Long noncoding RNA CASC2 alleviates the growth, migration and invasion of oral squamous cell carcinoma *via* downregulating CDK1

H.-B. XING¹, H.-M. QIU², Y. LI³, P.-F. DONG¹, X.-M. ZHU⁴

Abstract. – OBJECTIVE: Recent studies have revealed the important role of long noncoding RNAs (IncRNAs) in regulating the progression of tumorigenesis. Oral squamous cell carcinoma (OSCC) is a prevalent tumor in the world. This study aims to identify the specific mechanism of IncRNA CASC2 in alleviating the gression of OSCC.

PATIENTS AND METHODS: CASC2 sion in OSCC cell lines and 40 paire CC samples were detected by quantitative al-time polymerase chain reaction (qRT-Po Moreover, in vitro functions of lating the cellular behaviors lls were well as wound identified by performing tr ion assa healing assay and prolif The underlying mechanism of in m progression of OSCC vas and Western blot.

expression v **RESULTS: CAS** arkably C tissues con downregulated d with that in adjace mples. Morewer, proion and liferation, inva tion were inhibited in OSCC us overexpre CASC2. CASC2 overexp ion in OSCC a ownregulated oth mRNA and protest levels in vitro. CDK1 the expression of CDK1 in OSCC tisely correlated to the expression

CONC. NS: C' 2 suppresses the micon, inv. on coliferation of OSCC cells in down stand CDK1, which may offer w theraps ac intervention for OSCC patien.

Words

noncoding RNA, CASC2, Oral squamous cell calc 2, CDK1.

Introduction

al cancer is sixth most common cancer vorld, an s incidence ranks the third in ountries¹. As the major subtype of oral cancer, oral squamous cell carcinoma SCC), which contributes to almost 3% of the nosed cancer cases, has the highest in the head and neck cancers. Although corresponding diagnostic and therapeutic strategies for OSCC have been made strides in the past decades, the survival rate of OSCC patients s still lower than 50%². Therefore, it is urgent to clarify the underlying molecular mechanism of OSCC development and search for new therapeutic strategies, so as to improve the treatment efficacy and the prognosis of OSCC.

Long non-coding RNA (lncRNA) is a cluster of non-coding RNA transcripts longer than 200 nt. Evidence indicated the important role of IncRNAs in many biological behaviors, including carcinogenesis, cell apoptosis, proliferation and metastasis in cancer. Therefore, lncRNAs are often used as biomarkers for predicting the progression of tumorigenesis^{3,4}. For example, IncRNA MSTO2P facilitates cell growth and colony formation in gastric cancer by regulating the expression of miR-3355. Through binding to SRSF6, LINC01133 functions as a tumor-suppressor gene in colorectal cancer by inhibiting epithelial-mesenchymal transition and cell metastasis⁶. LncRNA OR3A4 is upregulated in breast cancer, which may be a novel prognostic marker and therapeutic target⁷. In addition, it is found that overexpression of lncRNA GHET1

¹Department of Stomatology, Weihai Municipal Hospital, Weihai, Chapa

²Department of Stomatology, Liaocheng People's Hospital, Liaoch

³Department of Gynaecology, Weihai Municipal Hospital, Weiha hina

⁴Multidisciplinary Consultation Clinic, Qingdao Stomatological Qingdao, Qingdao,

promotes cell proliferation of pancreatic cancer, and its expression level is associated with TNM staging and prognosis⁸. However, the specific function of lncRNA CASC2 in the proliferation of OSCC remains unclear. In the present study, it was revealed that the expression level of lncRNA CASC2 was remarkably downregulated in OSCC samples. Moreover, *in vitro* experiments revealed that CASC2 suppressed the proliferation, invasion and migration of OSCC cells. Furthermore, we discovered that lncRNA CASC2 exerted its functional roles in the progression of OSCC by downregulating CDK1.

