Triamcinolone acetonide reduces viability, induces oxidative stress, and alters gene expressions of human chondrocytes

M. SUNTIPARPLUACHA¹, N. TAMMACHOTE², R. TAMMACHOTE³

Abstract. – OBJECTIVE: Patients with knee osteoarthritis (OA) are sometimes prescribed intra-articular injections of glucocorticoids (GCs), such as triamcinolone acetonide (TA). Whether GCs cause chondrotoxicity is not known. We wished to ascertain if TA induces toxicity by causing oxidative stress and alters expression of P21, growth differentiation factor (GDF)15, and cFos.

PATIENTS AND METHODS: Primary chondrocytes isolated from 10 OA patients undergoing total knee replacement surgery were incubated with TA (0, 1, 5, 10 mg/ml), with or without 100 μ M vitamin C for 7 and 14 days for viability assays and 48 h for oxidative stress and gene expression analyses.

RESULTS: TA significantly decreased chondrocyte viability and increased the ratio of oxidized glutathione to total glutathione suggesting an increase in oxidative stress. Vitamin C significantly increased the viability and decreased the oxidative stress of cells treated with 5 mg/ml TA. Expression of *P21*, *GDF15*, and *cFos* increased significantly when TA was added (5.17 \pm 2.4-, 4.96 \pm 3.1-fold for *P21*, 9.97 \pm 2.9- and 4.2 \pm 1.6-fold for *GDF15*, and 6.65 \pm 4.8-, 12.96 \pm 8.3-fold for *cFos* at 1, and 5 mg/ml TA, respectively).

CONCLUSIONS: TA induced chondrotoxicity by increasing oxidative stress and altering expressions of genes involved in cell death. The addition of vitamin C decreased oxidative stress and increased viability, suggesting that antioxidants might attenuate TA toxicity in cartilage.

Key Words:

Triamcinolone acetonide, Oxidative stress, Chondrocyte, Gene expression.

Introduction

Osteoarthritis (OA) of the knee is one of the most common types of arthritis¹, and several

treatment options are available². Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used in patients with joint inflammation owing to their lower toxicity compared with corticosteroid-based drugs. However, some patients are allergic or resistant to the effects of NSAIDs. Ultimately, anti-inflammatory drugs such as synthetic glucocorticoids (GCs) are employed by intra-articular injection into affected joints^{2,3}. These drugs, in complex with their glucocorticoid receptor (GC-receptor), act as transcription factors that inhibit expression of proinflammatory proteins by interfering with the activity of the transcription factor nuclear factor-kappa B, or enhancing expression of anti-inflammatory proteins directly⁴.

Triamcinolone acetonide (TA) is a GC drug used commonly for joint injection in OA patients owing to its extended duration of effect⁵. However, regular use of TA and other GCs is not recommended due to increased risks of joint infection⁶. The balance between its treatment effects and adverse effects on cartilage and chondrocytes is not completely understood^{2,5}. Results from several studies have shown contradictory results regarding the benefits versus toxic effects of TA and or other drugs of the same class. Concerning the protective effects, a study in patients with rheumatoid arthritis reported that a TA derivative, triamcinolone hexacetonide, decreased release of collagen oligomeric matrix protein from cartilage, which in turn lowered cartilage degradation⁷. However, several studies have shown the toxic effects of TA and other GCs on chondrocytes, cartilage, and tissues around the joint, both in vitro and in vivo^{8,9}. A study in OA chondrocytes treated with

¹Biotechnology Program, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand

²Department of Orthopaedics, Faculty of Medicine, Thammasat University Hospital, Khlong Nueng, Pathumthani, Thailand

³Medical Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand

betamethasone or prednisolone resulted in an increase in the number of necrotic chondrocytes¹⁰. Furthermore, a study in primary tenocyte-like cells from the shoulder joint capsule showed that TA decreased cell viability in a dose- and time-dependent manner, and that repeated administrations of TA caused permanent damage to cells¹¹.

Exact mechanisms of TA-induced chondrotoxicity are incompletely understood. One mechanism could be a result of the oxidative stress caused by TA. This notion was supported by a study in a retinal cell line that showed a significant increase in levels of reactive oxygen species (ROS) inside TA-treated cells compared with dexamethasone-treated and non-treated cells¹². However, that result contradicted another study in retinal pigment epithelial cells which reported that TA increased levels of reduced glutathione (GSH), suggesting a decrease in oxidative stress¹³.

