2R38 regulates innate-immune responses
in the oral and nasal mucosa due to microbial prod-
ucts. These molecular structures are induced in the
release of antimicrobial peptides and cytokines in
response to different oral bacteria metabolites. In
the gingival epithelia Fn-T2R38 interaction causes
the release of high levels of beta-defensin-2 (hBD-
2)"8, In addition, the secretion of AMPs has been
evaluated, to prevent overgrowth of oral bacteria
and regulate the microbial composition, avoiding
a dysbiotic profile in the tissues. For this reason,
Sandell et al'* reported that genetic variation in
the bitter taste receptor T2R38 taste genotype
reflected in the microbial composition of oral mu-
cosa in subjects from different geographical areas.
Douglas et al'*, showed an interesting role of
oral Gram-negative bacteria in T2Rs activation
by bitter bacterial byproducts in the upper airway.
Gram-negative bacteria produce acyl-homoserine
lactones (AHLs), which bind to and activate T2Rs
located in solitary chemosensory cells or in cili-
ate epithelial cells. This activates a biochemistry
pathway that increases the nitric oxide (NO) pro-
duction by the nitric oxide synthase (NOS), which
both directly kills bacteria and enhances ciliary
beating. Furthermore, the taste receptor intracel-
lular signaling yields increased of Ca2+, via gap
junctions. This cation diffuses into adjacent ciliat-
ed cells with a consequent increase of antimicrobi-
al AMP secretion (Figure 1).

In this context, F. nucleatum could be admitted
as an early oral colonizer on the first day of life,
because it could stimulate the innate immune
response of the newborns against oral as well as
respiratory pathogens.

The Bacteria of The Oral Cavity: Possible
Implications in Infection by SARS-COV-2
The oral cavity certainly represents a strategic
location as an excellent entrance and exit gates
for all the pathogenic species responsible for
respiratory tract infections and therefore also for
Sars-Cov-2 infection, especially considering its
detection in saliva samples and the abundance of
ACE2 receptors in the epithelium of the buccal
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Table I. Fusobacterium Nucleatum and adverse pregnancy outcomes.

F. Nucleatum and hypertensive
disorders that may suggest a
possible contribution of
periopathogenic

from cesarean sections of women
with preeclampsia and from

14 age-matched healthy

pregnant women.

Results Technique Sample Author Year
First associations between Culture Amniotic fluid from 45 selected Miller et al'™® 1980
F. Nucleatum and preterm birth patients
33 patients with singleton Wahbeh et al'” | 1984
pregnancies
773 transabdominal amniocenteses | Chaim et al'® 1992
from women presenting with
preterm labor and intact membranes
F. Nucleatum has been observed 16SrRNA-based | Samples of fetal membranes Cabhill et al'! 2005
in preterm birth and preterm culture from 37 preterm infants, and
premature rupture of indipendent 6 normal term controls delivered
membranes (PPROM) by caesarean section
Associations between Amniotic fluid specimens from Han et al! 2009
F. Nucleatum and preterm 46 pregnancies complicated by
birth was observed PTB and 16 asymptomatic
Associations between PCR 3 women in preterm labor Gauthier et al'® | 2011
F. Nucleatum and preterm with intact membranes
birth was confirmed and
suggestion that intra-amniotic
F. nucleatum could originate
from the patient’s or the
partner’s oral microflora
Association between F. Nucleatum | 16SrRNA-based | 44 patients with singleton Wang et al'” 2013
and preterm birth has beem culture pregnancies
condirmed and a novel association | indipendent +
between F. Nucleatum and culture
neonatal sepsis has been observed
Association between
F. Nucleatum and preterm birth Culture Case reports of 1 pregnant woman Dixon et al'® 1994
and choriomamnionitis that have
been probably due to an ascending
infection after orogenital contact.
Association between F. Nucleatum | Culture Case reports of 1 pregnant woman Boher et al®? 2012
and choriomamnionitis at term
with potential adverse maternal
and neonatal outcome
Association between F. Nucleatum | 16SrRNA-based | Case study of a pregnant with Han et al* 2010
and stillbirth with culture associated gingivitis
choriomamnionitis indipendent
Association between high serum Enzyme-linked | 786 serum samples at baseline; Ebersole et al''® | 2009
antibody levels to F. Nucleatum immunosorbent | this was reduced to 635 by the
and stillbirth assay 29- to 32-week visit; 620 matched
samples were available for within-
and between-patient comparisons
of changes between baseline and
29 to 32 weeks
First association between PCR 16 placentas’ samples obtained Barak et al''® 2007
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Figure 1. Schematic representation of innate antimicrobial