Patients and Methods

Cell Culture and Cell Transfection

OSCC cell lines (Tca8113, TSCCA, CAL-27, SCC-9) and the normal human oral keratinocytes (NHOK) were provided by Chinese Type Culture Collection, Chinese Academy of Sciences (Shanghai, China). Cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM, Hy-Clone, South Logan, UT, USA) containing fetal bovine serum (FBS, Gibco, Rockvi USA) and 1% penicillin, in a 5% CO₂ in rtor at 37°C. Lentiviral virus targeting CASC compounded and cloned into pLenti-EF1a-E F2A-Puro vector (Biosettia Inc., San Diego, C USA). Empty vector and the Q tiviruse (CASC2) were packaged in

Clinical Samples

40 paired OSCC t tissues were surgic OSCC paresected tients admitted Jospital √eihai Muni from July 2016 ember 2017. tissues en informed consent were kept at was offered by each par fore the surgery. This stud as approved by thics Committee of nai Municipal Hospita

RN trac n and Quantitative Real- lymera Chain Reaction VaRT-PC

age invitroger arlsbad, CA, USA). Reverse Tranciption Kit (TaKaRa Biotechnology Co., Ltd., Ima) was utilized to reverse transpective acids (cDNAs). QRT-PCR was conducted acids (cDNAs). QRT-PCR was conducted acids (cDNAs). QRT-PCR was conducted acids (cDNAs) using the SYBR Green

Real-time PCR kit (TaKaRa Biotechnology Co., Ltd., Dalian, China). Primers used for were as follows: CASC2, forw CATTGGACGGTGTTTCC-3', rse: 5'-CCC vceraldehyde AGTCCTTCACAGGTCAC-3'; 3-phosphate dehydrogenase (G) forward: 5'-CCAAAATCAGATGG GG-3'. reverse: 5'-TGATGGC GACTGT TCA-3'. The thermal e was as follow. at 95°C, 5 s at 95°C 35 s at °C, for a total of 40 cycles.

Colony Form Jon Assa

Cells were sided in a 6-we with 5×10^2 cells per a cultured for 2 days. Subsequently cells a fixed with methanol and stained by 0.1% cr., winglet (Sigma-Aldrich, St. 14 MO, USA). Ving colonies (>50 per colony) were finally counted under a croscope.

Proliferation Assay

were see and in a 96-well plate and the probability was determined every 24 h following the protocol of cell counting kit-8 CK-8) (Dojindo Molecular Technologies, Inc., Japan). Briefly, medium containing A-8 reagent (10 µl) was applied in each well. Spectrophotometer (Thermo Scientific, Rockford, IL, USA) was utilized to measure the absorbance at 450 nm after 2-h incubation.

Wound Healing Assay

Cells seeded into 6-well plates were cultured in DMEM overnight. After scratching a line in the bottom with a plastic tip, cells were cultured in serum-free DMEM. Wound closure was viewed at the appointed time points. Each assay was independently repeated for three times.

Transwell Assay

5 ×10⁴ cells suspended in 200 μL of serum-free DMEM were applied on the top side of the transwell chamber (8 μm in pore size, Millipore, Billerica, MA, USA) pre-coated with 50 μg Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). DMEM containing 10% fetal bovine serum (FBS) was added on the bottom chamber. 48 h later, unpenetrating cells on the top side were cleaned with the cotton swab and penetrating cells on the bottom side were immersed in pre-cooled methanol for 10 min. After staining with crystal violet for 30 min, invasive cells were counted in 3 randomly selected fields per sample.

Western Blot

Total protein was extracted from cells using the reagent radioimmunoprecipitation assay (RIPA) (Beyotime, Shanghai, China) and quantified using the Bicinchoninic acid (BCA) protein assay kit (TaKaRa, Dalian, China). The target proteins were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and loaded on the polyvinylidene difluoride (PVDF) membrane. Membranes were then incubated with primary (rabbit anti-GAP-DH and rabbit anti-CDK1) and goat anti-rabbit secondary antibody provided by Cell Signaling Technology (CST, Danvers, MA, USA). Chemiluminescent film was applied for assessment of protein expression with Image J software (NIH, Bethesda, MD, USA).

Statistical Analysis

Statistical analysis was conducted by Statistical Product and Service Solutions (SPSS) 18.0 (SPSS Inc., Chicago, IL, USA). Categorical data and measurement data were analyzed by Chisquare test and Student t-test, respectively were presented by mean \pm SD (Stand viation). p<0.05 was considered as statistically significant.

Results

Expression Level of C 22 in OSCC Tissues

First, qRT-PCR w con 2 T uet. 2 CASC2 expression 40 pan 3 CC tissues and adjacent norm 4 ssues. As the 4 vealed, CASC2 was side at the 4 vealed, casc was at the 4 vealed, casc was at the 5 vealed, cas

CASC Verexpression Suppressed Properties Ability of OSCC Cells

the expression in normal huhocyte 1 K, CASC2 level was man o ted in OSCC cell lines significan nreg ng to CASC2 expression 2A). 2-27 cells were selected for er cells, 1n ression of CASC2. The CASC2 lentivirus over empty vector were synthetized d into CAL-27 cells. CASC2 exion was determined by qRT-PCR to verify fection efficacy (Figure 2B). Subsequenty formation assay revealed that overex-