Other than reacting with cellular macromolecules, ROS produced in cells also alter expressions of genes involved in cell cycle checkpoint and apoptosis. As a result, two p53-target genes, *P21* and *growth differentiation factor* (*GDF*)-15, were of interest owing to their association with cell cycle control and their signature response to oxidative stress¹⁴. Another gene of interest was *cFos* because it is a subunit of a transcription factor involved in response to oxidative stress: activator protein-1 (AP-1), whose target genes are involved in cell proliferation and apoptosis¹⁵.

We aimed to assess the cytotoxicity and oxidative stress caused by TA on primary chondrocytes from OA knees. The effect of the antioxidant ascorbic acid in relieving TA toxicity upon primary chondrocytes was determined, as well as expression of genes related to cell cycle control and response to oxidative stress.

Patients and Methods

Ethical Approval of the Study Protocol

The study protocol was approved by the Human Ethics Committee of Thammasat University (MTU-ED-OT-4-099/57; Pathumthani, Thailand). All participants were given full information regarding the study objectives and potential problems. All patients provided written informed consent.

Sample Collection

Articular cartilage samples were collected from 10 patients (40-70 years old), diagnosed with Kellgren-Lawrence grade 3-4 radiographic OA of the knee and who underwent knee replacement surgery at the Department of Orthopaedic Surgery, Faculty of Medicine, Thammasat University Hospital.

Isolation of Primary Chondrocytes

Cartilage samples were subjected to several steps of enzyme digestions according to a modified version of Goldring's method¹⁶, except for an overnight incubation time with 1% filtered collagenase (Gibco, Billings, MT, USA) at 37°C instead of 4 h. Released chondrocytes were filtered through a Cell Strainer (diameter, 70 μ m) and centrifuged at 1,000 × g for 5 min. Cell pellets were resuspended in culture medium [DMEM/F12 with 10% fetal bovine serum and a 1% antibiotic-antimycotic mixture (Gibco)] and cultured until they reached confluence. Chondrocytes in passage 1 isolated from each patient were used in all conditions tested.

Viability Assay

Chondrocytes were seeded into 96-well plates at 15,000 cells per well and cultured for 48 h. Then, 100 µl of 0, 1, 5, and 10 mg/ml TA (LBS. Laboratory, Bangkok, Thailand) diluted with the culture medium was added to each well in triplicate per condition, and incubated for 7 and 14 days. Concentrations were adjusted from clinically used TA concentrations (40 mg/ml)¹⁷ according to the ratio between the mean surface area of knee articular cartilage and surface area of the plates^{9,18}. After the incubation was complete, TA was discarded, and 90 µL of fresh media was added. Cell viability was determined by incubation with 10 µL of PrestoBlue® (Invitrogen, Carlsbad, CA, USA), then measuring absorbance at 540 nm with a microplate spectrophotometer. Viabilities of TA-treated cells were calculated by dividing optical density (OD) of the treated cells by OD of their matching controls. For antioxidant treatments, 100 µM of vitamin C (ascorbic acid) (VESCO, Bangkok, Thailand) was added to the culture medium. The vitamin C concentration was chosen according to Yudoh's study¹⁹. In addition, the effects of various vitamin C concentrations (10-1000 μM) were determined in our preliminary experiments. The results showed that vitamin C at 100 µM gave the highest viability percentage.

GSH Assay

Chondrocytes were seeded into six-well plates at 10⁶ cells per well and cultured for 48 h. Then, 0, 1, and 5 mg/ml of TA with and without 100 µM of vitamin C were added to each well in duplicates per condition and incubated for 48 h. Then, cells were collected and lysed for protein collection by the mechanical disruption method using syringe needles. GSH levels were measured using an OxiSelectTM Total Glutathione Assay kit (Cell Biolabs, San Diego, CA, USA).

