The identification of multifocal breast cancer-associated long non-coding RNAs

Z.-Q. LANG^{1,2}, Y.-Q. WU³, X.-B. PAN², G.-M. QU², T.-G. ZHANG¹

Zhiqiang Lang and Yanqiu Wu contributed equally

Abstract. – OBJECTIVE: To identify long non-coding RNAs (IncRNAs), which may be associated with multifocal and multicentric breast cancer (MMBC) by analyzing the differential expression of non-coding RNA in MMBC and unifocal breast cancers (UBC).

PATIENTS AND METHODS: 156 cases of invasive MMBC patients (136 patients with 2 focuses and 20 patients with 3 focuses) and 130 cases of UBC were collected from January 2005 to December 2015 in Yantai Yuhuangding Hospital. The differentially expressed IncRNAs in MMBC and UBC were screened by gene chip. RT-PCR was used to verify the differentially expressed IncRNAs.

RESULTS: Significantly different expression was found in 1080 IncRNAs between MMBC and UBC (FC > 4, p < 0.05), among which, 458 were upregulated and 622 were down-regulated. In homologous IncRNAs, the expression levels of four IncRNAs including C19orf33, C3orf52, C15orf48 and C4orf19 in MMBC tissue were significantly different than those in UBC tissues. RT-PCR verified that the expression of C19orf33, C3orf52 and C15orf48 in MMBC tissue was significantly up-regulated and the expression of C4orf19 was significantly down-regulated, which was consistent with that of gene chip.

CONCLUSIONS: C19orf33, C3orf52, C15orf48 and C4orf19 may have important functions in MMBC, and may be used as markers for MMBC.

Key Words:

Non-coding RNA, Multicentric breast cancer (MMBC), Unifocal breast cancers, Differential expression.

Introduction

Breast cancer is a malignant tumor, which develops from breast tissue¹. Previous studies indicated that various populations were in poor health, suffering from it^{2,3}. As the most common

female cancers, breast cancer was reported to affect 1 out of 8 women worldwide and bring heavy psychological and economic burden to the patients and their families^{4,5}. Due to the intrinsic resistance, previous clinical studies have shown that about 50% patients with breast cancer usually failed to respond to initial drug treatments, which in turn affect the outcomes⁶. Even worse, drug resistance, which was developed during the application of drugs in most of the cases, can significantly reduce the treatment efficacy and lead to the development of aggressive malignancies^{7,8}. Multifocal and multicentric breast cancer, which is also called MMBC, is one type of breast cancer with multiple simultaneous foci⁹. Besides the above mentioned difficulties in the treatment of breast cancer, the treatment of MMBC is also challenged by the specific problems caused by its distinct pathogenesis features. Traditional treatments have been proved to be less effective in the treatment of MMBC compared with the treatment of UBC¹⁰. Due to the multiple invasive foci developed in MMBC, radiotherapy is less effective in stopping the tumor development and metastasis and the recurrence rate is high¹¹. In addition, multiple wide local excisions caused by surgical treatment (either quadrantectomy or segmental resection) usually lead to less good cosmetic outcome¹². Biomarkers have been widely used in the diagnosis and treatment of breast cancer. However, the specific biomarkers for MMBC still lack. Therefore, it will be of great clinical values to identify MMBC-specific biomarkers to improve the diagnosis and treatment of MMBC.

Long non-coding RNAs, which are also known as lncRNA, are a group of non-protein coding RNAs longer than 200 nucleotides. They are longer than short interfering RNAs (siRNAs),

¹Department of Pathology, Qilu Hospital, Shandong University, Jinan, China

²Department of Pathology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China

³Department of Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China

microRNAs (miRNAs) and other short RNAs¹³. lncRNAs play essential roles in a variety of physiological process, especially in the onset and progression human diseases, including liver diseases, heart diseases and may types of cancer¹⁴⁻¹⁶. Yuan et al¹⁷ reported that an lncRNA can be activated by transforming growth factor β $(TGF-\beta)$ to promote the invasion and metastasis of hepatocellular carcinoma. In the progression of breast cancer, the nuclear factor NF-κB (NF-κB) can interact with long noncoding RNA to block the phosphorylation of inhibitor of NF-κB (IκB) to inhibit the tumor metastasis¹⁸. It also found that lncRNA UCA1 can regulate the growth and apoptosis of breast cancer cells by downregulating tumor suppressive miR-14319. In view of the diverse biological functions of lncRNAs and the pathogenesis of breast cancer and MMBC, it will be reasonable to speculate that specific lncRNAs may be involved in the onset and progression of MMBC.