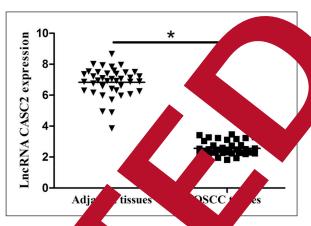


Figure 1. For plevel of CASC2 and awnregulated in OSCC area C2 expression was significantly downregulated in the dissues compared with adjacent tissues. Data were present the mean ± standard error of the mean ± standard

inhibited colony formation ly of OSCC ls (Figure 2C). Furthermore, ed that proliferative ability of OSC uppressed after CASC2 overexpression (Figure 2D).

verexpression Suppressed Cell

Wound healing assay found that overexpression of CASC2 inhibited migration of OSCC cells (Figure 3A). Furthermore, transwell assay showed that invasive capacity of OSCC cells was inhibited after CASC2 overexpression (Figure 3B).

CASC2 Inhibited the Tumorigenesis of OSCC via Mediating CDK1

Many studies verified that CDK1 acts as an oncogene in various cancers including OS-CC. We then explored the interaction between CDK1 and CASC2 in OSCC. Expression level of CDK1 was detected in OSCC tissues. CDK1 expression was upregulated in OSCC tissues compared with that in adjacent tissues (Figure 4A). QRT-PCR results further demonstrated that the mRNA expression of CDK1 was downregulated in OSCC cells transfected with CASC2 lentivirus (Figure 4B). Western blot obtained the same result at protein level (Figure 4C). The results of linear correlation analysis showed that in OSCC tissues, the expression of CDK1 was negatively correlated to CASC2 expression (Figure 4D).

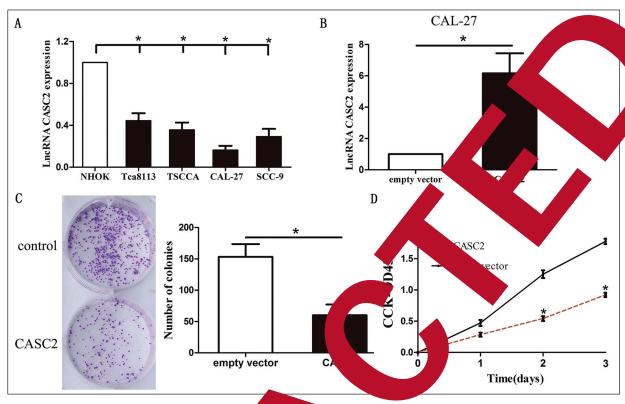
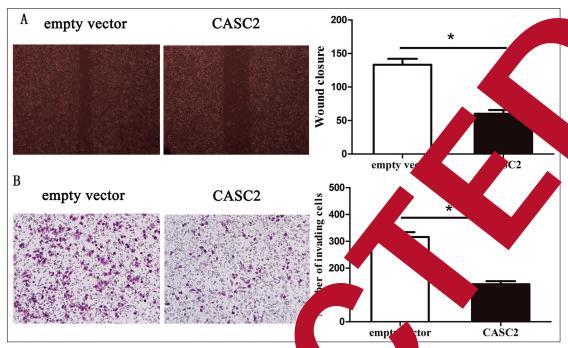
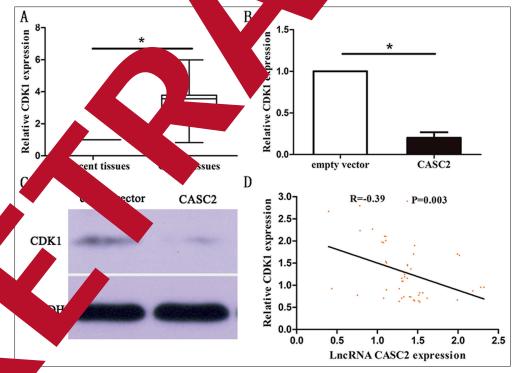



Figure 2. Overexpression of CASC2 inhibited COSCC cells. A, Expression levels of CASC2 relative to l ovarian cell (NHOK) by qRT-PCR. B, CASC2 GAPDH were determined in the human-derived or CA expression in CAL-27 cells transfected with empty (CASC2) was detected by qRT-PCR. GAPDH number of colonies in CASC2 lentivirus group was used as an internal control. C, Colony format obviously decreased compared with empty vector gi -27 cells. **D**, CCK-8 assay showed that overexpression of Ils. The results represented the average of three independent CASC2 significantly suppressed the proliferation of CA experiments (mean \pm standard error of *p < 0.0mpared with the control cells.