Gene Expression

Cell treatments were the same as those for the GSH assay except that vitamin C was not added. RNA was extracted using an RNeasy® Mini kit (Qiagen, Stanford, VA, USA). Total RNA (500 ng) was used for cDNA synthesis using AccuPower® RT Premix (Bioneer, Seoul, South Korea). Realtime PCR was carried out using AccuPower® 2 GreenStarTM qPCR Master Mix (Bioneer). Expression was normalized with glyceraldehyde 3-phosphate dehydrogenase (GAPDH)²⁰. All primer pairs for real-time PCR except for P21 gene were designed with NCBI Primer-Blast²¹ and are shown in Table I. One primer of each primer pairs binds to the exon-exon region of the genes; therefore, the primers would not amplify genomic DNA. Efficiencies of real-time PCR conditions were between 97-102% ($r^2 = 0.97-0.99$). Comparative quantification cycle $(2^{-\Delta\Delta Cq})$ method was used for calculation of relative gene expression²².

Statistical Analysis

Analysis of variance with homogeneity of variance test and Tukey's *post hoc* honest significant difference correlation was used to analyze differences between treatment groups using SPSS v-13.0 (SPSS Inc., Chicago, IL, USA). p < 0.05 was considered statistically significant.

Results

TA Reduced Chondrocyte Viability

Results from the viability assay showed a decrease in viability of TA-treated chondrocytes in a dose-dependent manner. Differences of viabilities between the two incubation periods were not significant. Viabilities of cells treated with 1, 5, and 10 mg/ml TA are shown in Table II. Differences in viability compared with controls were significant at all concentrations tested (p < 0.01), and were significantly different between 1 and 10 mg/ml of TA (p = 0.037). Vitamin C slightly increased the viability of cells treated with 1 mg/ml TA with no statistical significance. This increase was significant only for in cells treated with 5 mg/ml TA at day 14 (Table II).

TA Induced Oxidative Stress in Chondrocytes

The ratio of oxidized glutathione to total glutathione (GSSG:total GSH) was used to assess the oxidative stress effect of TA on chondrocytes²³. Durations of the incubations times and TA concentrations that could induce stress without killing chondrocytes were based on results from the viability assay. Value of GSSG:total GSH in TA-treated chondrocytes increased in a dose-dependent manner (0.087 \pm 0.025, 0.394 \pm 0.12, and 0.517 \pm 0.135 in cells treated with 0, 1, and 5 mg/ml TA, respectively) with a significant difference at 5 mg/ml TA (p = 0.02) (Figure 1). Results suggested that cells underwent oxidative stress as a result of TA treatment. Addition of vitamin C decreased the value of GSSG:total GSH $(0.089 \pm 0.023, 0.129 \pm 0.048,$ and 0.123 ± 0.031 in cells treated with 0, 1, and 5 mg/ml TA, respectively) with a significant difference when cells were treated with 5 mg/ml TA (p = 0.025).

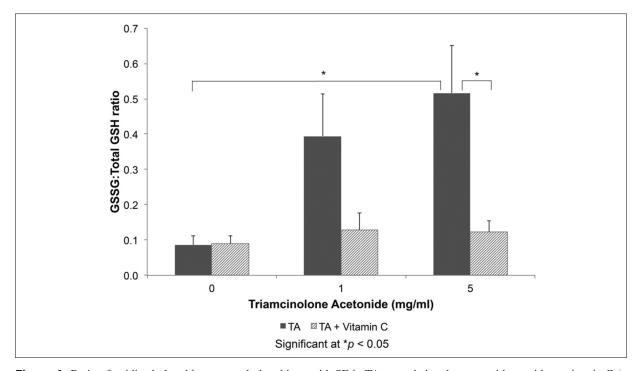
Table I. Primers and annealing temperature for real-time PCR.

