LncRNA AB073614 promotes tumor migration and invasion by repressing CDKN1A in non-small cell lung cancer

W.-D. ZHAO¹, B.-X. ZHANG², X.-H. CUI², J. ZHANG², N. DU², Y ZHA

¹Department of Oncosurgery, Weinan Central Hospital of Shannxi Proving Weinar China ²Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaote Diversity, Xi'an, China

Weidong Zhao and Boxiang Zhang contributed equally to this wor

Abstract. – OBJECTIVE: Some researches have showed that long noncoding RNAs (IncRNAs) take part in varieties of biological behaviors during the tumor progression. This study aims to determine whether IncRNA AB073614 functioned in the metastasis of non-small cell lung cancer (NSCLC).

PATIENTS AND METHODS: Real Time titative Polymerase Chain Reaction (Rewas used to detect AB073614 expression VS-CLC tissues. Besides, wound healing assatranswell assay were conducted in NSCLC a Furthermore, the mechanism assays were promed to identify how AB0736 controlled metastasis of NSCLC cells.

RESULTS: By comparing th the ression level in adjacent tissues AB073 expression level in NSCLC san vas higher. Moreover, af ABL down, invasion and nigration CLC cells were inhibited. after AB073 s overnd migration expressed, in NSCLC ote , mRNA and protein cells were p expression level of C was upregulated wn of AB073 hile mRNA and via knock protein ression level of C 1A was downvia overexpression of AB073614. Beregula side he expr ion of CDKN1A in NSCLC tissue ne vely correlated to the expres-ر14. sion of

conce 15: for results indicated that acce cell migration and cell invention in NSC arrough repressing CDKN1A, while might offer a potential therapeutic choice for the with NSCLC.

Vords:

noncoding RNA, AB073614, NSCLC, CDK-N1A.

Introdu ion

ung cancer ich is one of the top causes ımor-related ath globally, stills remain a threat to e public¹. As the major subcer, non-small cell lung cancer (NSCLe) wounts for almost 85% of all lung cer cases². Though tremendous advances have to reduce the mortality of lung cancer, nosis of patients with lung cancer is far from satisfaction, and the 5-year survival rate of the cases remains only 16%3. The main management for NSCLC patients at an early stage is surgical resection combined with chemotherapy. Unfortunately, most of the patients eventually develop disease progression and require further intervention⁴. Metastasis is the leading cause of the high mortality in NSCLC. Thus, it's important to understand the molecular basis underlying the metastasis of NSCLC and improve the poor prognosis of patients with NSCLC.

Advances in human genome sequencing have revealed that non-coding RNAs (ncRNAs) account for almost 99% of total transcribed RNAs. Long noncoding RNAs (lncRNAs), defined as transcription longer than 200 nucleotides, is an important group of ncRNAs. LncRNAs have been indicated to be key regulators in numerous processes, including the development of diverse cancers. For example, by modulating SF1 and suppressing expression level of miR-184, lncRNA UCA1 accelerates cell proliferation and cisplatin resistance in oral squamous cell carcinoma⁵. Through targeting miR-221/SOCS3, lncRNA GAS5 suppresses cell proliferation, cell metastasis, and gemcitabine resistance in pancreatic

cancer⁶. LncRNA RUNX1-IT1 act as an anti-on-cogene in colorectal cancer by the inhibition of cell proliferation and cell migration which could function as a novel diagnostic biomarker⁷. Moreover, lncRNA ATB promotes cell migration and cell invasion in glioma by activating astrocytes through suppressing the expression of microRNA 2043p⁸. LncRNA AB073614 has recently been identified as a novel lncRNA in cancer tissues and cells. We aimed to determine whether LINP1 participates in the metastasis of NSCLC and the potential mechanism.

Patients and Methods

Patients and Sample Collection

In this research, 60 NSCLC patients were randomly selected and received surgery at Weinan Central Hospital of Shannxi Province. This study was approved by the Ethics Committee of Weinan Central Hospital of Shannxi Province. The signed written informed consents were obtained from all participants before the investigation.