Discu

Numerous resea have strated the significant roles IncRNAs in iety of biological beha sion of ring the pros OSCC. For in A MEG3 acts as a tumor-suppressor gene and ts cell growth and metastas OSCC through tively regulating W β-catenin signaling pa Away⁹. LncRNA K facilities cell invasion and metastasis TOH rectly recruiting EZH2 and inin erin¹⁰. I hibitii NA AC132217.4 pro-OSCC via regulating stasi motes ce expression 11. Knockdown media alleviates the malignancy of of through Wnt/beta-catenin pathway¹². In OSC ad A FTH1P3 promotes the devel-CC by modulating the expression zled 5¹³. LncRNA CASC2 is a newly discovor suppressor that plays a crucial role carcinogenesis. For example, lncRNA

CASC2 suppresses cell metastasis and epithelial-mesenchymal transition of lung cancer by downregulating SOX4¹⁴. LncRNA CASC2 serves as an important part in regulating DDP-sensitivity in the cervical cancer, which may serve as a potential therapeutic target for cervical cancer¹⁵. By inhibiting Wnt/beta-catenin signaling pathway, lncRNA CASC2 acts as a tumor suppressor in gliomas and predicts the prognosis of glioma patients¹⁶. Moreover, lncRNA CASC2 facilitates the tumorigenesis of thyroid carcinoma and indicates a poor prognosis of patients with low-level CASC217. LncRNA CASC2 was found to be downregulated in both OSCC tissues and cells in the present study. Furthermore, CASC2 overexpression suppressed the abilities of cell growth, migration and invasion. These data indicated that CASC2 functioned as a tumor suppressor and inhibited the tumorigenesis of OSCC. Cyclin-dependent kinase 1 (CDK1) has been reported to participate in cell cycle progression, which has

Figure 3. Overexpression of CASC2 suppressed migration and in the proof OSCC cells, which would closure of cells in CASC2 lentivirus group significantly used comparation with empty control group in CAL-27 cells. **B,** Transwell assay showed that the migrated cells in CASC2 lentive control group in CAL-27 cells. **C,** Transwell assay showed that overexpression as significantly suppressed invasion ability of CAL-27 cells. The results represented the average of the dependent experiments (mean \pm standard error of the mean). *p<0.05, as compared with the control cells.

fon between CDK1 and CASC2 in OSCC. A, CDK1 was significantly upregulated in OSCC tissues compared adjacent tissues. B, The mRNA expression level of CDK1 in CASC2 cells was significantly downregulated compared with ontrol cells in CAL-27 cells. C, Protein expression of CDK1 was downregulated after overexpression of CASC2 in CALThe linear correlation between the expression levels of CDK1 and CASC2 in OSCC tissues. The results represented the average of three independent experiments Data were presented as the mean \pm standard error of the mean. \pm 9<0.05.

been regarded as a potential prognostic and therapeutic marker in a variety of cancers. Inhibition of CDK1 shortens survival time and induces cell apoptosis. For example, upregulated CDK1 in colorectal cancer affects cell proliferation and apoptosis via p53 apoptosis pathway¹⁸. CDK1 is positively correlated with the malignant degree of tumor and CDK1 deficiency can act as a potential biomarker of treatment efficacy in breast cancer¹⁹. CDK1 mediates cell apoptosis and proliferation in ovarian cancer by activating Chk1-CDC25C and P53-P21WAF1 signaling pathway²⁰. In our study, CDK1 was downregulated after CASC2 overexpression in vitro. Moreover, CDK1 was remarkably upregulated in OSCC samples compared with that in adjacent tissues. A negative correlation was discovered between CDK1 and CASC2 expression in OSCC tissues. Our results revealed that CASC2 may exert its function via regulating CDK1.

Conclusions

We detected that lncRNA CASC2 is regulator in the carcinogenesis of OSCC be served as a promising hallmark for OSCC.

Conflict of Interest

The Authors declare that they have conn. interests.

Referen.