In this study, Gene chip assay was used to identify differentially expressed lncRNAs in MMBC and UBC tissues. After validation with RT-PCR, we identified multiple MMBC-specific differentially expressed lncRNAs that can potentially serve as biomarker for the diagnosis and treatment of MMBC.

Patients and Methods

Clinical Data

This research has been approved by the Ethics Committee of the Qilu Hospital. All the patients signed the informed consent. A total of 3597 cases of invasive ductal carcinoma diagnosed between January 2005 and December 2015 in Yantai Yuhuangding Hospital were reviewed, and 156 cases of MMBC were selected by two experienced pathologists. Inclusion criteria are as follows; firstly, the presence of two or more invasive cancer lesions in the ipsilateral mammary gland, regardless of whether the lesion is located in the same segment. There is normal breast tissue between the lesions, but the distance between the lesions is not a concern. Secondly, only cases of invasive ductal carcinoma were selected for study; the cases with other types of invasive carcinoma were excluded. A total of 130 cases of UBC were also selected. All the classifications were determined according to the WHO Classification of Breast Tumors (2012 edition).

Gene Chip Assay

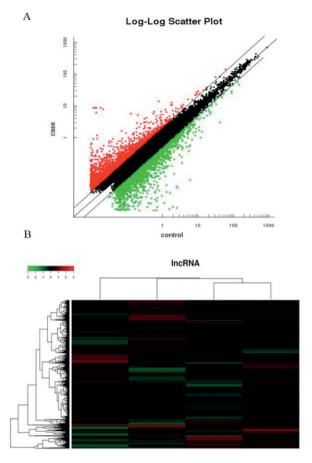
MMBC and UBC tissues (0.4 g) were subjected to RNA extraction using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The first strand cDNA probe was synthesized by PCR using a First Strand cDNA Synthesis Kit (Applied Biosystems, Foster City, CA, USA) and labeled with Cy3 fluorescence. After quantification and denature, the probe was hybridized with the gene chip (LncRNA + mRNA Human Gene Expression Microarray V4.0, capital biotech, Beijing, China) using a hybridization kit (Promega, Madison, WI, USA). After hybridization, ScanArray 4000 scanner (Packard Biochip Technologies, Billerica, CA, USA) was used to scan the gene chip. All the gene chip data analyses were performed by Capital Biotech (Beijing, China).

RT-PCR to Detect the Expression of Differentially Expressed IncRNAs

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract total RNA from the MMBC and UBC tissues according to the instruction. The reverse transcription reaction was then carried out using a kit (Promega, Madison, WI, USA) according to the instructions. The SYBR Green master kit (Applied Biosystems, Foster City, MA, USA) and 1 µl of cDNA were used to prepare the PCR reaction system.

The following primers were used: 5'-AAAG-GCCTCCAACTTCAGGG-3' (sense) and 5'-GT-GGGACTTCACATCCGTGT-3' (anti-sense) for C19orf33: 5'-GCAGAGGTGCACTGTCTTCT-3' (sense) 5'-TCACAGGAACAACGAGand GAGC-3' (anti-sense) for C3orf52; 5'-CGGC-GTCCAGATTTGGCAAT-3' (sense) and 5'-GAG-GGCTCGTCATTTGGTCA-3' for C15orf48; 5'-ACTGTTCCCCCAACTCAACC-3' (sense) and 5'-TGGGGCTGGTATCTGGAAGA-3' (anti-sense) for C4orf19, and 5'-GAAAGCCTGCCGGT-GACTAA-3' (sense) and 5'-AGGAAAAGCAT-CACCCGGAA-3' (anti-sense) for GAPDH. The reaction conditions: 95°C for 3 min, followed by 35 cycles of 95°C for 30 s, 55°C for 30 s and 72°C for 45 s. The specificity of amplification was tested by melting curve analysis. The relative expression of RNA was calculated by 2-AACt method. GAPDH was used as the endogenous control. Each sample was independently tested for three times. All the primers were synthesized by Sangon (Shanghai, China).