Cell Culture and Cell Transfection

SPCA1, PC-9, H1975, and normal human onchial epithelial cell16HBE (Shanghai Mode VI Bank; Shanghai, China) were cultured in icillin, Roswell Park Memorial Institute-16 (RPMI-1640; Thermo Fisher Fi

RNA Extraction at Real ime-Quantitativ olymera. ain Reaction (RT-q

om collected ozen tis-Total RNA. TRIzol reagent (Insue samples an cell lin vitrogen, Alsbad, CA, U was reverse-tranribose nucleic scribed complementary ... NAs) through reverse Transcription Kit acids (Tal a Biote ology Co., Ltd., Dalian, Chilevels re quantified by SYBR na). e PCR a normalized to glycer-Green dehydrogenase (GAPDH) vde 3 imers: AB073614, forward: ne follo. TCTGCT TGGGTCTTAC-3' and re-AGTGGCTTGTCTGTTAGAGTC-3'; ward: 5'-CCAAAATCAGATGG-CAATGCTGG-3' and reverse: 5'-TGATGG-GACTGTGGTCATTCA-3'. RT-qPCR was ed by the ABI 7500 system (Applied Biosystems, Foster City, CA, USA).

Cell Transfection

Lentivirus expressing short-hairpi (shRNA) and lentivirus against ghai, Ch was provided by GenePharma (S na). AB073614 shRNA (sh-73614) and the empty vector (control) then used for the transfection in SPCA1 C cells using polybrene (Gen hai y of cells China) when the deal irus (AB073614) 70%. AB073614 leg the empty vector 1) w then used for ells usi transfection in PC-9 polywhen brene (Genepa na, Sh Cbells reached the density

Western Blot And

protein expression, stigate the re d cells were was, d with ice-cold phoste-buffered saline (PBS) and lysed using lysis ffer. Reagent lioimmunoprecipitation assay to extract the protein from PA) was util Bicinchon c acid (BCA) protein assay dian, China) was chosen for quantity no protein concentrations. The target teins were separated by Sodium Dodecyl Sulacrylamide Gel Electrophoresis (SDS-5% fat-free milk was used to block non-specific protein interactions in Tris-Buffered Saline and Tween (TBST) which contains Tris-HCl (50 mM), NaCl (150 mM), and Tween 20 (0.05%) at 4°C for 1h. Then, they were incubated with antibodies after replaced to the polyvinylidene difluoride (PVDF) membrane (Millipore, Billerica, MA, USA). Abcam (Abcam, Cambridge, MA, USA) provided us with rabbit anti-GAPDH and rabbit anti-CDKN1A, as well as goat anti-rabbit secondary antibody. Enhanced chemiluminescence (ECL; Millipore, Billerica, MA, USA) was applied for the assessment of protein expression.

Wound Healing Assay

Empty vector, AB073614 shRNA or AB073614 lentivirus were transfected into NSCLC cells. These treated cells were cultured in 6-well plates and grew to about 90% confluent. Then, they were scratched by a sterile 10 μ L pipette tip across the confluent cell layer and incubated in serum-free medium at 37°C in a humidified incubator containing 5% CO₂ for 24 h. Wound closure was captured using a light microscope (DFC500, Munich, Germany).

Transwell Assay

 5×10^4 cells in 200 µL serum-free RPMI-1640 were transformed to top chamber of an 8 µm pore size insert (Corning, Corning, NY, USA) coated with or without 50 µg Matrigel (BD, Bedford, MA, USA). Serum-free medium was added into the upper chamber, and 10% FBS medium supplemented was then added into the lower chamber. After 48 h, the top surface of chambers was immersed for 10 min with by 100% precooling methanol after wiped by cotton swab. Then, they were stained in crystal violet for 30 min and inspected with the microscope (Olympus, Tokyo, Japan). Five fields were used to count the data for migration and invasion membrane.

