Hsa-miR-337 inhibits non-small cell lung cancer cell invasion and migration by targeting TCFZ

J. ZHANG¹, W.-H. GONG², Y. LI³, H.-Y. ZHANG⁴, C.-X. ZHANG¹

Abstract. – OBJECTIVE: Recent studies have revealed that microRNAs (miRNAs) play a crucial role in the progression of tumorigenesis. Non-small cell lung cancer (NSCLC) is one of the most common malignancies worldwide. The aim of this study was to identify the exact role of hsamiR-337 in the progression of NSCLC and to investigate the possible underlying mechanism.

PATIENTS AND METHODS: Hsa-miR-337 expression in NSCLC cells and 60 paired tissue samples were detected by Real Time-quantitative Polymerase Chain Reaction (RT-Moreover, the functions of hsa-miR-337 were identified by transwell assay and healing assay, respectively. Furthermore underlying mechanism was explored by RT CR, Western blot assay, and luciforase assay.

RESULTS: The expression I miR-3 in NSCLC tissues was rema Jly a regulat ed when compared with of adjac normal samples. Moreover, the tion on an of NSCLC cells were sign ter overexpression sa-mih vitro. More-337 in vission of hs over, after overex tein levels tro. the mRNA 7 were ted. Beside significantly **∕n**-. the expression of TC, 7 in NS ssues was negatively correlati with the exp. n of hsa-miR-337.

that he miR-337 could repress the migration and invariant of NS C cells through directly targeting the further more, bea-miR-337 might offer a new the major interval on for NSCLC patients.

ords: DRNA, Hs. ...-337, NSCLC, TCF7.

Introduction

g cancer is one of the most common causes of cer-related death worldwide, still serving as a threat to public health¹. As the main type of lung cancer, no I lung cance ASCLC) accounts for Lore tha 6 of all lung cancer cases². In the past decades, agnosis and treatment of. have been de. d greatly. However, prognosis of NSCLC patients remains unsatisory. The majority of NSCLC patients are diaged in an adva d stage, and the 5-year overall lents is less than 15%³. Early al rate of is em ing as the most important step det strategy, particularly in NSCLC. The reason for this is that there is a lack of clinical at the initial stage. Therefore, it is urdentify novel biomarkers and therapeutic targets for patients with NSCLC.

MicoRNAs (miRNAs) are a subtype of non-coding RNAs with 18 to 22 nucleotides in length. Several studies have showed that miR-NAs play a crucial role in the regulation of many biological behaviors, including cell proliferation, apoptosis, and metastasis in diverse malignancies. For example, activated by K-Ras carcinogenic signal, miRNA-155 facilitates the proliferation of pancreatic cancer cells by regulating reactive oxygen species (ROS) stress⁴. MiR-126 plays an important role in breast cancer by interacting with a variety of molecules. This may eventually help to inhibition of breast cancer cell metastasis⁴. Up-regulation of miR-378 represses the proliferation, migration, and invasion of colon cancer cells by inhibiting epithelial-mesenchymal transition⁵. In addition, miR-532 enhances the invasion of gastric cancer cells via activating Wnt/ beta-catenin pathway and inhibiting naked cuticle 1 (NKD1). Furthermore, miR-532 may provide a novel therapeutic target for gastric cancer⁶. However, no literature has elucidated the role of hsa-miR-337 in NSCLC metastasis as well as its potential molecular mechanism.

¹Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalia ina

²Department of Ultrasonography, Suizhou Central Hospital, Suizhou, China ³Affiliated Hospital of Guizhou Medical University, Guiyang, China

⁴Department of Pathology & Forensic Medicine, College of Basic Medical University, Dalian, China

In our study, we found that hsa-miR-337 was lowly expressed in NSCLC tissue samples. Meanwhile, hsa-miR-337 significantly inhibited NSCLC metastasis *in vitro*. Furthermore, we explored the underlying mechanism of how hsa-miR-337 functioned in NSCLC metastasis.

Patients and Methods

Tissue Specimens

Totally 60 NSCLC patients who underwent surgical resection at The First Affiliated Hospital of Dalian Medical University were enrolled in this study. Human NSCLC tissues and adjacent non-tumor tissues were collected from patients during the surgery. After surgical resection, all tissue samples were snap-frozen in liquid nitrogen immediately for subsequent use. No radiotherapy and chemotherapy treatment were conducted in any patient before the surgery. The study was approved by the Research Ethics Committee of The First Affiliated Hospital of Dalian Medical University. The written informed consents were obtained all the patients before the study.

