Long noncoding RNA PROX1-AS1 promoted ovarian cancer cell proliferation and metastasis by suppressing KLF6

L. ZHAO¹, J.-F. LI², X.-J. TONG³

Abstract. – OBJECTIVE: Recently, the role of long noncoding RNAs (IncRNAs) in tumor progression has attracted much attention worldwide. Numerous studies have identified IncRNA PROX1-AS1 as an oncogene in cancers. Therefore, the aim of this research was to explore the function of PROX1-AS1 in the development of ovarian cancer.

PATIENTS AND METHODS: PROX1-AS1 expression in both ovarian cancer patients and normal subjects was detected by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Subsequently, PROX1-AS1 shRNA was constructed and transfected *in vitro*. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, colony formation assay, transwell assay, and Matrigel assay were utilized to detect the function of PROX1-AS1 in ovarian cancer. In addition, the potential mechanism was explored using qRT-PCR and Wester assay.

RESULTS: PROX1-AS1 was highly exp sea in ovarian carcinoma samples and cell (p<0.05). The proliferation, migration and y inh sion of ovarian cells were sign ed after PROX1-AS1 was d tro (p<0.05). Besides, the m pressions of KLF6 we motitly p. **sign** ed after PROX1-AS1 kdown arian cancer cells (p<0.05) functi assays showed that KI 6 expl n was negatively OX1-AS correlated with ession in ovarian cancer sa Jes.

CONCLUSIONS ROX1-AS1 enhances the metastasis a collifer on of ovarian cancer cells upper the EF6. Our findings suggestion ROX1 may be applied as a novel to the collinois of the EFF collinois and the collinois a

Key 'c:

Long coding RNAs, PROX1-AS1, Ovarian cancer, KLF6.

Introduction

Ovarian cancer remains e most fatal and common tumor globally, accounting for 5-6% aths^{1,2}. It r-related has been reported that 22, natier are newly diagnosed of ova a cancer Ica in 2017, ne vagueness with 14,100 ue to of sympton lack of early detection tests, 70 o of ve already been in ges whe st diagnosed⁵. Whereadvan of the patients may develop as. a nost notherapy or recurrence after rance to rgery^{6,7}. There ore, the severe situation unerscores the urgency of early detection and the of new therapeutic interventions ablishr cancer patients.

Long non-coding RNAs (lncRNAs) are a suboup of non-coding RNAs that do not encode steins. Currently, IncRNAs have emerged as an important role in tumorigenesis. Multiple studies have found that lncRNAs have the potential to regulate gene expression. By regulating vasculogenic angiogenesis, IncRNA MALAT1 promotes tumorigenicity and metastasis in gastric cancer⁸. LncRNA AC132217.4 promotes the metastasis of oral squamous cell carcinoma by regulating IGF2 expression modulated by KLF89. By sponging miR-124-3p, lncRNA OGFRP1 has been reported to take part in the proliferation of non-small cell lung cancer cells¹⁰. Upregulation of lncRNA LINC01510 has been confirmed negatively associated with the prognosis of colorectal cancer (CRC) patients. Meanwhile, lncRNA LINC01510 may serve as a potential independent prognostic biomarker for CRC11. LncRNA HCCL5 activated by ZEB1 accelerates cell viability, cell migra-

¹Department of Gynecology Center, The First Affiliated Hospital of XinJiang Medical University, Urumqi, China

²Department of Ultrasound, WeiHai Municipal Hospital, WeiHai, China

³Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China

tion, epithelial-mesenchymal transition, and the malignancy of hepatocellular carcinoma¹². However, few studies have uncovered the exact role of PROX1-AS1 in ovarian cancer, as well as the underlying mechanism.

In our study, we found that PROX1-AS1 was remarkably upregulated in ovarian cancer tissues. PROX1-AS1 enhanced the proliferation and metastasis of ovarian cancer *in vitro*. Moreover, KLF6, a tumor suppressor gene, was associated with the function of PROX1-AS1 in ovarian cancer.

