# Long noncoding RNA ZFPM2-AS1 promotes the tumorigenesis of renal cell cancer *via* targeting miR-137

J.-G. LIU, H.-B. WANG, G. WAN, M.-Z. YANG, X.-J. JIANG, J.-Y. YANG

Department of Urology Surgery, Dalian Municipal Friendship Hospital, Dalian Managery

**Abstract.** – OBJECTIVE: Recently, long noncoding RNAs (IncRNAs) have attracted more attention for their roles in tumor progression. The aim of this study was to investigate the role of IncRNA ZFPM2 antisense RNA 1 (ZF-PM2-AS1) in the progression of renal cell cancer (RCC), and to explore the possible underlying mechanism.

PATIENTS AND METHODS: Expression levels of ZFPM2-AS1 in both RCC cells and 50 paired tissue samples were detected by Real Time-quantitative Polymerase Chain Reaction (RT-qPCR). Moreover, the relationship be IncRNA ZFPM2-AS1 expression level a ic-pathological characteristics as well tients' disease-free survival rate was exp respectively. Furthermore, cell proliferation say, wound healing assay and transwell as were performed to investigat ole of cRNA ZFPM2-AS1 in vitro. Wester blot assay, Luciferase rep av and gen RNA immunoprecipitation explore the possible unde

RESULTS: The e of ZFP<sub>W</sub>2ssio was sig. AS1 in tumor tiss v higher than that of cor es. ZFn lymph PM2-AS1 expr associated node metasta , tun e and survival time ients. Moi the overexpresof RCC sion of /12-AS1 signi promoted the asion and migral of tumor cells, growth y inhibited cell apoptosis *in* whe rema eriments revealed that miR-137 vit PM2-AS1. In addition, was ` rget g R-137 umor tissues was nega-

ZFPM2-AS1 expression.
NCLUSI Our findings indicated that
Dur findings indicated that
Proposed inhibiting the apoptosis of
eting miR-137. This study might
vide a new vision for interpreting the mechoof RCC development.

#### Ke ords:

Renal cell cancer (RCC), LncRNA, ZFPM2-AS1, MiR-137.

#### troduction

(RCC), the third general Renal genite ary malig becoming more and mmon in clinic mo e than 330,000 paare diagnosed with ACC annually. Nearly ti than 140,000 patients die from RCC each worldwide1. fortunately, the morbidity tality of have greatly increased over The etiology of RCC is multhe complicated, involving genetic d environmental factors<sup>3</sup>. Although numerous we been performed to explore the mech-RCC deeply, real causes of RCC remain inclear. Therefore, it is urgent to further explore the possible underlying mechanism of genomic changes in RCC.

Most genomic transcripts are non-coding RNAs, in which long non-coding RNAs (lncRNA) are particularly widely studied. LncRNAs are a type of non-protein encoding RNAs longer than 200 nucleotides in length. Recently, it has been found that lncRNAs play important roles in cellular functions and carcinogenesis. For example, lncRNA TUG1 affects the viability of osteosarcoma cells by regulating glycolysis<sup>4</sup>. SNHG1 can inhibit Treg cell differentiation, thereby impeding the immune escape of breast cancer<sup>5</sup>. Meanwhile, lnc-p23154 play a crucial role in Glut1-mediated glycolysis, eventually accelerating oral squamous cell carcinoma metastasis<sup>6</sup>.

A recent study<sup>7</sup> have demonstrated that ZFPM2 antisense RNA 1 (ZFPM2-AS1) promotes the progression of gastric cancer by attenuating the p53 pathway. However, the exact role of ZFPM2-AS1 in RCC as well as the possible underlying mechanism remains unknown. In this work, we found that the expression of ZFPM2-AS1 was significantly increased in RCC tissues. Besides, it promoted the migration, invasion and proliferation of

RCC *in vitro*. Furthermore, our findings elucidated the interaction between lncRNA ZFPM2-AS1 and miR-137, as well as the possible mechanism.