Cell Culture and Transfection

Five NSCLC cell lines (A549, SPCA1, H1 H1299, and PC-9) and one in alized man bronchial epithelial cell E) wer bought from American Ty Culture llection nes were (ATCC; Manassas, VA, All ce cultured in Dulbecco's Mo um (DMEM; Invit en, Ca CA, USA) or Roswell Park morial Inst 640 (RP-MI-1640) med itrogen, Ca d, CA, USA). According to enufacturer's protocol of lipofect sine 2000 (In gen, Carlsbad, CA, AA mimics (hsa USA), p 337; GenePharma, S ghai, China) was transfected into cells.

Time- tative (ymerase of PCR)

l RNA sues and cells was extracted according to the instructions of TRIzol reagent (Ir Carlsbad, CA, USA). Complementatives are nucleic acids (cDNAs) was synsized in strict accordance with Reverse qPCR (Takara Biotechnology Co., Ltd., Dalian, Ch., SYBR Green Real Time-PCR Master Mix (Roche, Basel, Switzerland) and ABI ViiA7 qPCR System (ABI, Foster City, CA, USA) was used to

perform RT-qPCR. The mRNA expression level of hsa-miR-337 was detected. Primers used in this study were as follows: hsa-miR-337, forward 5'-CGCTTCAGCTCCTATATGA-3' au 5'-GTGCAGGGTCCGAGGT-3'; forwar 5'-CTCGCTTCGGCAGCACA-3' æ reverse 5'-AACGCTTCACGAATTTGC TCF7, forward 5'-CTCGAGCCTACCCC AAGT-GACA-3' **GTTTA** and reverse AG--3'; GCTTTGAAAAACAA Glycera e (GAPPH), forwa. 3-phosphate dehydroge **TGTGGGCATCAA** TTT 3' and reverse AAT-3' 5'-ACACCATGTATC ecific at 95°C 30 sec thermal cycle y 5 35 sec at 60 for 40 cycles

Wound Lealing ay

Six-well plates we used to culture NSCLC cells a miRNA mim. Here transfected into const. When growing to about 90% of confluence, is were scratched by a sterile 10 μ L pipette tip. In the cells we incubated in a humidified incomer with 5% D₂ atmosphere at 37°C. Open work was a wear leasured at 24 h. These procedures we want for three times.

Assays

of serum-free DMEM were seeded into the upper chamber of 8-μm culture inserts (Corning, Corning, NY, USA). Then, 20% of fetal bovine serum (FBS)-DMEM (Invitrogen, Carlsbad, CA, USA) was added to the lower chamber of culture inserts. After culturing for 24 h, the cells were fixed with methanol for 30 min and stained with hematoxylin for 20 min. Finally, migrated cells were observed under an inverted microscope (×20), and the number of cells was calculated. Five fields were randomly selected for each sample.

Western Blotting Analysis

48 h after transfection, cells were first collected. Radioimmunoprecipitation assay (RIPA) protein extraction reagent (Beyotime, Shanghai, China) supplemented with protease inhibitor cocktail (Roche, Basel, Switzerland) and phenylmethylsulfonyl fluoride (Roche, Basel, Switzerland) was used to lyse cells. Subsequently, total proteins were separated by 10% Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and transferred onto 0.22-μm NC membranes. The membranes were incubated with specific primary and secondary antibodies. An-

ti-GAPDH and anti-TCF7 were purchased from Cell Signaling Technology, Inc. (Danvers, MA, USA).

Luciferase Reporter Gene Assay

The 3'-Untranslated Region (3'-UTR) of TCF7 was cloned into a pGL3 vector as wild-type (WT) 3'-UTR. Site-directed mutagenesis of hsamiR-337 binding site in TCF7 3'-UTR was used as mutant (MUT) 3'-UTR by quick-change site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA). Then, the plasmids were transfected into A549 cells for 48 h. Dual luciferase reporter assay system was used for performing luciferase reporter gene assay.