Patients and Methods

Tissue Specimens

Paired ovarian carcinoma tissues and adjacent normal tissues were sequentially collected from 50 ovarian carcinoma patients undergoing surgery from December 2017 to December 2019 in The First Affiliated Hospital of XinJiang Medical University. The selection of patients was based on the guideline proposed by the Union for International Cancer Control (UICC) study was approved by The Ethics Common The First Affiliated Hospital of XinJiang ical University. The protocol of the study performed as Declaration of Helsinki Principla required.

Cell Culture

Human ovarian cancer cel V112D, HO-8910, and SKOV al ovar Pulbecian cell line (ISOE80) wg cult co's Modified Eagle's M m (DML no Fisher Scientific, Inc.. ham, MA, US onsisting of 10% fetal n (FBS; Thermo Fisher Scientific, I Wan USA) and penicillin, and maintained in a ed atmoat 37°C. sphere with 5%

Lentivirus ress Short-Hairpin RNA and Cell

ing Lentivirus t-hairpin RNA (shRNA) directed X1-AS1 were pronghai, China). The vided ePharm. DNA encoding PROX1-AS1 was com into pcDNA3.1 (Genean ina). Subsequently, they wer ted into ovarian cancer cells, acructions of Lipofectamine 3000 cording oad, CA, USA). PROX1-AS1 (Invitrogen, expression in transfected cells was conducted

using quantitative Real Time Chain Reaction (RT-qPCR).

RNA Extraction and PCR

Total RNA in tissues a cted by using TRIzol reg ent (În sbad, CA, USA). Subse tly, extract RNA sed 1 was reverse-tran ompleme tary deids (As) th rugh Reverse oxyribose nucle Transcription 4 a Bio nology Co., Ltd., Dalian Chin ng conditions were as fol s: 30s a. or 40 cycles at 95°C, and ¹ at 60°C. 2-∆ thod was utilized lative expression of genes. The for cal in this study were as folprima lows P.OX1-As ₫ 5′-CTAGTTAGCAG-AGCAC-3', F. Al-AS1 reverse 5'-AA-AGAGGCGTGGAAGAA-3'; β-actin, ford 5'-GATGGAAATCGTCAGAGGCT-3' and ΓTAGTTGGAAATGC-3'. erse 5'-TGGG

Analysis

as were collected from cells via radioimmunoprecipitation assay (RIPA) buffer and tified by using a protein assay (bicinchoninic od; Beyotime, Shanghai, China). Tarins were separated by sodium dodecyl Aphate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto polyvinylidene ifluoride (PVDF) membranes. Then, the memanes were incubated with primary antibodies overnight. On the next day, the membranes were incubated with rabbit anti-β-actin (Cell Signaling Technology, Danvers, MA, USA) and rabbit anti-KLF6 (Cell Signaling Technology, Danvers, MA, USA). The Pierce enhanced chemiluminescence (ECL) was utilized for visualizing Western Blotting Substrate Immunoreactive bands (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA).

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl Tetrazolium Bromide) Assay

MTT (Roche, Basel, Switzerland) assay was used to detect cell proliferation. 200 μL of transfected cells were first seeded into 96-well plates at a density of 2×10^3 cells per well. Following the manufacturer's protocol, cell proliferation was assessed every 24 h.

Colony Formation Assay

To detect the long-term effect of PROX1-AS1 on cell proliferation, colony formation assay was conducted. 5×10² cells/well cells were seeded into 6-well plate, and culture medium was replaced

every day. 7 day later, formed colonies were fixed with 75% ethanol for 30 min and stained with 0.2% crystal violet. Finally, colonies were photographed and counted.

Wound Healing Assay

After transfection, the cells were seeded into 6-well plates and incubated in DMEM medium overnight. On the next day, the cells were scratched with a plastic tip and cultured in serum-free DMEM. Each assay was repeated in triplicate independently. Relate distance was viewed under a light microscope (Olympus Corp., Tokyo, Japan) at 48 h.