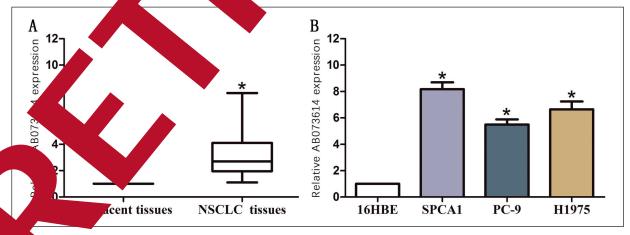
Statistical Analysis

Statistical analysis was conducted by Statistical Product and Service Solutions (SPSS) 19.0 software (IBM, Armonk, NY, USA). Statistical data was presented with GraphPad Prism software (La Jolla, CA, USA). Data were presented as mean \pm SD (Standard Deviation). An independent-sample test was used to compare continuous data. The relative expression of mRNA was sured using the method of $2^{-\Delta\Delta CT}$. Resulting the method of $2^{-\Delta CT}$. Resulting considered statistically significant at p<0.

Results

Expression Level of AB 3614 Elevated in NSCLC Sq. les and ells

Firstly, the expression of AV detected by performing RT-s. 60 No.


patients' samples and 3 NSCLC cell lines. The result revealed that AB073614 was significantly upregulated in tumor tissue sample. 1A). AB073614 expression in NSC cells was remarkably higher when compared with that in 16HBE cell line (Figure 1B).

Knockdown of AB073 Inhib. NSCLC Cell Migratio

fine was used for SPCA1 NSCLC Q knockdown of le AB073614 RT-qPQ expression was dete (Figure 2A). To ole of ruate SCLC cell AB073614 i we in-1614 on NSC cell migravestigated ound healing assay, the tion. As OW knockdown of AB inhibited SPCA1 cell migr he negative control compared B). Meanwhile, le effects of knockwn of AB073614 on SPCA1 cell migration asured by t well assay were the same. d that after AB073614 was results rev number of migrated SPCA1 d down, decreased (Figure 3A).

Syerexpression of AB073614 Promoted Sell Migration

pression of AB073614. The AB073614 expression was detected by RT-qPCR (Figure 2C). To evaluate the biological role of AB073614 in NSCLC cell migration, we investigated AB073614 on NSCLC cell migration. As shown in wound healing assay, the overexpression of AB073614 promoted the PC-9 cell migration compared with the neg-

1. Expression levels of AB073614 were increased in NSCLC tissues and cell lines. **A,** AB073614 expression was the increased in the NSCLC tissues compared with adjacent tissues. **B,** Expression levels of AB073614 relative to GAI were determined in the human NSCLC cell lines and normal human bronchial epithelial cell (16HBE) by RT-qPCR. Data are presented as the mean \pm standard error of the mean. *p<0.05.