Statistical Analysis

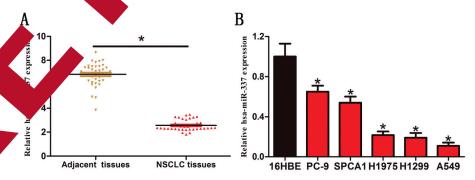
Statistical Product and Service Solutions (SPSS) 18.0 (SPSS, Chicago, IL, USA) statistical software was used for all statistical analysis. The independent-sample *t*-test was used to compare the difference between the two groups. *p*-values<0.05 were considered statistically significant.

Results

Hsa-MiR-337 Was Lowly Expressed in NSCLC Tissue Specimens and Table Lines

First, RT-qPCR was cond tect hsa miR-337 expression in 60 ues and lients' hat hsa-4 NSCLC cell lines. Re show miR-337 was significantly mor tissues than the r adjac sues (Figure 1A). Compared w 6HBE cells pression of hsa-miR-337 C cells was ficantly lower (Figure

Overexpression of Hsa-MiR-337 Inhibited Migration and Invasion of NSCLC Cells


According to hsa-miR-337 expression in NS-CLC cells, A549 cells were chosen for pression of hsa-miR-337. Hsa-miR mimic and negative control (NC) were netized and transfected into A549 cells. St ently, hsa-T-qPCR miR-337 expression was verified (Figure 2A). Wound heal assay that 37 inhibited overexpression of hsa-mi More ver, the re cell migration (Figure of the transwell assay nstr a that the overexpression of hsa νiR-. ncantly bited the invasion of ure '

Hsa-MiR- bited Tume Jenesis of NSCLC v. a Tary 7 TCF7

Starbase v2.0 only stabase predicted that f hsa-miR-337 (Figa possible tax 3A). Luciferase reporter gene assay showed significantly as luciferase activity was obed in A549 CLC cells co-transfected with R-337 min and WT-TCF7-3'-UTR when with trol group (Figure 3B). Results of West assay showed that the protein exession of TCF7 was remarkably down-regulated miR-337 mimics transfection (Figure 3C).

Correlation Between Expression of TCF7 and Hsa-MiR-337

RT-qPCR results further demonstrated that the mRNA expression of TCF7 was significantly up-regulated in NSCLC cells when compared with 16HBE cells (Figure 4A). Meanwhile, TCF7 expression in NSCLC tissues increased markedly when compared with that of adjacent tissues (Figure 4B). Furthermore, the results of linear correlation analysis indicated that in NSCLC tissues,

Expression level of hsa-miR-337 was significantly decreased in NSCLC tissues and cell lines. A, Hsa-miR-337 expression was significantly decreased in NSCLC tissues when compared with adjacent normal tissues. B, Expression level of hsa-miR-337 in human NSCLC cell lines and normal gastric epithelial cell line (A549) was determined by RT-qPCR. Data were presented as mean \pm standard error of the mean. *p<0.05.

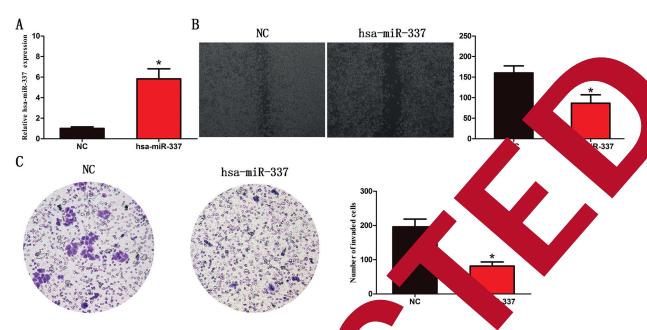
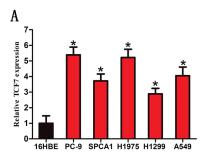
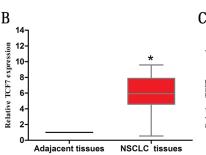
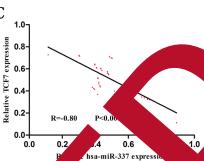