cavity'!. Furthermore, the possible correlation

between periodontal pathogenic microorganisms
and the pathogenesis of respiratory infections has
long been known'#. In this regard, several studies
have shown how the oral cavity can be crucial
in the respiratory tract infection process and
several possible mechanisms have in fact been
proposed as the basis of the etiopathogenesis.
The first concerns the aspiration into the lungs
of typically pathogenic bacteria of the oral cavity
such as P. gingivalis or A. actinomycetemcom-
itans, which are abundant in subjects suffering
from periodontitis, resulting in lung infections. A
second mechanism proposed, concerns the mod-
ification of the oral mucous membranes induced
by inflammation. It results from the periodontal
pathology, which would make them more suscep-
tible to adhesion and colonization by pathogenic
species of the respiratory tract. This would be
followed by their possible aspiration into the
lungs. These changes in the oral mucosa can also
extend to the respiratory epithelium, making it
more susceptible to infections, a possible further
pathogenetic mechanism. Finally, it has also been
hypothesized that the inflammatory state asso-
ciated with periodontal pathology destroys the
salivary film that covers the pathogenic bacte-
ria, hindering their elimination from the mucous

activity by Gram negative bacteria stimulation of T2R receptors.

membranes'?. Zheng et al'® have highlighted
how in the most serious patients with Covid-19
there was an increase in neutrophils and low lev-
els of lymphocytes, an abnormal condition for a
viral infection, compared to less severe patients.
It was therefore assumed that the high level of
neutrophils was to be associated with a bacterial
co-infection. While the low level of lymphocytes,
essential in the course of an immune response
against viral species, was due to a functional
exhaustion of the lymphocytes themselves or to
the prevarication of bacterial co-infection'®. As
a confirmation of this, it would seem to be the
study by Zhou et al'*, which found that 50% of
those who died from Covid-19 had a secondary
bacterial infection. To this must be added what
emerged from the study by Cox et al'** about the
relevance at the level of clinical indices and mor-
tality of the co-infections in patients affected by
Covid-19. Probably in the light of these data, Patel
and Sampson'*® hightlighted the possible impact
of oral bacteria in Covid-19 co-infections. In fact,
thanks to very recent metagenomic analyzes'V,
the presence in patients suffering from severe
acute respiratory syndrome 2 of a high number
of cariogenic and periodontopathogenic bacte-
ria, including the Fusobacterium, has frequently
emerged, confirming the thesis that correlates
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oral dysbiosis and the possible complications of
Covid-19. However, the studies concerning the
influence of Sars-CoV-2 on the microbiome are
very limited, but it is curious to note, as report-
ed by Bao et al'® that other investigations on
animal models of the swine epidemic diarrhea
virus, belonging to the coronavirus family, have
shown a high presence of the Fusobacterium
in affected subjects. Indeed, as pointed out by
several scientific investigations"®!*%14° " there are
several studies that suggest both the involvement
of periodontopathogenic species in the pathogen-
esis of the respiratory infections, such as Sars-
Cov2, and their correlation to various systemic
diseases, including hypertension, cardiovascular
diseases and diabetes. Furthermore, these pa-
thologies have emerged as a frequent cause of
comorbidities associated with an increased risk of
serious complications and death from Covid-19.
Given the numerous studies on the effectiveness
of improving oral health on clinical indices and
mortality in patients with pneumonia'*®"' as well
as reducing the use of mechanical ventilation'*
but also the preventive role of a good oral health
on pneumonia and respiratory tract infections in
elderly hospitalized or nursing home patients'>* it
could be assumed that the same benefits could be
obtained in patients with Sars-Cov-2. In addition
to this, on the one hand, the pulmonary hypoxia
that some patients with Covid-19 undergo can
favor a lung environment more prone to coloni-
zation by anaerobic bacteria. While, on the other
hand, given the respiratory difficulties of some
subjects, the mechanical ventilation is often asso-
ciated with the onset of secondary pneumonia'*®,