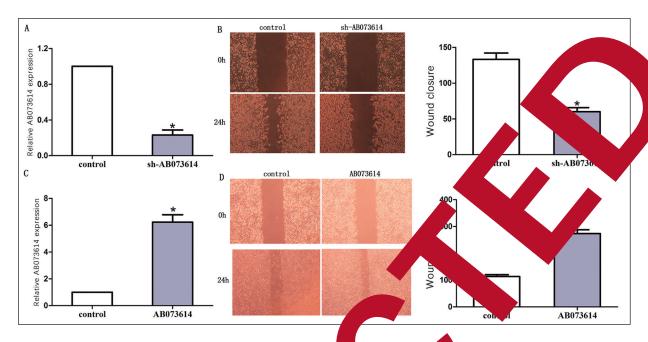


Figure 2. Wound healing assay showed that AB073614 pron d NSCLC cell ation. A, AB073614 expression in SPCA1 NSCLC cells transduced with AB073614 shRNA(sh-AB073614 shRNA) 4) and the emp ector (control) was detected by RTy showed t qPCR. GAPDH was used as an internal control. B, Wound health migrated length of SPCA1 NSCLC 14 exp cells was significantly decreased via knockdown of AB073614. C, on in PC-9 NSCLC cells transduced with AB073614 lentivirus (AB073614) and the empty vector (control) by RT-qPCR. GAPDH was used as an length of PC-9 NSCLC cells was significantly increased via internal control. **D**, Wound healing assay showed overexpression of AB073614. The results repres independent experiments (mean \pm standard error of the mean). *p<0.05. **p<0.01.

ative control group (Figure 2F) while, the effects of the overexpression of A 3614 on PC-9 cell migration meaned by the ranswell assay were the same. The latit after AB073614 was berexplored increased (Figure 3B).

AB073614 Tomote CLC Cell Invalon

We n evaluated the action e of AB073614 cell invasion. As shown in the transwell in NS 3614 was knocked down, the ass aty in SA1 NSCLC cells was cell ure 3C) esides, after AB073614 represse cell invaded ability in PCverex romoted (Figure 3D). C cell

AF 3/14 Suppressed CDKN1A Property

revious studies showed that CDKN1A was egulated in many tumors including NS-CL and it was found to be regulated by many lncRNAs and mediated the function of lncRNAs

in many malignant tumors. Then, to further verify the actual relationship between CDKN1A and AB073614, we further detected the CD-KN1A expression of SPCA1 cells transfected with AB073614 shRNA (sh-AB073614) or the empty vector (control). The results of RT-qPCR showed that the expression level of CDKN1A was significantly higher in AB073614 shRNA (sh-AB073614) group in SPCA1NSCLC cells compared with that in empty vector (control) group (Figure 4A). And the expression level of CDKN1A was significantly lower in AB073614 lentivirus (AB073614) group in PC-9 NSCLC cells compared with that in empty vector (control) group (Figure 4B). Besides, the results of Western blot assay revealed that expression level of CDKN1A was significantly higher in AB073614 shRNA (sh-AB073614) group in NSCLC cells compared with that in empty vector (control) group (Figure 4C). And the expression level of CDKN1A was significantly lower in AB073614 lentivirus (AB073614) group in NSCLC cells compared with that in empty vector (control) group (Figure 4D). Furthermore, we found out

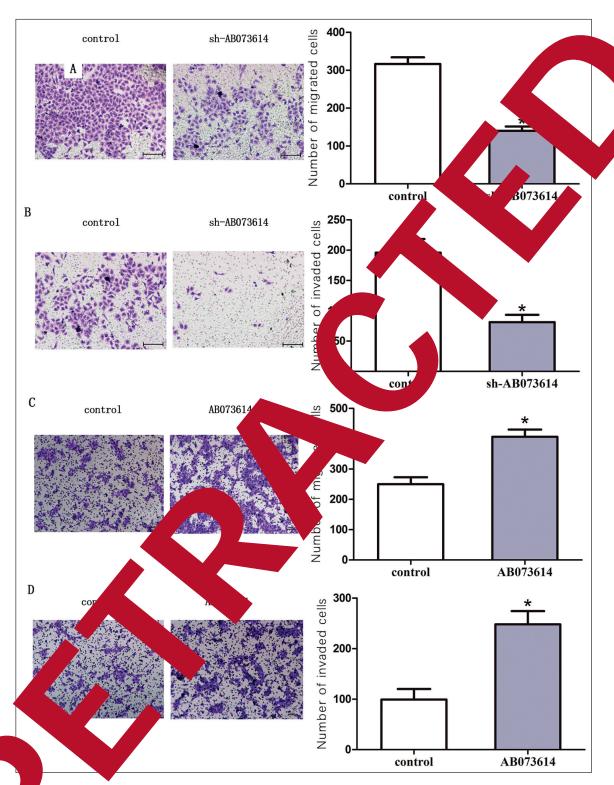
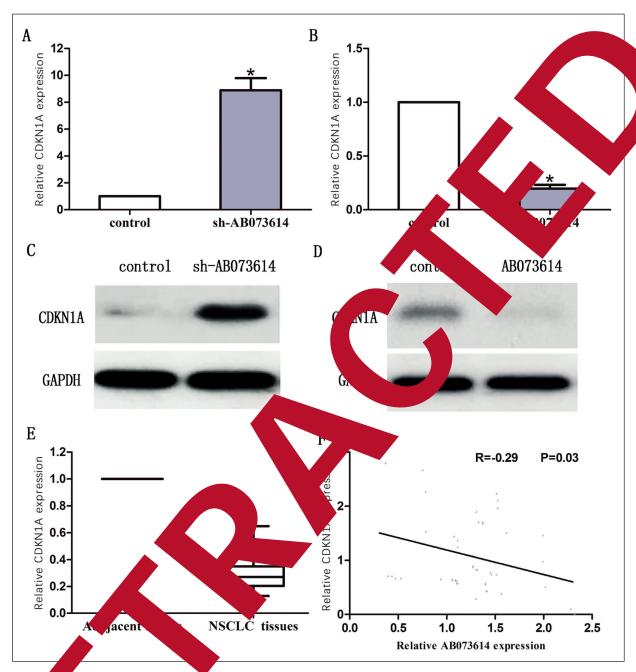