Transwell Assay and Matrigel Assay

After transfection, 1 ×10⁵ cells in 200 μL serum-free DMEM were replanted in top chamber (Corning, Inc., Corning, NY, USA) with or without 50 µg Matrigel (BD, Bedford, MA, USA). Meanwhile, DMEM and FBS were added to the lower chamber. These chambers were then cultured overnight in an incubator supplemented with 5% CO₂ at 37°C. The top surface of chambers was fixed with methanol for 30 min wiped by cotton swab, followed by staini crystal violet for 20 min. Five fields wer domly selected for each sample. The number migrating and invasive cells was finally count under a Leica DMI4000B microsco eica Microsystems, Heidelberg, German

Statistical Analysis

Statistical Product and (SPSS) 18.0 (SPSS, Chica IL, os used for all statistical analysis the difference of the control of the

two groups were compared p < 0.05 was considered static any signature.

Resu

PROXI-ASI Was ghly Explanation in Ovarian Cancer ssue and Cen.

50 p PROX1-AS1 essio rs of ovarian cancer tissues iorma sues was detected via q T-PC vas highly expressed in when compared ian can 0.05, Figure 1A). with adja normal tissue 1-AS1 level in ovarian cancer Moreov higher than that of normal cells ovarian cell line <0.05, Figure 1B).

Proliferation Was Repressed Via ence of PRCY1-AS1 in Ovarian Cancer

n our study. PROX1-AS1 in vitro. qRTknockdow PROX1-AS1 in vitro. qRTd for detecting PROX1-AS1 expres are 2A). MTT assay indicated that the growth ability of HO-8910 cells was signifidly repressed after PROX1-AS1 was knocked 40.05, Figure 2B). Colony formation ay amonstrated that the number of colonies ecreased significantly after PROX1-AS1 was knocked down (p<0.05, Figure 2C).

ell Migration and Invasion Was Repressed Via Silence of PROX1-AS1 in Ovarian Cancer

Wound healing assay, transwell assay, and Matrigel assay were performed to explore how PROX1-AS1 affected ovarian cancer metasta-

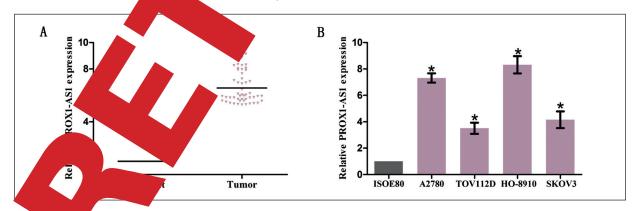
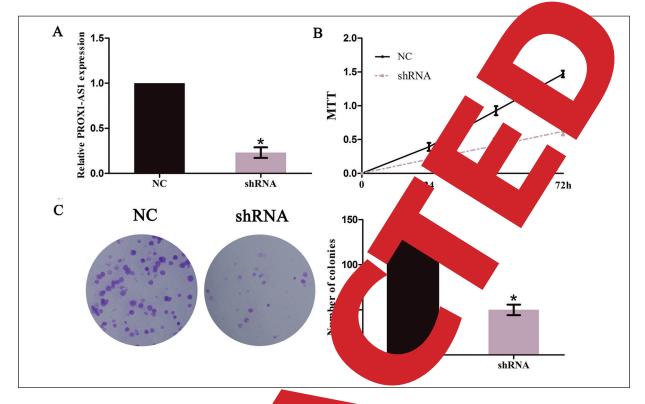
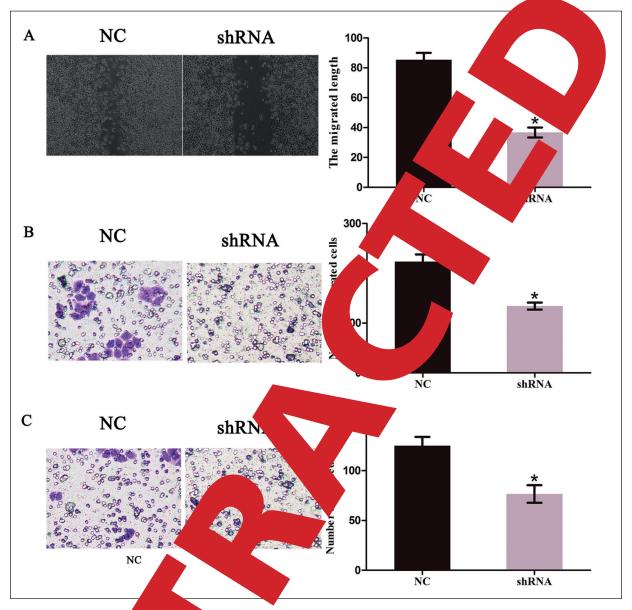