In this regard, promoting good oral health
is essential for maintaining the eubiosis of the
microbiome since a simple dysbiosis can affect
the onset of co-infections. In fact, normal daily
activities, including chewing and normal oral
hygiene practices, cause micro-lesions inside the
buccal cavity that can lead to bacteremia, through
the hematogenous dissemination of oral bacteria
and their inflammatory metabolites, with possible
systemic inflammation in certain patients'*®. As
a confirmation of the importance of the eubiosis
of the oral microbiota there is the study of Wolff
et al* which reports 4 cases of F. nucleatum
bacteremia in patients with Covid-19 without
the patients having known risk factors for Fu-
sobacterium nucleatum infection. Therefore, the
question arises whether the oral dysbiosis po-
tentially caused by various antecedent factors,
including stress and poor nutrition, has created

a fertile ground for Covid-19 infection which
destabilized the immune system and allowed the
onset of bacteremia, or whether Sars-Cov-2 itself
is responsible for the dysbiosis which, following
the strong impact on the immune system, in some
patients, can lead to bacteremia. Finally, it should
be noted that both Sars-Cov-2 and F. nucleatum
have direct and indirect repercussions on the
olfactory-gustatory system, respectively. In the
case of Covid-19 infection, a significant percent-
age of patients reported anosmia or hyposmia
as a preliminary symptom'”. In any case, this
type of alterations seems to be transitory with
a complete or partial recovery in a few weeks,
however there are still no reliable data'*®. The
origin of the dysfunction seems to be mainly at-
tributed to an involvement at the central level of
the olfactory bulb and only partially to peripheral
damage at the level of the olfactory epithelium.
The alteration of taste seems to be secondary to
the olfactory dysfunction. Therefore, the role of
Fusobacterium nucleatum in the modulation of
gustatory perception, as well as its interference in
the oral-nasal mucosal immunity by taste recep-
tors interaction, must be strongly investigated in
COVID-19 patients.

Discussion

From the analysis of the literature, it is clear
that the homeostasis of the oral microbiome rep-
resents a key point for human health with local
and systemic implications. In this context, the
Fusobacterium nucleatum plays a crucial role
thanks to its structural and organizational func-
tion within the microflora of the buccal cavity
in order to maintain the homeostasis. In fact, as
previously discussed, studies on the oral microbi-
ome of children assume a possible physiological
role of F. nucleatum from the first days of life.
However, in particular conditions both patho-
logical and non-pathological, its strong adhesive
and invasive capacities result in an easy systemic
dissemination in the body, also increasing very
often the virulence of other pathogens through
various mechanisms. In fact, it has been dis-
cussed how it can favor the escape from the
host’s immune defenses, facilitate the crossing
of the epithelia and exacerbate the defensive re-
sponse in the human being. These data suggest
underlying polymicrobial pathologies. In fact, the
most recent diagnostic investigation technologies
have allowed us to ascertain that many infections
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are actually much more complex than originally
believed. Therefore, it appears clear that in an
infection, despite often focusing on the dominant
microbial species, other microorganisms, includ-
ing commensals, can have an important impact
both on the pathogenesis of the disease itself and
on the outcomes. Furthermore, the examined
data revealed that sometimes the outcomes of
the presence of a microorganism are determined
not uniquely by the specific characteristics of the
single species but by the interaction of the various
micro-organisms present. They can thus modify
their own metabolism, virulence and cause an
important alteration to the surrounding environ-
ment resulting in damage to the host’s tissues.

It could be interesting to analyze the cor-
relation between Sars-Cov-2 and Fusobacterium
nucleatum both to evaluate a possible broad-spec-
trum preventive action, in favor of all subjects
for whom, by promoting the eubiosis of the oral
microbiome, a defensive action promoted by the
commensal bacteria themselves, but, above all,
for patients with specific comorbidities and there-
fore already prone to oral dysbiosis. In addition
to this, after the infection, a possible interven-
tion on the oral microbiome could represent an
improvement in the prognosis, avoiding possible
co-infections. In addition, as regards non-patho-
logical clinical conditions that are still affected
by an alteration of the microbiome such as preg-
nant women, a preventive intervention on the
microflora of the oral cavity could boast even
greater benefits, not only for what concerns the
prevention of adverse effects typically associated
with oral dysbiosis but also for respiratory tract
infections, in this case by Sars-Cov-2. Further-
more, from the assessment of the correlation
between Covid-19 and F. nucleatum, the role of
other microorganisms could emerge that, through
specific, synergistic, additive, or antagonistic ac-
tions, could prevent or favor Sars-Cov-2 infection
or in any case affect its outcomes.

Conclusions

In summary, it may be assumed that the prob-
lems of the olfactory and gustatory system can be
synergistic or additive and therefore in order to
favor a complete recovery, given the long sequel-
ae reported by some patients, the establishment of
a new balance within the oral microbiome could
be decisive.
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