#### **Patients and Methods**

#### Clinical Samples and Cell Lines

Totally 50 RCC patients who received surgery at Dalian Municipal Friendship Hospital were enrolled in this research. The informed consent was obtained from each patient before the study. No patient received radiotherapy or chemotherapy before the operation. Tissue samples were resected from the surgery and stored immediately at -80°C for subsequent use. All collected tissues were confirmed by an experienced pathologist. This investigation was approved by the Ethics Committee of Dalian Municipal Friendship Hospital.

Human kidney epithelial cell lines, including Caki-1, 769-P, 786-O, ACHN, and HK-2, were used in this study. Cells were cultured in Roswell Park Memorial Institute-1640 (RPMI-1640) medium (Thermo Fisher Scientific, Waltham USA) containing 10% fetal bovine serup (Gibco, Grand Island, NY, USA) and penic in a 37°C, 5% CO<sub>2</sub> incubator.

#### Cell Transfection

After synthesis, the lenting targetin ZFPM2-AS1 was cloned hti-EF1a *i*ne tia lı EGFP-F2A-Puro vector ( CA, USA). 293T cells we ZFPM2-AS1 lentivi (ZI)), viruses and empty vector e transrol). RCC fected with mi nics (Gene na Biotechnology C pai, China) according to the instractions. Non siRNA was also transfect no cells as a n control.

#### RN tract and Real Timequa. I olym ase Chain React apple

otal R was extracted in strict achice with a structions of TRIzol reagent (I) the Carboad, CA, USA). Subsequent-NAs were reverse transcribed to NAs action to the instructions of Reverse scription Kit (TaKaRa Biotechnology Co., palian, China). Thermal cycle was as follow 30 sec at 95°C, 5 sec at 95°C for a total of 40 cycles, and 35 sec at 60°C. MiR-137 expression was normalized to U6. Primers used in

this study were as follows: miR-137, F: 5'-AG-GTCA GGCAGCATCGGGAA-3', R: 5'-AG-GCCCTGTGGATATCGTCCAG-3'; U6: F: 5'-GCTTCGGCAGCACATATACTAAR: 5'-CGCTTCAGAATTTGCGTGT

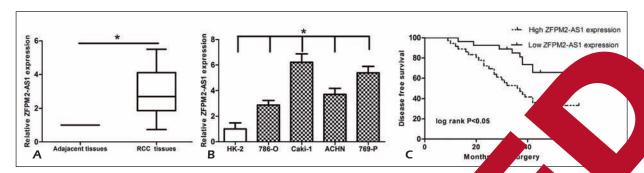
## Luciferase Reporter Gene Assay

In our study, pGL3 vector omega nstruction of WI, USA) was used for the ell as UTR of ZFPM2-AS1 -type 3'-UTR. Quick-char ed mytagenesis kit (Stratagen TX. (t) for 37 site-directed my nesis c ing site of ZFPM2-A **-**UTR and MUT) 3'-UTR. WT MUT-3'-U and miR-ctrl o-transfected into cells. or miR-9 nic Luciferas 48 h was detected by the Du ciferase reporte system (Promega, on, WI, USA).

## Immunop pitation

A-Binding Protein Immunoprecipitated (Millipore, Billerica, MA, USA) as used to perform RIP assay. Co-precipitated re detected by RT-qPCR.

#### Cell Proliferation Assay


Transfected cells were first seeded into 96-well plates. The proliferation capacity of transfected cells was detected by Cell Counting Kit-8 (CCK-8) assay (Dojindo Molecular Technologies, Inc., Kumamoto, Japan) every 24 h. Finally, absorbance at 450 nm was detected by a microplate reader (Bio-Rad, Hercules, CA, USA).

#### Wound Healing Assay

Cells were first seeded into 6-well plates and cultured in Dulbecco's Modified Eagle's Medium (DMEM) medium (Gibco, Rockville, MD, USA) overnight. After scratching with a plastic tip, the cells were cultured in serum-free DMEM. Finally, wound closure was monitored at different time points.