Figure so sion levels of PROX1-AS1 increased significantly in ovarian cancer tissues and cell lines. A, QRT-PCR results show the property of the proximal cancer tissues compared with adjacent normal tissues. The proximal relative to β -actin were determined in human ovarian cancer cell lines and normal ovarian cell SOE80 by qRT-PCR. Data were presented as the mean \pm standard error of the mean. *p<0.05.

Figure 2. Knockdown of PROX1-AS1 inhibited cancer cells transduced with PROX1-AS1 shRNA and as used as an internal control. **B,** MTT assay showed that cancer cells. **C,** Colony formation assay showed that known in ovarian cancer cells (magnification: $40\times$). The results standard error of the mean). *p<0.05, as compared with the cells.

sis in vitro. Wound healing the migrated length of ovar AS Was significantly repressed was knocked down (p < 0.05) ure 3A). lts of transwell assay sho that the mign of ovarian cancer cells rkably repressed after PROX1-AS1 (Figure 3B). Furthermore, Matrigel assay h that the number of inva cells decreased emarkably after PROX1knocked down in vitro was (p < 0.05, Fig3C)

The Interaction KLF6 and PRO in Ova. Lancer


To appear on level of ALF6 in ovarian cancer cells as high the control of the con

KLF6 expression in ovarian cancer tissues was significantly lower than that of adjacent normal tissues (p<0.05, Figure 4C). These findings all suggested that there was a negative association between KLF6 expression and PROX1-AS1 expression in ovarian cancer (Figure 4D).

Discussion

Many studies¹³⁻¹⁶ revealed the abnormal expression and function of lncRNAs in the development of malignant tumors. They have also been found to directly participate in the proliferation, apoptosis, metastasis, immune regulation, and drug resistance in tumors. Meanwhile, lncRNA in involved in the regulation of various cellular functions, whose disorders are usually associated with human diseases, including malignant tumor.

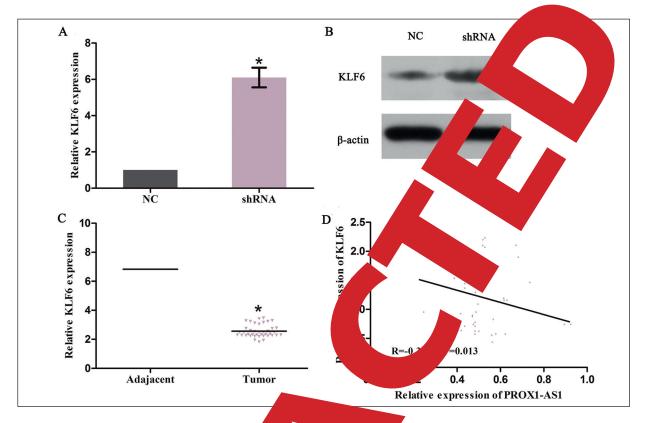

Reports have indicated that lncRNA is an important regulator in the progression of ovari-

Figure 3. Knockdown of PRG. ASI sign are duced migrated length in ovarian cancer cells (magnification: $40 \times$). B, Transwell assay showed that knockdown of PRG. ASI sign are duced migrated length in ovarian cancer cells (magnification: $40 \times$). B, Transwell assay showed that knockdown of PRG. As in principle of p

tial biomarker and an cancer serving get. O. silence of lncRNA thera ppresses the proliferation and mi-MN r cells⁴. LncRNA Elnoncogene in the proliferatic elial OC cells, which is upregulated ddition, knockdown of lncRNA by estro AFAP1-ASI tes the proliferation and apoptosis of ovarian ancer cells¹⁸.