- 1) ROSEBUSH MS, F. SK, SAMANT S, HANDORF CR, PFEFFER L. CA. Oral carls induring characterist and roging trends. J venn Dent Assoc 201 91: 24-2
- 2) BROCKLE AST PR, BAKER SING T PM. Oral cancer screening: what have we less and what is there still achieve? Future Oncol 2010; 6: 299-304.
- 3) EA, BROOK, LAM WL. The functional role of on-on-or ig RNA in human carcinomas. Mol
- A) Gutscher Dieder 3. The hallmarks of cancer: long in Living iNA point of view. RNA Biol 2; 9: 70.
- 5) ZHU H, ZHOU Y, WANG H, NIU Z, SHEN Y, LV L. and non-coding RNA MSTO2P promotes the and colony formation in gastric cancer by interfectly regulating miR-335 expression. Tumour Biol 2017; 39: 1393384158.
- J, Sun W, Li C, Wan L, Wang S, Wu Y, E, Zhang H, Lai M. Long non-coding RNA

- LINC01133 inhibits epithelial-mesenchymal transition and metastasis in colorectal cateracting with SRSF6. Cancer Land 1010, 476-484.
- 7) Liu G, Hu X, Zhou G. Long in-coding RNA OR3A4 promotes proliferation migration in breast cancer. Biomed Pharms 2017; 96: 426-433.
- 8) ZHOU HY, ZHU H, WU CHEN XD, QIAN X, YAO XM, TANG JH Coression and clinic nificance of long-recoding P GHET1 in paracreatic cancer. Edward Med Carmacol Sci 2017; 21: 5081-5088
- 9) Liu Z, Wu C IN, Wans a non raing RNA MEG3 into a the proliferal distassis of oral square a cell carcinoma agulating the WNT/ a saignaling path, ay. Oncol Lett 2017 at: 405
- 10) Wu Y, Zhang L, Zhang L, Zhou Wang Y, Li H, Ren X, Zhou X, Yu J, Hao X. Anon-coding RNA L TAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repression E-cadherin in oral squamous cell carcino and Int J Oncol 2015; 46: 2586-2594.
- 11, MA C, Z' JA L, LI N, ZHANG X, HE J, HE R, SHAO AG L, HAN C. LncRNAAC132217.4, a KLI S. Garated long non-coding RNA, facilitates oral squamous cell carcinoma metastasis by uppulating IGF2 expression. Cancer Lett 2017; 3-56.
- MAY, Hu X, SHANG C, ZHONG M, GUO Y. Silencing of long non-coding RNA CCAT2 depressed malignancy of oral squamous cell carcinoma via Wnt/beta-catenin pathway. Tumour Biol 2017; 39: 1393371994.
- 13) ZHANG CZ. Long non-coding RNA FTH1P3 facilitates oral squamous cell carcinoma progression by acting as a molecular sponge of miR-224-5p to modulate fizzled 5 expression. Gene 2017; 607: 47-55.
- 14) WANG D, GAO ZM, HAN LG, XU F, LIU K, SHEN Y. Long noncoding RNA CASC2 inhibits metastasis and epithelial to mesenchymal transition of lung adenocarcinoma via suppressing SOX4. Eur Rev Med Pharmacol Sci 2017; 21: 4584-4590.
- 15) FENG Y, ZOU W, Hu C, Li G, ZHOU S, HE Y, MA F, DENG C, SUN L. Modulation of CASC2/miR-21/PTEN pathway sensitizes cervical cancer to cisplatin. Arch Biochem Biophys 2017; 624: 20-30.
- 16) Wang R, Li Y, Zhu G, Tian B, Zeng W, Yang Y, Li Z. Long noncoding RNA CASC2 predicts the prognosis of glioma patients and functions as a suppressor for gliomas by suppressing Wnt/beta-catenin signaling pathway. Neuropsychiatr Dis Treat 2017; 13: 1805-1813.
- 17) XIONG X, ZHU H, CHEN X. Low expression of long noncoding RNA CASC2 indicates a poor prognosis and promotes tumorigenesis in thyroid carcinoma. Biomed Pharmacother 2017; 93: 391-397.

- 18) GAN W, ZHAO H, LI T, LIU K, HUANG J. CDK1 interacts with iASPP to regulate colorectal cancer cell proliferation through p53 pathway. Oncotarget 2017; 8: 71618-71629.
- 19) GALINDO-MORENO M, GIRALDEZ S, SAEZ C, JA-PON MA, TORTOLERO M, ROMERO F. Both p62/ SQSTM1-HDAC6-dependent autophagy and the
- aggresome pathway mediate CDK1 degradation in human breast cancer. Sci Rep 2017
- 20) ZHANG R, SHI H, REN F, ZHANG M, JOYANG W, C. The aberrant upstream pathway egulations of CDK1 protein were implicated the proliferation and apoptosis of ovarian cast last J Ovarian Res 2017; 10: 60.