#### Matrigel Assay

Totally 5  $\times 10^4$  cells in 200  $\mu$ L serum-free RPMI-1640 were transferred to the upper chamber of an 8- $\mu$ m pore size insert (Millipore, Billerica, MA, USA) coated with 50  $\mu$ g Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). Meanwhile, RPMI-1640 and FBS were added to the lower chamber. 48 h later, the upper surface of



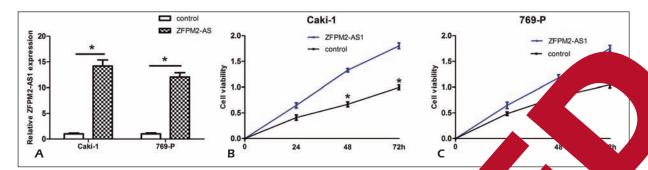
**Figure 1.** Expression level of ZFPM2-AS1 was significantly increased in RCC tissues and constant with worse disease-free survival of RCC patients. **A**, ZFPM2-AS1 expression was significantly increased in RCC tissues when compared with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues. **B**, The expression level of ZFPM2-AS1 tymas with adjacent normal tissues.

the chamber was wiped by a cotton swab and immersed in precooling methanol for 10 min. Subsequently, the cells were stained with crystal violet for 30 min. Three fields were randomly selected for each sample, and the number of invaded cells was counted.

#### Statistical Analysis

Statistical Product and Service Solve (SPSS) 17.0 (Chicago, IL, USA) was used statistical analysis. Experimental data we sented as mean  $\pm$  SD. Chi-square test, Shat-test, and Kaplan-Meier method were selewhen appropriate. p<0.05 was a selected statically significant.

#### ults


## ZF AS1 Level in Tissues a Cells

e first detected the expression level of ZF-I ASI in 50 proof RCC tissues and 4 RCC company of RCC tissues and 4 RCC company of RCC and the RCC cells was remarkably higher than that thuman kidney epithelial cells (Figure alysis of clinic-pathological features in RCC patients demonstrated that upregulated ZF-PM2-ASI was significantly correlated with lymph node metastasis and tumor stage (Table I). The

**Table I.** Correlation between In. on and clinicopathological characteristics in RCC patients.

| Characteristics     | Pau.     | Expression of IncRNA ZFPM2-AS1 |                | <i>p</i> -value |
|---------------------|----------|--------------------------------|----------------|-----------------|
|                     |          | ow-ZFPM2-AS1                   | High-ZFPM2-AS1 |                 |
| Total               | 50       | 22                             | 28             |                 |
| Age (years          |          |                                |                | 0.485           |
| ≤50                 |          | 10                             | 10             |                 |
| ≤50<br>>50          |          | 12                             | 18             |                 |
| Ge                  | <u> </u> |                                |                | 0.124           |
|                     | 22       | 7                              | 15             |                 |
| Fe.                 | 28       | 15                             | 13             |                 |
| VM stu <sub>z</sub> |          |                                |                | 0.019           |
| I                   | 27       | 16                             | 11             |                 |
| IV                  | 23       | 6                              | 17             |                 |
|                     |          |                                |                | 0.569           |
|                     | 25       | 12                             | 13             |                 |
| 3 Cm.               | 25       | 10                             | 15             |                 |
| aphatic metastasis  |          |                                |                | 0.006           |
|                     | 21       | 14                             | 7              |                 |
|                     | 29       | 8                              | 21             |                 |

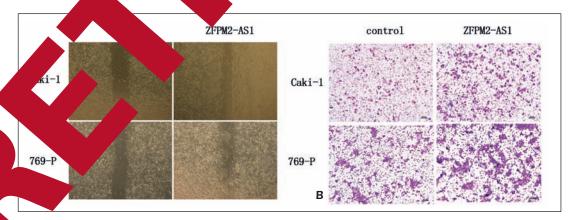
50 patients were divided into two groups, lncRNA ZFPM2-AS1 high- and low-expression group, according to average number of the lncRNA ZFPM2-AS1 expression in tumor tissues. *p*<0.05 is considered as statistically significant.



n in RCC **Figure 2.** Overexpression of ZFPM2-AS1 increased the proliferation of RCC cells. **A**, ZFI transfected with empty vector (control) or ZFPM2-AS1 virus (ZFPM2-AS1) was detected actin w used as an internal control. B, CCK-8 assay showed that overexpression of ZFPM2-AS1 sign the pro tion of of 769-P Caki-1 cells. C, CCK-8 assay showed that the overexpression of ZFPM2-AS1 signific life ncreas cells. The results represented the average of three independent experiments (mean dard error p<0.05, as compared with the control cells. \*p<0.05.