PROX1 antisense RNA 1 (PROX1-AS1) is a newly explored lncRNA that has been suggested to promote the progression of papillary thyroid carcinoma¹⁹. Our results showed that PROX1-AS1 expression was significantly upregulated in both ovarian cancer tissues and cells. Multiple lncRNAs have been reported to participate in the development of ovarian cancer, emerging as potential indicators and therapeutic targets. In fact,

Figure 4. Interaction between PROX1-AS1 and Incompared with NC group of the mean β -actin was used as an internal control. **B,** Western blot assay revealed the agroup compared with NC group. **C,** KLF6 was significating adjacent normal tissues. **D,** The linear correlation between tissues. The results represented the average independence in the mean β -control of the mean. β -control of the mean β -control

lncRNA SNHG14 facility the ion of cervical cancer by regul g miR-2v signaling pathway²⁰. oh regulation thelial-mesenchymal downregulation of IncRNA SPRY4 en e metastasis of ovarian cancer²¹ LucRNA L activatctions as an one ed by estrogen, ene in epithelial ovarian 117. In the present study, cer g PROX1-AS1 ocked down in ovarian cancer cell that the prolifindic cer c eration of ov was significantly inhibited ofter Pr as knocked down ration and invasion in vi over, co rkably inhoted after PROX1-AS1 wet above results indicated dç OX1-AS1 was associated lopment of ovarian cancer. Wit

Next, lored the potential target proteins of AS1 using bio-informative methods. The results showed that the potential

target protein, Krüppel-like factor 6 (KLF6), was significantly downregulated in ovarian cancer tissues. Known as a tumor suppressor, KLF6 takes part in the regulation of a variety of biological processes in many carcinomas. KLF6 is deleted glioblastomas, which is related to poor prognosis of patients by targeting KLF6²². KLF6 constrains the progression of hepatocellular carcinoma dissemination by regulating the VAV3-RAC1 signaling axis²³. Meanwhile, KLF6 accelerates cell proliferation and invasion in epithelial ovarian cancer²⁴. In the present study, the mRNA and protein expressions of KLF6 were both significantly upregulated after the knockdown of PROX1-AS1. Moreover, KLF6 expression was negatively correlated with PROX1-AS1 expression in ovarian cancer tissues. All these results suggested that PROX1-AS1 might promote tumorigenesis of ovarian cancer via suppressing KLF6.

Conclusions

The above results demonstrated that PROX1-AS1 was highly expressed in both ovarian cancer tissues and cells. Besides, PROX1-AS1 enhanced ovarian cancer cell proliferation, migration, and invasion by targeting KLF6. The novelty of this study was that PROX1-AS1 might contribute to therapy for ovarian cancer as a candidate target.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- SIEGEL R, NAISHADHAM D, JEMAL A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11-30.
- CHEN Q, LIU X, XU L, WANG Y, WANG S, LI Q, HUANG Y, LIU T. Long non-coding RNA BACE1-AS is a novel target for anisomycin-mediated superession of ovarian cancer stem cell proliferation invasion. Oncol Rep 2016; 35: 1916-1924
- 3) SIEGEL RL, MILLER KD, JEMAL A. Cancer sta 2017. CA Cancer J Clin 2017; 67: 7-30.
- 4) Lv Y, Li H, Li F, Liu P, Zhao X. Long noncoding Ri MNX1-AS1 knockdown inhibits cell proliferation and migration in ovarian cancer Biother Radiopharm 2017; 32: 91-99.
- 5) LALWANI N, PRASAD SR, VIKRA SHAN HUETTNER PC, FASIH N. Hist cytogenetic features of overtions for diagnosis and patme. Straphics 2011; 31: 625-646.
- 6) BAST RJ, HENNESSY B, ian cancer: new or Rev Cancer 200° A
- 7) Cannistra SA. Car Ser of the Singl J Med 2004; 351: 25 2529.
- 8) LI Y, WU Z, J, SUN L, LIN L, HUANG N, BIN J, LINO ON THE CONTROL OF THE CONTRO
- 9) Li X Ma C, ZHAN MG X, He J, He R, SHAO MG X, HE J, HE R, HE R,
- 10) LONG THEN GH, LI H, HE P, ZHANG Y, XU XW. Long RNA OGFRP1 regulates LYPD3 expression sponging miR-124-3p and promotes non-small cell lung cancer progression.