Fig. 1. The small assay showed that AB073614 promoted NSCLC cell migration and invasion. *A*, Transwell assay showed grated cells was significantly decreased *via* knockdown of AB073614 in SPCA1 NSCLC cells (magnification, 1. B), Transwell assay showed that number of migrated cells was significantly increased *via* overexpression of AB073614 in ISCLC cells (magnification, 40X). C, Transwell assay showed that number of invaded cells was significantly decreased via color of AB073614 in SPCA1 NSCLC cells (magnification, 40X). D, Transwell assay showed that number of invaded cells significantly increased *via* overexpression of AB073614 in PC-9 NSCLC cells (magnification, 40X). The results represent the average of three independent experiments.

Figur AB073614 suppressed CDKN1A expression directly in NSCLC cells and tissues. A, RT-qPCR results showed that CDI was higher in AB073614 shRNA (sh-AB073614) compared with the empty vector (control). **B**, RT-qPCR express CDKN1/ expression was lower in AB073614 lentivirus (AB073614) compared with the empty vector resu (control ern blot s showed that CDKN1A expression was upregulated in AB073614 shRNA (sh-AB073614) tor (control). D, Western blot results showed that CDKN1A expression was downregulated in empty pared /3614) compared with the empty vector (control). E, CDKN1A was significantly downregulated 614 len fred with adjacent tissues. F, The linear correlation between the expression level of CDKN1A and 4 in NSCL Assues. The results represent the average of three independent experiments. Data are presented as the AB(standard error of the mean. *p<0.05. mea

e expression of CDKN1A in NSCLC tissue significantly lower when compared with that of adjacent tissues (Figure 4E). Correlation

analysis demonstrated that CDKN1A expression level negatively correlated to AB073614 expression in NSCLC tissues (Figure 4F).

Discussion

Lung cancer (LC) ranks the second common cancer among human malignant tumors. 80% of lung cancer is NSCLC worldwide. The incidence of NSCLC in China accounts for more than half of the whole world. Although molecular targeted therapy is available for NSCLC patients, only a small part of patients benefits from those discovered driver mutations. Therefore, it is urgent to find more potential regulators and targets for treatment of NSCLC.

It has been reported in numerous researches that non-coding RNAs (ncRNAs) take part in varieties of biological behaviors during the tumor progression. Known as subgroups of ncRNAs family, long noncoding RNAs (lncRNAs) are non-coding RNA molecules which are longer than 200 bp and cannot be transcribed into protein. Moreover, it was found that lncRNAs are related to various kinds of cellular functions including carcinogenesis and metastasis.