Kaplan-Meier analysis showed that RCC patients with higher ZFPM2-AS1 level had a significantly worse disease-free survival (Figure 1C).

#### Overexpression of ZFPM2-AS1 Promoted the Growth of RCC Cells


In our study, Caki-1, and 769-P RCC cell were chosen for ZFPM2-AS1 overexpression PM2-AS1 lentiviruses (ZFPM2-AS1) and try vector (control) were synthesized and transed into these two cell lines. Then, RT-qPCR utilized to detect ZFPM2-AS1 experience (Figure 2A). Furthermore, CCK-8 assection (Figure 2A). Furthermore after Z and ZG1 and ZG1 and ZG1.

## Over ression M2-AS1 Pro Led the Migra, and Invasion of C Cells

bsequent wound healing assay found that corpressed ZF 2-AS1 remarkably promoted assay indicated that the ZF-PM2-As a rexpression remarkably promoted invasion of RCC cells (Figure 3B).

#### tion Between miR-137 and ZFPM2-AS1 in RCC

DIANA LncBASE Predicted v.2 provided the miRNAs containing complementary bases with ZF-PM2-AS1. Besides, RT-qPCR results showed that the expression level of miR-137 in RCC cells of the ZFPM2-AS1 group was significantly lower when



**3.** Overexpression of ZFPM2-AS1 increased the migration and invasion of RCC cells. **A**, Wound healing assay that the migration ability in the ZFPM2-AS1 group was significantly promoted when compared with the control group. **B**, the swell assay showed that number of invaded cells in the ZFPM2-AS1 group was markedly increased when compared with the control group. The results represented the average of three independent experiments (mean  $\pm$  standard error of the mean). \*p<0.05, as compared with the control cells. \*p<0.05.

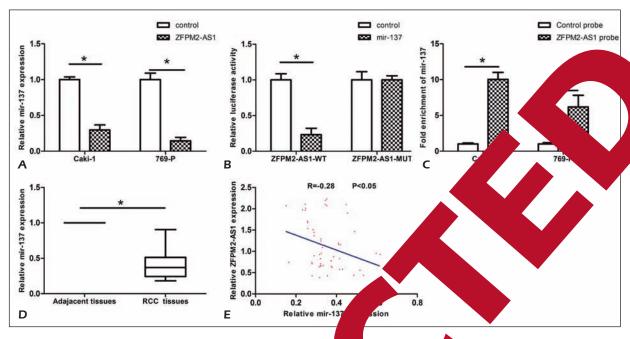



Figure 4. Interaction between ZFPM2-AS1 and miR-137. A, MiR expression in the PM2-AS1 group was remarkably R-137 and ZI AS1-WT in Caki-1 cells strongly decreased when compared with the control group. B, Co-transfection decreased the Luciferase activity. However, co-transfection of miR-ZEPM2 AUT did not change the Luciferase AS1 group when compared with the activity. C, RIP assay indicated that miR-137 was significantly enrich control group. D, MiR-137 was significantly downress ompared with adjacent normal tissues. **E**, d in RCC tissu The linear correlation between the expression level ZFPM2-AS1 in RCC tissues. The results represented the  $\pm$  standard error of the mean. \*p<0.05. average of three independent experiments Data w

compared with that of the control group (Figure Furthermore, Luciferase assay rev hat the ciferase activity of ZFPM2-AS1 transfec ed with miR-137 mimics wa Affica reduced However, no significant the Luciferase activity of 2 Meanwhile, transfected with miR (Figu RIP assay demons that mik ld be remarkably enrich ZFPM2-AS p when compared wit roup. This suggested that ZFPM2 a miR-137 sponge ASY might (Figure 4 Ve further four niR-137 expreswas significally lower than that sion in tissu ssues (Figure 4D). The correlaof a ot nor tion onstrat Lthat miR-137 expression was ne orrel with ZFPM2-AS1 expresn RC ure 4E).