- Biochem Biophys Res Com 5: 578-585.
- 11) ZHOU JF, WANG HG, M. YAN W, W. SHI YT, YANG XZ. Long nor 13g RNA LINC is highly expressed in cancer a dicts favorable prognosis Med rmacol Sci 2018; 22:7 10-7715.
- PENG L, JIANG B ΝX, QIU Y, P AUANG Y, W, ZHANG ZHANG C, ZHAN AO W, DE in Ζ, D, Bı Li G, Lin DC. Y, MENG M, d long Super-enh coding RNA HCCL5 is at promotes the ZEB1 maligna of he inoma. Cancer 9: 572-50 Res 2
- 13) Idoo OHASHI T, SASA I, NAKASE H, TOKINO T. Indian RNA NEAT1 is a transcription tall a sactivation of the sactivation of the
- W, Li H, Zhang L, Hu M, Li F, Deng J, An M, Wu S, Ma R, Lu J, Zhou Y. Long non-coding RNA LINC00672 (Intributes to p53 protein-mediated gene supplied sion and promotes endometrial sancer chemical ensitivity. J Biol Chem 2017; 292:
- 15) G Y, An W, Xu J, Zhang G, Jie J, Zhang Q. The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cr cells by targeting the p53/miR-145 path-J Gastroenterol Hepatol 2017; 32: 837-
- CHIYOMARU T, FUKUHARA S, SAINI S, MAJID S, DENG G, SHAHRYARI V, CHANG I, TANAKA Y, ENOKIDA H, NAKAGAWA M, DAHIYA R, YAMAMURA S. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J Biol Chem 2014; 289: 12550-12565.
- 17) QIU JJ, ZHANG XD, TANG XY, ZHENG TT, ZHANG Y, HUA KQ. ElncRNA1, a long non-coding RNA that is transcriptionally induced by oestrogen, promotes epithelial ovarian cancer cell proliferation. Int J Oncol 2017; 51: 507-514.
- 18) YANG SL, LIN RX, SI LH, CUI MH, ZHANG XW, FAN LM. Expression and functional role of long non-coding RNA AFAP1-AS1 in ovarian cancer. Eur Rev Med Pharmacol Sci 2016; 20: 5107-5112.
- SHEN Y, XIA E, BHANDARI A, WANG X, GUO G. LncRNA PROX1-AS1 promotes proliferation, invasion, and migration in papillary thyroid carcinoma. Biosci Rep 2018; 38. pii: BSR20180862.
- Ji N, Wang Y, Bao G, Yan J, Ji S. LncRNA SNHG14 promotes the progression of cervical cancer by regulating miR-206/YWHAZ. Pathol Res Pract 2019; 215: 668-675.
- Yu J, Han Q, Cui Y. Decreased long non-coding RNA SPRY4-IT1 contributes to ovarian cancer cell metastasis partly via affecting epithelial-mesenchymal transition. Tumour Biol 2017; 39: 1393380535.
- 22) MASILAMANI AP, FERRARESE R, KLING E, THUDI NK, KIM H, SCHOLTENS DM, DAI F, HADLER M, UNTERKIRCHER T, PLA-

- TANIA L, WEYERBROCK A, PRINZ M, GILLESPIE GY, HARSH GI, BREDEL M, CARRO MS. KLF6 depletion promotes NF-kappaB signaling in glioblastoma. Oncogene 2017; 36: 3562-3575.
- 23) Ahronian LG, Zhu LJ, Chen YW, Chu HC, Klimstra DS, Lewis BC. A novel KLF6-Rho GTPase axis regulates hepatocellular carcinoma cell migration
- and dissemination. Oncog 4653-4662
- 24) ZHANG S, ZHANG JY, LU WANG CH, V LH. MiR-630 promotes proliferation and investigation targeting F6. Eur Rev Med Pharmace 17: 2 542-4547.