Figure 2. Overexpression of hsa-miR-337 inhibited migration an ivasion of A549 NSCLC cells. A, Hsa-miR-337 expression in cells transfected with negative control (NC) or hsa-miRmimics (hsa-p 337) was detected by RT-qPCR. B, Wound healing assay showed that the overexpression of hsa-miR significantly essed the migration ability of hsamiR-337 cells compared with NC cells. C, Transwell assay demon that the nu r of invaded cells was significantly decreased in hsa-miR-337 transfected cells compared with NC cells. Its rep ted the average of three independent experiments (mean \pm standard error of the mean). *p 05, as compared

Figure 3. Hsa-mil appressed NSCs appetastasis process via inhibiting TCF7. *A*, The binding sites of hsa-miR-337 on TCF7. *B*, Lucinesse are gene assay so ed that cells transfected with hsa-miR-337 mimics exhibited less luciferase activity than those transfection of TCF7 in A549 NSCLC cells. *p<0.0


the ression TCF7 was negatively correlated with 77 expression (Figure 4C).


scussion


meostasis and various pathological cess. Researches have proved that miRNAs important regulatory functions in carcina nesis of NSCLC. For example, Zhao B. et al⁸ have shown that over-expression of lncRNA PCAT-1 promotes the proliferation and metastasis

of NSCLC. Xue et al⁹ have reported that through down-regulating SOCS1, SOCS6, and PTEN, miR-21 and miR-155 promote the progression of NSCLC. Meanwhile, this is inversely correlated with the prognosis of NSCLC patients. In addition, Zhao L. et al¹⁰ have found that miR-149 suppresses the growth and metastasis of NSCLC cells *via* depression of FOXM1/cyclin D1/MMP2 axis. Moreover, Wang et al¹¹ have proved that miR-142-5p inhibits the proliferation of NSCLC through targeting PIK3CA.

MiR-337 is reported to play an important role in the progression of diverse carcinomas. For ex-

Figure 4. TCF7 expression in NSCLC tissues and NSCLC cell lines. **A,** TCF7 was highly pressed in NSCLC cell lines compared with 16HBE cells. **B,** TCF7 expression in NSCLC tissues was significantly in the lambda of corresponding non-tumor tissues. **C,** Correlation analysis revealed that hsa-miR-337 expression was legal. The lambda with the lambda of the lambda of

ample, miR-337 inhibits the development of melanoma by targeting STAT3. This indicates that miR-337 may serve as a potential therapeutic target for the melanoma¹². MiR-337, functioning as an oncogene, promotes the proliferation of endometrial carcinoma by depressing PTEN expression¹³. MiR-337 acts as a tumor suppressor in the progression of colorectal cancer through tar KRAS directly and repressing the AKT a pathways¹⁴. Moreover, miR-337 exerts a s sion effect on pancreatic ductal adenocarc through regulating cell proliferation and inva by targeting HOXB7¹⁵. In this w was found significantly dow in bot NSCLC tissues and cell urther e, after the abi s of cell hsa-miR-337 overexpress migration and invasion nsa-mik-537 pressed. These data dicated functioned as a inhibited or suppresso the tumorigene CLC.

TCF7) plays an im-Transcripti facto portant roll in promoting progression of diough activation verse ca rs. For instance of W signaling and up-regulation of TCF7, sses bone metastasis in prosmil vated by Ras¹⁶. The overexprestate 12 supp ses the proliferation and sion of s of human osteosarcoma otes MiR-6852 functions as an cogene in colorectal cancer. Meanwhile, ant ppresses tumor progression and rough targeting TCF7, which may e as a potential prognostic marker and thertarget for colorectal cancer¹⁸. In addition, ding to TCF7 in Wnt signaling pathway, AFIg enhances cell proliferation, migration, and chemoresistance in breast cancer¹⁹. In our study,

results of RT-qPCR a estern blot analysis int TCF7 was ficantly down-regudic a after hsa-miR-337 overexpression in vitro. at's more, TCM was remarkably up-regulated SCLC same when compared with that of nt tissues. legative correlation was found he ex sion of TCF7 and hsa-miR-337 bet es. The above results revealed that in NCS. 2-miR-337 might realize its function via target-

Conclusions

Our research indicates that hsa-miR-337 plays a vital role in the carcinogenesis of NSCLC, which can serve as a promising biomarker for NSCLC.

Conflict of interest

The authors declare no conflicts of interest.

Funding Acknowledgements

This study was supported by the foundation from National Natural Science Foundation of China (61672126).