Genes	Primers (5'-3')	Tm (°C)	Fm (°C) Amplicon size (bp)		
P21 ⁴²	Forward – TGGAGACTCTCAGGGTCGAA Reverse – CCAGGACTGCAGGCTTCC	61.8 60.5	123		
GDF15	Forward – AAACGCTACGAGGACCTGCT Reverse – GTCACGTCCCACGACCTTGA	59.3 61.4	242		
cFos	Forward – ACTTCATTCCCACGGTCACT Reverse – GCAGCCATCTTATTCCTTTCC	57.3 57.9	277		
GAPDH	Forward – GAAGGTGAAGGTCGGAGTC Reverse – GAAGATGGTGATGGGATTTC	57.2 53.7	237		

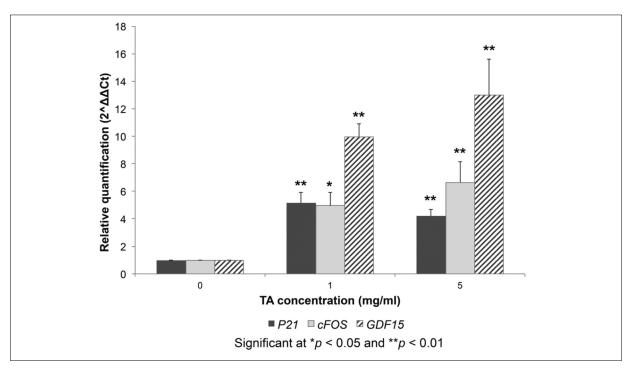
Table II. Viability of TA-treated chondrocytes compared with their matching non-treated controls (% viability \pm standard error; SE) with or without vitamin C at 7 days and 14 days of incubation (n = 10).

Days		1 mg/ml TA		5 mg/ml TA		10 mg/ml TA	
incubatio	n Treatment	% Viability	p	% Viability	p	% Viability	P
7	TA TA with vitamin C	75.43 ± 2.5 76.27 ± 3.0	0.8	70.10 ± 2.9 75.58 ± 2.03	0.15	66.07 ± 2.4 61.34 ± 2.5	0.28
14	TA TA with vitamin C	78.30 ± 4.3 80.81 ± 4.4	0.28	68.55 ± 3.7 76.10 ± 3.2	0.035*	66.05 ± 2.7 65.22 ± 3.15	0.81

^{*}Statistical significance between viabilities of cells treated with and without vitamin C.


TA Affected Expressions of Genes Related to Regulation of the Cell Cycle and Response to Oxidative Stress in Chondrocytes

When chondrocytes were treated with TA, expressions of genes involved in regulation of the cell cycle (P21) and response to oxidative stress (GDF15, cFos) increased significantly compared with those of non-treated chondrocytes (Figure 2). Differences in mRNA levels between cells treated with 1 and 5 mg/ml TA were not significant in any of the three genes. No significant differences (p=0.4) in mRNA levels between cells treated with 1 and 5 mg/ml TA


were observed. Compared with non-treated controls, levels of mRNA from P21 increased 5.17 \pm 0.8- and 4.2 \pm 0.5-fold ($p \le 0.001$), those of cFos increased 4.96 \pm 1.0- (p = 0.029) and 6.65 \pm 1.5-fold (p < 0.01), and those of GDF15 increased 9.97 \pm 0.9- and 12.97 \pm 2.6-fold ($p \le 0.001$) in cells treated with 1 and 5 mg/ml TA, respectively.

Discussions

TA is a widely used GC for treating OA patients by intra-articular injection despite potential

Figure 1. Ratio of oxidized glutathione to total glutathione with SE in TA-treated chondrocytes with or without vitamin C (n =10).

Figure 2. Relative mRNA level with SE of P21, cFos, and GDF15 in chondrocytes treated with TA compared with non-treated controls. GAPDH was used as an internal control (n = 10).

side effects to the injected joints. Several studies have reported that GCs can decrease cartilage integrity and chondrocyte viability. However, the cause of chondrotoxicity is not known.

Although chondrocytes in early stage of OA resulted in increasing cell proliferation, chondrocytes used in this study were taken from patients with late-stage OA, which are vulnerable to apoptosis²⁴. We showed that one of its mechanisms of action was to inflict oxidative stress upon chondrocytes. Most studies of the effects if GCs have been done in chondrocyte cell lines or healthy animals, neither of which represents the disease condition in OA patients. We used primary chondrocytes from the articular cartilage of OA patients, which had pathological conditions similar to those of cells in patients undergoing TA injection.