Statistical Analysis


The data were processed with Feature Extraction software (Santa Clara, CA, USA) and

the processed data were then analyzed by Gene Spring GX software (Santa Clara, CA, USA) to calculate the gene expression differences and p-values. The comparisons of the RT-PCR results between groups were performed by t-test and p < 0.05 was considered to be statistically significant.

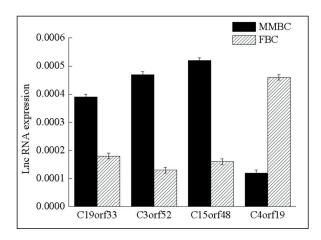
Results

The Differential Expression of IncRNAs in MMBC and UBC Tissues

As shown in Scatter Plot (Figure 1A), the dots above the uppermost line and below the lower-most line represent the lncRNAs with more than 2 times' expression differences in MMBC and UBC tissues (p < 0.05). Cluster analysis (Figure 1B) showed that there were 1080 lncRNAs with

Figure 1. *A,* Scatter plot to show the expression patterns of lncRNAs. *B,* Cluster analysis of the expression of lncRNAs. Red color represents the upregulated lncRNAs in MMBC tissue, and green color represents the down-regulated lncRNAs in MMBC tissue.

significantly differential expression (FC > 4, p < 0.05), of which 458 were upregulated and 622 were down-regulated in MMBC tissue. Our data suggested that the expression of a huge number of lncRNAs was differentially regulated in MMBC and UBC tissues.


In homologous lncRNAs, the expression levels of four lncRNAs including C19orf33, C3orf52, C15orf48 and C4orf19 in MMBC tissue, were significantly different than those in UBC tissues. RT-PCR verified that the expression of C19orf33, C3orf52 and C15orf48 in MMBC tissue was significantly up-regulated and the expression of C4orf19 was significantly down-regulated, which was consistent with that of gene chip. Further analysis of lncRNAs with significantly differential expression in MMBC and UBC tissue found that, in homologous IncRNAs, four lncRNAs including C19orf33, C3orf52, C15orf48 and C4orf19, showed significantly differential expression. In MMBC tissue, C19orf33, C3orf52 and C15orf48 were up-regulated and C4orf19 was down-regulated (Table I). Gene ontology (GO) analysis showed that C19orf33 was associated with double DNA binding (GO: 0003690 double-stranded DNA binding), single strand DNA binding (GO: 0003697 single-stranded DNA binding), nucleus (GO: 0005634 nucleus) and biological process (GO: 0008150 biological process); C3orf52 is associated with the endoplasmic reticulum membrane (GO: 0016021 integral to membrane) and membrane composition (GO: 0016021 integral to membrane); C15orf48 was associated with the nucleus (GO: 0005634 nucleus), mitochondria (GO: 0005739 mitochondrion).

RT-PCR Verification of Differential Expressed Homologous IncRNAs

RT-PCR was used to detect the expression of IncRNA C19orf33, C3orf52, C15orf48 and C4orf19 in both MMBC and UBC tissues. Consistent with the results of the gene chip, the expression levels of C19orf33, C3orf52 and C15orf48 in MMBC tissue were 0.00039 ± 0.00004 , 0.00046 ± 0.00006 and 0.00052 ± 0.00005 , respectively, which were significantly higher than those in UBC tissue (0.00018 ± 0.00005 , 0.00013 ± 0.00004 and 0.00016 ± 0.00003 , respectively). The expression level of C4orf19 in MMBC was 0.00012 ± 0.00004 , which was significantly lower than that in UBC tissue (0.00044 ± 0.00005 , Figure 2). Our data indicate that the results of gene chip were reliable.

Table I. Differential expressed homologous IncRNAs.