#### Discussion

strevious evidence has proved that lncRNAs atte in tumorigenesis and development. Our street showed that ZFPM2-AS1 was significantly upregulated in RCC samples and cells. Meanwhile, ZFPM2-AS1 was correlated with tumor stage, lymph

ode metastasis and prognosis of RCC patients. Furthermore, after overexpression of ZFPM2-AS1, the growth, migration and invasion of RCC cells were significantly promoted. The above results indicated that ZFPM2-AS1 promoted tumorigenesis of RCC, which might act as an oncogene.

Latest studies have revealed that lncRNAs play a crucial function in cancer progression. By competing for shared miRNA response elements, lncRNAs participate in post-transcriptional regulation. This may further influence miRNA pathways<sup>8,9</sup>. In recent years, a new regulatory mechanism has been identified. Studies have found that, by competing for shared microRNAs (miRNAs) response elements, lncRNAs and mRNAs can interact with each other8. In this way, lncRNAs function as competing endogenous RNAs (ceR-NAs) which can sponge miRNAs, thereby regulating the de-repression of miRNA targets. This reveals a new level of post-transcriptional regulation. For instance, lncRNA CHRF regulates Myd88 via sponging miR-489, further inducing cardiac hypertrophy<sup>10</sup>. By binding to HOTAIR in a sequence-specific manner, miR-141 has been found to downregulate HOTAIR expression in RCC cells. Furthermore, it inhibits cell proliferation and invasion<sup>11</sup>. LncRNA MALAT1 is remarkably upregulated in RCC cells and tissues. Hirata et al<sup>12</sup> have also observed the interaction between MALAT1 and miR-205. By sponging miR-335-5p, lncRNA RP11-436H11.5 promotes the proliferation and invasion of RCC cells<sup>13</sup>.

MiR-137 has been reported to participate in multiple tumor processes. For example, miR-137 is downregulated in gastric carcinogenesis and acts as a tumor suppressor *via* targeting Cyclooxygenase-2 (Cox-2)<sup>14</sup>. Sequential miR-137 overexpression and DPN treatment can be used as a promising combination treatment to inhibit the growth of human glioblastoma cells<sup>15</sup>. Besides, miR-137 markedly inhibits cancer cell invasion and increases sensitivities to chemotherapy in pancreatic cancer<sup>16</sup>. Moreover, the knockdown of miR-137 can significantly promote the growth and metastasis of bladder cancer cells<sup>17</sup>. Furthermore, miR-137 is reported as a tumor suppressor in RCC<sup>18,19</sup>.

In the present study, Luciferase reporter gene assay revealed that miR-137 was directly bound to ZFPM2-AS1. RIP assay indicated that miR-137 was significantly enriched by ZFPM2-AS1. In addition, miR-137 expression was signifully downregulated after ZFPM2-AS1 over sion. Moreover, miR-137 expression in R succession was negatively correlated with ZFPM2 expression. All the above results suggested ZFPM2-AS1 might promote the transigenesis RCC *via* sponging miR-137.

#### Conclus

We showed th PM2-AS1 ion was remarkably upr n RCC tiss nd was ase-free survival of negatively re Besides, RCC patie 2-AS1 could promote the aferation of K ls by sponging ndings sugg ted that IncRNA miR-1 hese ZF contribute to RCC therapy as a ca

#### ict of h

The rs declare no conflict of interest.

#### References

JG M, Dong W, Shi Z, Qiu S, Yuan R. Vascular dothelial growth factor gene polymorphisms and the risk of renal cell carcinoma: evidence from eight case-control studies. Oncotarget 2017; 8: 8447-8458.