Results from this study suggested that TA decreases chondrocyte viability and increases oxidative stress to chondrocytes in a dose-dependent manner. They were consistent with results from Farkas et al¹⁰ and Braun et al⁹ which demonstrated that GCs increased chondrocyte death. Results from Zhao et al²⁵ also reported that dexamethasone increased autophagy of chondrocytes leading to a decrease in viability. Moreover,

our results were consistent with those of Chung et al¹² which reported TA-induced ROS production in retinal cells. How TA induces oxidative stress in chondrocytes is not known. There have been reports on the effects of dexamethasone and corticosterone in decreasing antioxidant enzymes and mitochondrial activities in different cell types, such as hippocampal neurons²⁶ and rat pheochromocytoma cell line²⁷. Other studies in lung endothelial cells and neural cells reported that dexamethasone altered expression of nitric oxide synthase²⁸ and genes of endogenous antioxidant enzymes²⁹. Taken together, these data could explain how TA induced oxidative stress in chondrocytes in the present study.

The addition of vitamin C decreased oxidative stress significantly upon treatment with 5 mg/ml TA, which is consistent with the results from the viability assay. This might be explained by results from a study demonstrated that dexamethasone increased expression of *SVCT2*, a vitamin C transporter, in rabbit intervertebral disc cells³⁰. Therefore, the higher benefits of vitamin C in chondrocytes treated with higher concentration of TA might be from the higher expression of SDVT2, hence more vitamin C was transported into chondrocytes. Moreover, vitamin C might

affect chondrocytes proliferation via other pathways independent of its antioxidant role as it is an important cofactor of several enzymes³¹. Results from this study suggested that vitamin C might be a potential supplement used for reducing TA-induced oxidative stress in chondrocytes of OA patients. It might be locally co-injected into the joints as nutritive mixture solution³², or as sodium ascorbate in deoxygenated saline³³. Using vitamin C in combination with other antioxidants (e.g. vitamin E) might also increase antioxidation capacity and cell viability³⁴.

Alteration in expression of genes involved in cell cycle progress and apoptosis by oxidative stress was evaluated in our work. Results from gene expression analyses showed that all three genes had a significant increase in expressions compared with those of controls. One of the deleterious consequences of oxidative stress is DNA damage. Hence, the increase in P21 expression observed in our study could have been due to induction of a p53-dependent mechanism that occurs in response to DNA damage, which leads to the arrest of cell-cycle progression³⁵. GDF15 is a target gene of p53 rapidly induced by stresses. Increased levels of GDF15 in several investigations suggest its roles in both preventions of apoptosis³⁶ and induction of cell death³⁷. The increased expression of cFos observed in the present report could have resulted from ROS activation of mitogen-activated protein kinase signaling pathways that can prevent^{38,39} and induce cell death¹⁵. We suspect that the increased expression of GDF15 and cFos observed in our study had a destructive effect upon chondrocytes because of a significant decrease in cell viability after TA treatment.

Limitation of this paper was that chondrocytes were cultured in monolayer, while, in the body, they have a three dimensional interaction with neighboring cells and are embedded in the extracellular matrix. Chondrocytes used in all experiments were in passage 1 in order to minimize phenotypic changes. Studies reported that chondrocytes at passage 2 cultured for less than 21 days could maintain their chondrocyte-specific protein expressions^{40,41}.

Conclusions

We demonstrated that TA was associated with chondrotoxicity by increasing oxidative stress and led to increased expressions of genes involved in cell cycle check-point and apoptosis. Use of antioxidants in combination with GCs might decrease destructive effects in cartilage. Further, *in vivo* studies may help to ascertain this suggestion.

Declaration of Funding Interests

This research was supported by the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund, grant number 1/2558) and by the Institute for the Promotion of Teaching Science and Technology (IPST) under the Research Fund for DPST Graduate with First Placement (grant number 015/2555).