Gene symbol	Gene name	Probe sequence	Trend
C19orf33	Chromosome 19 open reading frame 33	AAGAAGAAGGCTCCCCACTGAAGGGCCCTGGACAGGGCTCATTAAACCTTCCTCT	αD
C3orf52	Chromosome 3 open reading frame 52	ACCAGGAGAAAGAGTTTTGTGCTGTATTGTGAGAGATCTCGCCTCTCAGTTAAATGAGCC	$^{ m CD}$
C15orf48	Chromosome 15 open reading frame 48	AGTGTGCGGAAATGCTTCTGCTACATTTTTAGGGTTTGTCTACATTTTTGGGCTCTGGA	Ω D
C4orf19	Chromosome 4 open reading frame 19	ACACCTTGACCTTAACTTTTTACTTTTAAATCTCCTTTGGGATTGGGGAGG	Down

Figure 2. The expression levels of lncRNA C19orf33, C3orf52, C15orf48 and C4orf19 detected by RT-PCR.

Discussion

Breast cancer is not a homogeneous disease but a group of heterogeneous diseases with different morphologic, clinical and molecular features²⁰. Various vulnerable groups suffered from it21,22. Breast cancer affects 1 in 8 women and about 1/3 of the patients used to die from the disease^{4,12}. Multiple biochemical markers have been identified for the diagnosis and treatment of breast cancer¹². Estrogen receptor (ER) plays pivotal roles in estrogen-dependent growth, and the changes of ER can be used to accurately predict the outcomes of the hormone therapy and the prognosis of ER-positive breast cancer²³. The immunohistochemical testing of progesterone receptor (PgR), which is an estrogen-responsive gene, is also routinely performed in the treatment of ER-positive breast cancer²³. Besides those two routinely used hormone receptors, breast cancer 1 (BRCA1) and BRCA2 were also identified as novel maker for the prediction of patients with high risk of breast cancer¹². Previous studied have shown that women with mutation in BRCA1 or BRCA2 genes have a risk of breast cancer up to 45-80% during their whole life²⁴. The breast cancer cells with BRCA mutation usually lack the DNA-repair mechanism, which is responsible for the error-free DNA double-strand break repair. Therefore, tumor will occur due to the error prone replication²⁵. A recent study which carried out a genomic patterns resembling of breast cancers with BRCA1- and BRCA2-mutations using array comparative genomic hybridization (aCGH) have shown that aCGH can be used for the effective identification of breast cancer patients with ER-positive, triple-negative and HER2-negative breast cancer tumors, which can be treated with the intensified, DSB-inducing chemotherapy, and the early diagnosis significantly improved the treatment out comes²⁶. Aside from above-mentioned well-established biomarkers in the diagnosis and treatment of breast cancer and the prediction of outcomes, the specific makers for MMBC are still lack. The development of preoperative breast imaging techniques has greatly improved the identification of MMBC²⁷. However, those methods can only be used to identify visible tumors but lack the ability to identify MMBC before the tumor onset. Compared with UBC, more lymph nodes were involved in MMBC, and previous studies have shown that the treatment of MMBC with different therapies usually provide worse overall outcomes compared with the treatment of UBC²⁸. Therefore, the identification of early diagnosis biomarkers is urgently needed. LncRNAs is a group of recently identified noncoding RNAs with diverse functions in various physiological and biochemical pathways¹³. Ge et al²⁹ reported that lncRNA PCAT-1 is associated with the progression of colorectal cancer and the overexpression of this lncRNA is a biomarker for the poor prognosis of patients with colorectal cancer. In the study of pancreatic cancer, the abnormal higher expression level of lncRNA HULC was found to be positively correlated with the tumor size; therefore, lncRNA HULC is a novel biomarker of the poor prognosis of this disease³⁰. In the diagnosis of non-small cell lung cancer, the detection of lncRNA MALAT1 in blood was found to be able to serve as a reference³¹. Recent studies have shown that lncRNAs are also involved in the regulation of tumor metastasis during the progression of breast cancer¹⁸, indicating the potential of lncRNAs to serve as markers for the diagnosis of breast cancer. However, to our knowledge there are no studies on the functions of lncRNAs in MMBC have been reported. In our paper, gene chip technique was utilized to identify the differentially expressed lncRNAs in MMBC and UBC tissues. Gene chip technique, which can provide a genome-wide vies with a single experiment, is a powerful tool for genomic study³². In previous researches, gene chip has been used to differentially expressed gene in different tissues to identify pathway-specific or disease-specific gene expression. Based on the gene chip data, 110 out of 14500 known genes were found to be associated with lymphatic metastasis in mouse³³. In our work, gene chip data analysis

of 156 cases of invasive MMBC and 130 cases of UBC showed that 458 lncRNAs were upregulated and 622 were downregulated in MMBC tissue compared with UBC tissues. In addition, the differential expression of homologous lncRNA C19orf33, C3orf52, C15orf48 and C4orf19 were validated by RT-PCR. Our data suggested that the expression regulation of lncRNAs was related to the development of MMBC.