- 2) Young EE, Brown CT, Merguerian PA, Akhavan A. Pediatric and adolescent renal cell carcinoma. Urol Oncol 2016; 34: 42-49.
- 3) Petejova N, Martinek A. Renal cell carcinoview of etiology, pathophysiology and Biomed Pap Med Fac Univ Palametric Czech Repub 2016; 160: 183-19
- 4) Han X, Yang Y, Sun Y, Qin L, Yang RNA TUG1 affects cell viability by regular olysis in osteosarcoma cells. Gene 2018; 6.
- 5) PEI X, WANG X, LI H. Ln SNHC, the differentiation of cells and an immune escape of st can via regumiR-448/IDO. Int Macr 2018; 118: 24-30.
- Wυ 6) Wang Y, Zhan VAN REN X, Wu T, Tao X X, LIX, LncRNAs the invasi p23154 p asis potenby regulating tial of o ıs cell carcii vsis. Cancer Lett 2018; 434: Glut1 172
- 7) DENG X, ROSCIENT, Y, LI L, ZHU H, WANG ME D, GUHA S, LI Z, M, XIE K. ZFPM2-AS1, novel lncRNA, attenuates the p53 pathway and romotes gastric carcinogenesis by stabilizing IF. Oncogene 8; 10.
- MENA L, POY L, TAY Y, KATS L, PANDOLFI PP. A s: the Rosetta Stone of a hidden ? Cell 2011; 146: 353-358.
- 9) XIE Z., J. NO ZC, SONG YX, Li W, TAN GL. Long noncoding RNA Dleu2 affects proliferation, migration invasion ability of laryngeal carcinoma cells gh triggering miR-16-1 pathway. Eur Rev Pharmacol Sci 2018; 22: 1963-1970.
- Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 2014; 114: 1377-1388.
- 11) CHIYOMARU T, FUKUHARA S, SAINI S, MAJID S, DENG G, SHAHRYARI V, CHANG I, TANAKA Y, ENOKIDA H, NAKAGAWA M, DAHIYA R, YAMAMURA S. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J Biol Chem 2014; 289: 12550-12565.
- 12) HIRATA H, HINODA Y, SHAHRYARI V, DENG G, NAKAJIMA K, TABATABAI ZL, ISHII N, DAHIYA R. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res 2015; 75: 1322-1331.
- 13) WANG K, JIN W, SONG Y, FEI X. LncRNA RP11-436H11.5, functioning as a competitive endogenous RNA, upregulates BCL-W expression by sponging miR-335-5p and promotes proliferation and invasion in renal cell carcinoma. Mol Cancer 2017; 16: 166.
- 14) CHENG Y, LI Y, LIU D, ZHANG R, ZHANG J. miR-137 effects on gastric carcinogenesis are mediated by targeting Cox-2-activated PI3K/AKT signaling pathway. FEBS Lett 2014; 588: 3274-3281.
- 15) CHAKRABARTI M, RAY SK. Direct transfection of miR-137 mimics is more effective than DNA demethylation of miR-137 promoter to augment anti-tumor mechanisms of delphinidin in human glioblastoma U87MG and LN18 cells. Gene 2015; 573: 141-152.

- 16) XIAO J, PENG F, YU C, WANG M, LI X, LI Z, JIANG J, SUN C. microRNA-137 modulates pancreatic cancer cells tumor growth, invasion and sensitivity to chemotherapy. Int J Clin Exp Pathol 2014; 7: 7442-7450.
- 17) XIU Y, LIU Z, XIA S, JIN C, YIN H, ZHAO W, WU Q. MicroRNA-137 upregulation increases bladder cancer cell proliferation and invasion by targeting PAQR3. PLoS One 2014; 9: e109734.
- 18) Kokuda R, Watanabe R, Okuzaki D, Akamatsu H, Oneyama C. MicroRNA-137-mediated Src oncogenic signaling promotes cancer progression. Genes Cells 2018.
- 19) Wang L, Li Q, Ye Z, Qiao B. Pokemon/r to-regulatory circuit promotes the renal carcinoma. Oncol Res 2018 19. doi: 10. 3727/096504018X15231148037 5 5pub ahead of print].