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

- FRANSEN M, BRIDGETT L, MARCH L, HOY D, PENSERGA E, BROOKS P. The epidemiology of osteoarthritis in Asia. Int J Rheum Dis 2011; 14: 113-121.
- AMERICAN ASSOCIATION OF ORTHOPAEDIC SURGEONS (AAOS). Treatment of osteoarthritis of the knee: based guideline – 2nd edition. Illinois: 18 May 2013.
- 3) LAVELLE W, LAVELLE ED, LAVELLE L. Intra-articular injections. Anesthesiol Clin 2007; 25: 853-862.
- RHEN T, CIDLOWSKI JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med 2005; 353: 1711-1723.
- NEUSTADT D. Intra-articular therapy. In: Howell DS AR, Buckwalter JA, Goldberg VM ed. Osteoarthritis: diagnosis and medical/surgical management. Philadelphia, USA: W.B. Saunders, 2001: 284-301.
- EVANS CH, KRAUS VB, SETTON LA. Progress in intraarticular therapy. Nat Rev Rheumatol 2014; 10: 11-22.
- WEITOFT T, LARSSON A, SAXNE T, RONNBLOM L. Changes of cartilage and bone markers after intra-articular glucocorticoid treatment with and without postinjection rest in patients with rheumatoid arthritis. Ann Rheum Dis 2005; 64: 1750-1753.
- CELESTE C, IONESCU M, ROBIN POOLE A, LAVERTY S. Repeated intraarticular injections of triamcinolone acetonide alter cartilage matrix metabolism measured by biomarkers in synovial fluid. J Orthop Res 2005; 23: 602-610.
- BRAUN HJ, WILCOX-FOGEL N, KIM HJ, POULIOT MA, HARRIS AH, DRAGOO JL. The effect of local anesthetic and corticosteroid combinations on chondrocyte viability. Knee Surg Sports Traumatol Arthrosc 2012; 20: 1689-1695.
- FARKAS B, KVELL K, CZOMPOLY T, ILLES T, BARDOS T. Increased chondrocyte death after steroid and local

- anesthetic combination. Clin Orthop Relat Res 2010; 468: 3112-3120.
- 11) HARADA Y, KOKUBU T, MIFUNE Y, INUI A, SAKATA R, MU-TO T, TAKASE F, KUROSAKA M. Dose- and time-dependent effects of triamcinolone acetonide on human rotator cuff-derived cells. Bone Joint Res 2014; 3: 328-334.
- CHUNG H, HWANG JJ, KOH JY, KIM JG, YOON YH. Triamcinolone acetonide-mediated oxidative injury in retinal cell culture: comparison with dexamethasone. Invest Ophthalmol Vis Sci 2007; 48: 5742-5749.
- MIURA Y, ROIDER J. Triamcinolone acetonide prevents oxidative stress-induced tight junction disruption of retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 2009; 247: 641-649.
- 14) HAN ES, MULLER FL, PEREZ VI, QI W, LIANG H, XI L, FU C, DOYLE E, HICKEY M, CORNELL J, EPSTEIN CJ, ROBERTS LJ, VAN REMMEN H, RICHARDSON A. The in vivo gene expression signature of oxidative stress. Physiol Genomics 2008; 34: 112-126.
- RODUIT R, SCHORDERET DF. MAP kinase pathways in UV-induced apoptosis of retinal pigment epithelium ARPE19 cells. Apoptosis 2008; 13: 343-353.
- 16) PICOT J, JONES GE. Human cell culture protocols. 2nd ed. New Jersey: Human Press, 2005.
- Schumacher HR, Chen LX. Injectable corticosteroids in treatment of arthritis of the knee. Am J Med 2005; 118: 1208-1214.
- DRAGOO JL, DANIAL CM, BRAUN HJ, POULIOT MA, KIM HJ. The chondrotoxicity of single-dose corticosteroids. Knee Surg Sports Traumatol Arthrosc 2012; 20: 1809-1814.
- 19) YUDOH K, NGUYEN VT, NAKAMURA H, HONGO-MASUKO K, KATO T, NISHIOKA K. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res Ther 2005; 7: R380-391.
- AGOSTON H, BAYBAYAN L, BEIER F. Dexamethasone stimulates expression of C-type natriuretic peptide in chondrocytes. BMC Musculoskelet Disord 2006; 7: 87.
- 21) YE J, COULOURIS G, ZARETSKAYA I, CUTCUTACHE I, ROZEN S, MADDEN TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012; 13: 134.
- PFAFFL M. Relative quantification. In: Dorak M, ed. Real-time PCR. Taylor and Francis Group, 2006; pp. 63-82.
- OWEN JB, BUTTERFIELD DA. Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol 2010; 648: 269-277.
- 24) GOLDRING MB, GOLDRING SR. Osteoarthritis. J Cell Physiol 2007; 213: 626-634.
- 25) ZHAO Y, ZUO Y, HUO HJ, XIAO YL, YANG SJ, XIN DO. Glucocorticoid induced autophagy in N1511 chondrocyte cells. Eur Rev Med Pharmacol Sci 2014; 18: 3573-3579.