Conclusions

We showed that a huge number of LncRNAs including C19orf33, C3orf52, C15orf48 and C4orf19 were differentially expressed in MMBC and UBC tissue. So, those lncRNA may have important functions in the development of MMBC and may serve as markers to distinguish MMBC from UBC.

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- IGENE H. Global health inequalities and breast cancer: an impending public health problem for developing countries. Breast J 2008; 14: 428-434
- 2) LIANG Y, Lu P. Medical insurance policy organized by Chinese government and the health inequity of the elderly: longitudinal comparison based on effect of New Cooperative Medical Scheme on health of rural elderly in 22 provinces and cities. Int J Equity Health 2014; 13: 37.
- LIANG Y, ZHU D. Subjective well-being of Chinese landless peasants in relatively developed regions: measurement using PANAS and SWLS. Soc Indic Res 2015; 123: 817-835.
- EKWUEME DU, GUY GP JR, RIM SH, WHITE A, HALL IJ, FAIRLEY TL, DEAN HD. Health and economic impact of breast cancer mortality in young women, 1970-2008. Am J Prev Med 2014; 46: 71-79.
- JEMAL A, BRAY F, CENTER MM, FERLAY J, WARD E, FOR-MAN D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90.
- O'Driscoll L, Clynes M. Biomarkers and multiple drug resistance in breast cancer. Curr Cancer Drug Tar 2006; 6: 365-384.

- SEGUIN L, DESGROSELLIER JS, WEIS SM, CHERESH DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 2015; 25: 234-240.
- Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint Victor C, Wiemann BZ, Ishwaran H, Ter Brugge PJ, Jonkers J, Slingerland J, Minn AJ. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 2014; 159: 499-513.
- Neri A, Marrelli D, Megha T, Bettarini F, Tacchini D, De Franco L, Roviello F. Clinical significance of multifocal and multicentric breast cancers and choice of surgical treatment: a retrospective study on a series of 1158 cases. BMC Surg 2015; 15: 1.
- NIJENHUIS MV, EMIEL JT. Conservative surgery for multifocal/multicentric breast cancer. Breast 2015; 24: S96-S99.
- 11) CALÌ CASSI L, VANNI G, PETRELLA G, ORSARIA P, PISTOLESE C, LO RUSSO G, INNOCENTI M, BUONOMO O. Comparative study of oncoplastic versus non-oncoplastic breast conserving surgery in a group of 211 breast cancer patients. Eur Rev Med Pharmacol Sci 2016; 20: 2950-2954.
- DUFFY MJ. Biochemical markers in breast cancer: which ones are clinically useful? Clin Biochem 2001; 34: 347-352.
- 13) Perkel JM. Visiting "noncodarnia". Biotechniques 2013; 54: 303-304.
- 14) WANG K, LIU F, ZHOU LY, LONG B, YUAN SM, WANG Y, LIU CY, SUN T, ZHANG XJ, LI PF. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489 novelty and significance. Circ Res 2014; 114: 1377-1388.
- Takahashi K, Yan I, Haga H, Patel T. Long noncoding RNA in liver diseases. Hepatology 2014; 60: 744-753.
- PRENSNER JR, CHINNAIYAN AM. The emergence of IncRNAs in cancer biology. Cancer Discov 2011; 1: 391-407.
- 17) YUAN J, YANG F, WANG F, MA JZ, GUO YJ, TAO QF, LIU F, PAN W, WANG TT, ZHOU CC, WANG SB, WANG YZ, YANG Y, YANG N, ZHOU WP, YANG GS, SUN SH. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014; 25: 666-681.
- 18) LIU B, SUN L, LIU Q, GONG C, YAO Y, LV X, LIN L, YAO H, SU F, LI D, ZENG M, SONG E. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 2015; 27: 370-381.
- 19) Tuo YL, Li XM, Luo J. Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143. Eur Rev Med Pharmacol Sci 2015; 19: 3403-3411.
- 20) Wolters R, Wöckel A, Janni W, Novopashenny I, Ebner F, Kreienberg R, Wischnewsky M, Schwentner L;