In recent years, increasing studies have demonstrated that lncRNAs serve as impregulators in lung cancer initiation a gression. For example, through regulating iR-488-HEY2 signal network, lncRNA PR functions as an oncogene in NSCLC and motes tumor progression¹¹. The everexpression of lncRNA-p21 suppresses cells are is in NSCLC by directly decreasing the explanation level of PUMA¹².

LncRNA AB073614 cRNA in a few malig Allumg nt tu CLC. It has been orted to ate in tumetastasis. mor developmer stance, ovarian AB073614 pr norigenesis elated to the poor cancer which is clos f patients w prognosis varian cancer¹³. By mod aing the PI3K/A. gnaling path-073614 plays an important role in the way, reg proliferation and cell migraal cance Through regulating tion enchym transition, AB073614 epitheli ation and cell migration tates icates a poor prognosis in ma wh. vith glioma. To date, there has not been cas of the correlation between lncRNA any NSCLC tumorigenesis. In this earch, we figured out that the AB073614 emarkably higher-expressed in NSCLC Besides, after AB073614 was knocked down, cell migration and cell invasion in NS-

CLC cell were inhibited. And after AB073614 was overexpressed, cell migration arrival invasion in NSCLC cell were promoresults indicated that AB073614 provided act as an oncogene in NSCLC.

To further identify the under nechanism of how AB073614 affects NSCL tumorigenesis and metastasis, w edicted binding pi CDKN1A as the poter informatic analysis AB073614 by using experimental verif studies have reported that CDKN s anti-m static and anti-tumor oles in ancers. iety Cyclin-deper at kinase in specially ycomb tar-CDKN1A is a canonica ppressor¹⁶. For example, by get gene a tun suppressing CDKN positive feedback loop, etrols the pro-EZH ion of germinal cenand enables concycle progression¹⁷. H-1 inhibits cell proliferation in breast tumor regulating C N1A transcription expression an attractive targeted therach may prov DKN1A ald enhance the response of to radiotherapy by manipulating Lange and cell survival and promoting Treg Legeneration¹⁹. In addition, CDKN1A gene is ly correlated with prognosis of path gastric adenocarcinoma resection²⁰. in our research, CDKN1A expression could be upregulated after knockdown of AB073614, while CDKN1A expression could be downregulated after overexpression of AB073614. Moreover, CDKN1A expression in NSCLC samples was negatively related to AB073614 expression. All the results above suggested that AB073614 might promote tumorigenesis of NSCLC via downregulating CDKN1A.