References

- KATLIC MR, FACKTOR MA, BERRY SA, MCKINLEY KE, BOTHE AJ, STEELE GJ. ProvenCare lung cancer: a multi-institutional improvement collaborative. CA Cancer J Clin 2011; 61: 382-396.
- Gompelmann D, Eberhardt R, Herth FJ. Advanced malignant lung disease: what the specialist can offer. Respiration 2011; 82: 111-123.
- 3) Li HS, Lv RQ, Liu L. Correlation of CT indicators of NSCLC and pathological features and the ex-

- pression level of p53 and c-myc. Eur Rev Med Pharmacol Sci 2018; 22: 135-141.
- 4) Wang P, Zhu CF, Ma MZ, Chen G, Song M, Zeng ZL, Lu WH, Yang J, Wen S, Chiao PJ, Hu Y, Huang P. Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget 2015; 6: 21148-21158.
- ZENG M, ZHU L, LI L, KANG C. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1. Cell Mol Biol Lett 2017; 22: 12.
- Hu S, Zheng Q, Wu H, Wang C, Liu T, Zhou W. miR-532 promoted gastric cancer migration and invasion by targeting NKD1. Life Sci 2017; 177: 15-19.
- LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402-408.
- ZHAO B, HOU X, ZHAN H. Long non-coding RNA PCAT-1 over-expression promotes proliferation and metastasis in non-small cell lung cancer cells. Int J Clin Exp Med 2015; 8: 18482-18487.
- XUE X, LIU Y, WANG Y, MENG M, WANG K, ZANG X, ZHAO S, SUN X, CUI L, PAN L, LIU S. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2016; 7: 84508-84519.
- ZHAO L, LIU L, DONG Z, XIONG J. miR-149 suppresses human non-small cell lung growth and metastasis by inhibiting the cyclin D1/MMP2 axis. Oncol Rep 2, 38-3522-3530.
- 11) Wang Z, Liu Z, Fang X, Yang H. MiR-142-5p presses tumorigenesis by targeting PIK3C, non-small cell lung cancer. Cell as iol Bioch 2017; 43: 2505-2515.

- XIAO W, YAO E, ZHENG W, TIAN F, TIAN L. miR-337 can be a key negative regulator in melanoma. Cancer Biol Ther 2017; 18: 392-399.
- 13) CAI Y, HE T, LIANG L, ZHANG X, YUAN H. Underston of microRNA337 promotes the pre-endometrial carcinoma cells via talking PTE Mol Med Rep 2016; 13: 4827-482
- 14) LIU X, WANG Y, ZHAO J. MicroRM of inhibits colorectal cancer progression by targeting KRAS and suppressing the AKT and K pathways. Oncol Rep 2017; 20187-3196
- 15) ZHANG R, LENG H, HUAN DU Y, WANG Y, CHEN X, ZHAO G. miR regulates the prolife and invasion in particle by targeting HQXB. Page 31 2014; \$1.171.
- 16) CHEN WY, LIU J, YEH H OUHIED-HANG 4 О, Авой MicroR-DINE TH, HA ntes WNT/TC ng and in-NA-34a hibits 1 stasis in Rasted prostate nco 2015; 6: 441-457. canc
- 17) Wang Y, Zhang S, Zhang Y, Guan H, Li X, Li Y Wang Y. Upregular of miR-192 inhibits cell and invasion and iduces cell apoptosis by targeting TCF7 in human osteosarcoma. Tumour Biol 2016; 37: 15211-15220.
- Cui BH, Hone miR-6852 serves as a prognostic rectal cancer and inhibits tumor astasis by targeting TCF7. Exp. 16: 879-885.
- 19) PAR. DERER M, SCHREIBER M, ICE R, MERKEL O, BILBAN M, HOFBAUER S, KIM S, ADDISON J, ZOU J, JI BUNTING ST, WANG Z, SHOHAM M, HUANG G, BARVATH Z, GIBSON LF, ROJANASAKUL Y, REMICK S, IV. OV A, PUGACHEVA E, BUNTING KD, MORIGGL R, KENNER L, TSE W. AF1q is a novel TCF7 co-factor which activates CD44 and promotes breast cancer metastasis. Oncotarget 2015; 6: 20697-20710.