- BRENDA STUDY GROUP. Comparing the outcome between multicentric and multifocal breast cancer: what is the impact on survival, and is there a role for guideline-adherent adjuvant therapy? A retrospective multicenter cohort study of 8,935 patients. Breast Cancer Res Treat 2013; 142: 579-590.
- 21) BATORI M, RUGGIERI M, CHATELOU E, STRANIERO A, MARIOTTA G, PALOMBI L, CASELLA G, BASILE M, CASELLA MC. Breast cancer in young women: case report and a review. Eur Rev Med Pharmacol Sci 2006; 10: 51-52.
- LIANG Y, WANG L, YIN X. The factor structure of the 12-item general health questionnaire (GHQ-12) in young Chinese civil servants. Health Qual Life Outcomes 2016; 14: 136.
- 23) Hosoda M, Yamamoto M, Nakano K, Hatanaka KC, Takakuwa E, Hatanaka Y, Matsuno Y, Yamashita H. Differential expression of progesterone receptor, FOXA1, GATA3, and p53 between pre-and postmenopausal women with estrogen receptor-positive breast cancer. Breast Cancer Res Treat 2014; 144: 249-261.
- 24) TESORIERO AA, WONG EM, JENKINS MA, HOPPER JL, BROWN MA, CHENEVIX-TRENCH G, SPURDLE AB, SOUTH-EY MC; KCONFAB. Molecular characterization and cancer risk associated with BRCA1 and BRCA2 splice site variants identified in multiple-case breast cancer families. Hum Mutat 2005; 26: 495.
- 25) LEE JM, HAYS JL, ANNUNZIATA CM, NOONAN AM, MINA-SIAN L, ZUJEWSKI JA, YU M, GORDON N, JI J, SISSUNG TM, FIGG WD, AZAD N, WOOD BJ, DOROSHOW J, KOHN EC. Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst 2014; 106: dju089.
- 26) VOLLEBERGH MA, LIPS EH, NEDERLOF PM, WESSELS LF, WESSELING J, VD VIJVER MJ, DE VRIES EG, VAN TINTEREN H, JONKERS J, HAUPTMANN M, RODENHUIS S, LINN SC. Genomic patterns resembling BRCA1-and BRCA2-mutated breast cancers predict benefit of intensified carboplatin-based chemotherapy. Breast Cancer Res 2014; 16: R47.
- 27) WILKINSON LS, GIVEN-WILSON R, HALL T, POTTS H, SHAR-MA AK, SMITH E. Increasing the diagnosis of multifocal primary breast cancer by the use of bilateral whole-breast ultrasound. Clin Radiol 2005; 60: 573-578.
- 28) REZO A, DAHLSTROM J, SHADBOLT B, RODINS K, ZHANG Y, DAVIS AJ; ACT & SENSW BCTG. Tumor size and survival in multicentric and multifocal breast cancer. Breast 2011; 20: 259-263.
- 29) GE X, CHEN Y, LIAO X, LIU D, LI F, RUAN H, JIA W. Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol 2013; 30: 588.
- Peng W, Gao W, Feng J. Long noncoding RNA HULC is a novel biomarker of poor prognosis in patients with pancreatic cancer. Med Oncol 2014; 31: 1-7.

- 31) Weber DG, Johnen G, Casjens S, Bryk O, Pesch B, Jöckel KH, Kollmeier J, Brüning T. Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of nonsmall cell lung cancer. BMC Res Notes 2013; 6: 518.
- 32) Xu SH, Qian LJ, Mou HZ, Zhu CH, Zhou XM, Liu XL, Chen Y, Bao WY. Difference of gene expression profiles between esophageal car-
- cinoma and its pericancerous epithelium by gene chip. World J Gastroenterol 2003; 9: 417-422.
- 33) Song B, Tang J W, Wang B, Cui XN, Hou L, Sun L, Mao LM, Zhou CH, Du Y, Wang LH, Wang HX, Zheng RS, Sun L. Identify lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines using gene chip. World J Gastroenterol 2005; 11: 1463-1472.