Conclusions

We showed that AB073614 was remarkably upregulated in patients with NSCLC. Besides, AB073614 could enhance migration and invasion of NSCLC cells through repressing CDKN1A. These findings suggest that AB073614 may contribute to therapy for NSCLC as a candidate target.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- SIEGEL R, MA J, ZOU Z, JEMAL A. Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9-29.
- ZHENG HE, WANG G, SONG J, LIU Y, LI YM, DU WP. MicroRNA-495 inhibits the progression of nonsmall-cell lung cancer by targeting TCF4 and inactivating Wnt/beta-catenin pathway. Eur Rev Med Pharmacol Sci 2018; 22: 7750-7759.
- LIU Z, JIANG L, ZHANG G, LI S, JIANG X. MiR-24 promotes migration and invasion of non-small cell lung cancer by targeting ZNF367. J BUON 2018; 23: 1413-1419.
- Yusen W, Xia W, Shengjun Y, Shaohui Z, Hongzhen Z. The expression and significance of tumor associated macrophages and CXCR4 in non-small cell lung cancer. J BUON 2018; 23: 398-402.
- FANG Z, ZHAO J, XIE W, SUN Q, WANG H, QIAO B. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression. Cancer Med 2017; 6: 2897-2908.
- 6) LIU B, WU S, MA J, YAN S, XIAO Z, WAN L, ZHANG F, SHANG M, MAO A. IncRNA GAS5 reverses EMT and tumor stem cell-mediated gemcitabine resistance and metastasis by targeting miR-221/SOCS3 in pancreatic cancer. Mol Ther Nucleic Acids 2018; 13: 472-482.
- 7) SHI J, ZHONG X, SONG Y, Wu Z, GAO P, ZHONG J, WANG J, LIU J, WANG Z. Long non-cook RUNX1-IT1 plays a tumour-suppressive in colorectal cancer by inhibiting cell prolife and migration. Cell Biochem Funct 2019; 3) 20.
- 8) BIAN EB, CHEN EF, XU YD, YANG F, MA CO WANG HL, ZHAO B. Exoso Inc. TB activates astrocytes that prote glior cell invasion. Int J Oncol 2019 13-721.
- 9) RIZOU T, PERLIKOS F, OPOULOS S, TOUMP I, KR Development RT-qPCR of novel real-time ologies for he COL11A1 quantification general and C trap evaluation on-small ns. J BUON 2018; 23: cell lung cer s 1699-1710.
- 10) CHEN CILLMORE CM, HAMN RS, KIM CF, WONG KK on-small-cell lung case ars: a heterogeness set of diseases. Nat Rev Cancer 2014; 14: 546.

- 11) CHENG D, BAO C, ZHANG X, LIN X, HUANG H, ZHAO L. LncRNA PRNCR1 interacts with HEY2 to abolish miR-448-mediated growth inhibition in cell lung cancer. Biomed Pharm and the result of the control o
- 12) Yang T, Zhang W, Wang L, Xiang Guo B, Gong Y, Liang X, Huang D, Li Q, Nagarang Y, Shao J. Long intergenic noncoding the state of the sapoptosis by decrease PUMA and in innon-small cell lung care it. J Int Med 1218616144.
- 13) CHENG Z, GUO J, COURT, LUO MANG W, QUAYA long noncoding Fig. 1973 promote tumorigenesis and rediction ognosis varian cancer. Onco get 2013 381-27
- 14) Wang Y, You G H, Xue J, Live J, Live JHOU X. LncRNA 4 regulates provided and metasta of the stall cancer cells via the Pl3K/AKT agnaling ay. Biomed Pharmacother 2017; 93: 1230-12s
- 15) ANG YM, SONG Y, Cockdown of long noncooling RNA AB073614 Imibits glioma cell proliferation and migration via affecting epithelial-mesenchymal transion. Eur Rev Med Pharmacol Sci 2016; 20: 398 1002.
- The Nichutina I, Johnson NA, Standard R. Johnson NA, Page R. Johnson NA, Elemento O. EZH2-medical contributes to proliferation and lymphomagenesis. Blood 2010; 116: 5247-5255.
- N W, RIVAS MA, CALVO FM, TEATER M, PURWADA A, EDMOND D, SHEN H, CHALLMAN MF, ELEMENTO O, SINGH A, MELNICK AM. EZH2 enables germinal centre formation through epigenetic silencing of CD-KN1A and an Rb-E2F1 feedback loop. Nat Commun 2017; 8: 877.
- 718) BIANCO S, JANGAL M, GARNEAU D, GEVRY N. LRH-1 controls proliferation in breast tumor cells by regulating CDKN1A gene expression. Oncogene 2015; 34: 4509-4518.
- 19) PRICE JG, IDOYAGA J, SALMON H, HOGSTAD B, BIGAREL-LA CL, GHAFFARI S, LEBOEUF M, MERAD M. CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol 2015; 16: 1060-1068.
- NIE X, WANG X, LIN Y, YU Y, LIU W, XIE F, WANG X, TAN J, HUANG Q. SNP rs1059234 in CDKN1A gene correlates with prognosis in resected gastric adenocarcinoma. Clin Lab 2016; 62: 409-416.