- 26) You JM, Yun SJ, Nam KN, Kang C, Won R, Lee EH. Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol 2009; 87: 440-447.
- 27) TANG VM, YOUNG AH, TAN H, BEASLEY C, WANG JF. Glucocorticoids increase protein carbonylation and mitochondrial dysfunction. Horm Metab Res 2013; 45: 709-715.
- 28) GROVER TR, ACKERMAN KG, LE CRAS TD, JOBE AH, ABMAN SH. Repetitive prenatal glucocorticoids increase lung endothelial nitric oxide synthase expression in ovine fetuses delivered at term. Pediatr Res 2000; 48: 75-83.
- MUTSAERS HA, TOFIGHI R. Dexamethasone enhances oxidative stress-induced cell death in murine neural stem cells. Neurotox Res 2012; 22: 127-137.
- 30) CHOTHE PP, CHUTKAN N, SANGANI R, WENGER KH, PRASAD PD, THANGARAJU M, HAMRICK MW, ISALES CM, GANAPATHY V, FULZELE S. Sodium-coupled vitamin C transporter (SVCT2): expression, function, and regulation in intervertebral disc cells. Spine J 2013; 13: 549-557.
- 31) CHAMBIAL S, DWIVEDI S, SHUKLA KK, JOHN PJ, SHARMA P. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 2013; 28: 314-328
- 32) PARK YS, LIM SW, LEE IH, LEE TJ, KIM JS, HAN JS. Intra-articular injection of a nutritive mixture solution protects articular cartilage from osteoarthritic progression induced by anterior cruciate ligament transection in mature rabbits: a randomized controlled trial. Arthritis Res Ther 2007; 9: R8.
- 33) FU SC, CHENG WH, CHEUK YC, MOK TY, ROLF C, YUNG SH, CHAN KM. Development of vitamin C irrigation saline to promote graft healing in anterior cruciate ligament reconstruction. J Orthop Translat 2013; 1: 67-77.
- 34) BUETTNER GR, SCHAFER FQ. Ascorbate as an antioxidant. In: Asard H, May JM, Smirnoff N, ed. Vitamin C: functions and biochemistry in animals and plants. Oxon, UK: Garland Science/BIOS Scientific Publishers, 2004; pp. 173-185.
- 35) VALKO M, LEIBFRITZ D, MONCOL J, CRONIN MT, MAZUR M, TELSER J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39: 44-84.
- 36) LI J, YANG L, QIN W, ZHANG G, YUAN J, WANG F. Adaptive induction of growth differentiation factor 15 attenuates endothelial cell apoptosis in response to high glucose stimulus. PLoS One 2013; 8: e65549.
- 37) SCHLITTENHARDT D, SCHOBER A, STRELAU J, BONATERRA GA, SCHMIEDT W, UNSICKER K, METZ J, KINSCHERF R. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res 2004; 318: 325-333.
- 38) POCRNICH CE, LIU H, FENG M, PENG T, FENG Q, HUTNIK CM. p38 mitogen-activated protein kinase pro-

- tects human retinal pigment epithelial cells exposed to oxidative stress. Can J Ophthalmol 2009; 44: 431-436.
- 39) ZHOU H, GAO J, LU ZY, LU L, DAI W, XU M. Role of c-Fos/JunD in protecting stress-induced cell death. Cell Prolif 2007; 40: 431-444.
- 40) MA B, LEUTEN JC, WU L, KIP M, VAN BLITTERSWUK CA, POST JN, KARPERIEN M. Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthritis Cartilage 2013; 21: 599-603.
- 41) SCHNABEL M, MARLOVITS S, ECKHOFF G, FICHTEL I, GOTZEN L, VECSEI V, SCHLEGEL J. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 2002; 10: 62-70.
- 42) Luo Y, Zou P, Zou J, WANG J, ZHOU DH, LIU LB. Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPK alpha dependent manner. Exp Gerontol 2011; 46: 860-867.