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Introduction

Cancer is a leading cause of death worldwide 
and is commonly treated with chemotherapy using 
platinum complex agents. Cisplatin (CIS) was the 
first of these agents to be developed for clinical use 
and is still widely used in cancer treatment1,2. Plat-
inum complexes trigger programmed cell death 
mediated by the formation of intra-strand DNA 
crosslinks and thus inhibit replication1,3. In clini-
cal practice, CIS is used alone or in combination 
with other chemotherapeutic agents or radiother-
apy. It is an active heavy metal compound that 
can be used to treat many cancer types, including 
lung, bladder, testicular, breast, pancreatic, endo-
metrial, esophageal, and head and neck cancers, 
lymphoma, and melanoma4,5. The efficacy of CIS 
increases significantly with increasing doses, but 
higher doses are associated with higher rates of 
side effects, such as serious nephrological toxicity, 
ototoxicity, and neurotoxicity, and therefore their 
use is limited4,6,7. Neurotoxicity is the most com-
mon side effect seen during the use of CIS, which 
causes dose limitation6,8. Some previous studies8,9 
reported that antioxidant supportive therapy is 
beneficial for reducing the neurotoxicity associat-
ed with platinum-based chemotherapy, and that it 
increases the effectiveness of anticancer treatment; 
many bioflavonoids have been used for this pur-
pose. Studies10-13 on these effects of flavonoids have 
showed that thymoquinone (TQ) from black cum-
in seeds has antioxidant, antiallergenic, antiviral, 
antidiabetic, anti-inflammatory, and anticarcino-
genic activities. Previously, TQ compounds have 
been reported11,14,15 to have neuroprotective effects. 
Overall, those studies focused on neurotoxicity in 
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the peripheral nervous system. However, central 
nervous system (CNS) neurotoxicity may also oc-
cur in patients undergoing treatment with CIS, and 
there have been very few studies16,17 on the effect of 
TQ on these side effects.

Our study was performed to investigate the 
potential beneficial effects of TQ on brain tissue 
based on biochemical and histopathological anal-
yses in CIS-treated rats with CNS neurotoxicity.

Materials and Methods

Animals and Groups
This study was conducted with the approval of 

the Animal Ethics Committee of Inönü Univer-
sity (Reference Number: 2016/A-11). Thirty-two 
Wistar albino male rats, 8-10 weeks old and wei-
ghing 210-270 g, were obtained from the Inönü 
University Laboratory Animal Research Center. 
The rats were placed in a controlled environment 
with a constant humidity of 60±5% and tempera-
ture of 21±2°C under a 12 h/12 h light/dark cycle. 
The rats were divided into four groups of eight 
animals each by random selection: the Control 
group received intraperitoneal (i.p.) injection of 
0.5 mL saline daily for 3 days; the CIS group re-
ceived a single dose of 7 mg/kg CIS i.p.; the TQ 
group received TQ at 5 mg/kg/day (i.p.) for 3 days; 
the CIS+TQ group received 5 mg/kg TQ (i.p.) 30 
min before a single dose of 7 mg/kg CIS (i.p.) and 
then 5 mg/kg TQ (i.p.) as a single daily dose for 3 
days. Cisplatin (DBL)™ injectable solution (Orna 
Pharmaceuticals, Istanbul, Turkey) was admini-
stered i.p. directly, and TQ (CAS number: 490-
91-5; Sigma-Aldrich, St. Louis, MO, USA) was 
dissolved in saline. The doses of the drugs used 
were selected according to the results of previous 
dose-response studies18,19.

On day 4 of the study, the rats were sacrificed 
under anesthesia, and the brain tissues were dis-
sected out for sampling. Before the surgical pro-
cedures, 10 mg/kg xylazine (Bayer, Istanbul, 
Turkey) and 100 mg/kg ketamine hydrochloride 
(Parke-Davis, Istanbul, Turkey) were adminis-
tered i.p. Doses not exceeding 10% of the initially 
administered doses were repeated intermittently 
if needed to maintain the anesthesia.

Tissue Preparation and Biochemical 
Analysis

Fresh brain tissues taken for detailed biochemi-
cal examinations were homogenized using a mix-
er grinder (MM 400; Retsch, Haan, Germany) 

and then centrifuged to obtain homogenates. The 
supernatants were used for copper-zinc superox-
ide dismutase (CuZn-SOD) enzyme analysis and 
measurement of reduced glutathione (GSH) and 
protein levels. Homogenized tissues were direct-
ly assessed for malondialdehyde (MDA) content, 
according to the method reported by Mihara and 
Uchiyama20, and the results are presented as nmol 
MDA/g wet tissue. The level of GSH was mea-
sured using the method of Ellman, and the results 
are presented as nmol GSH/g wet tissue21. CuZn-
SOD activity was measured by the method of Sun 
et al22, and the values obtained are presented as 
U/g protein22. After the determination of the pro-
tein concentration according to the Biurea meth-
od, a calibration curve was created using bovine 
serum albumin23.

Histopathological Analysis
Cerebral tissues were stored in 10% formalde-

hyde solution and embedded in paraffin, and then 
sections 4-5 µm thick were cut from the paraffin 
blocks. Sections were stained with hematoxylin 
and eosin to determine the general morphological 
structure. Cerebral cortex congestion and neuro-
nal degeneration were evaluated.

Immunohistochemical Analysis
The sections were subjected to deparaffiniza-

tion and rehydration processes and then placed in 
a pressure cooker and boiled with 0.01 M citrate 
(pH 6.0) for 15-20 minutes. To block endogenous 
peroxidase activity, sections were treated with 3% 
hydrogen peroxide for 12 min. After washing with 
phosphate buffered saline (PBS) for 5 min, the 
sections were treated with Ultra V block (Thermo 
Scientific, Waltham, MA, USA) to block nonspe-
cific binding and then incubated at 37°C for 60 
min with primary antibody (Caspase-3; Thermo 
Scientific). After washing with PBS at 37°C for 
10 min, the tissues were treated with biotin-con-
jugated secondary antibodies. Subsequently, the 
sections were incubated with streptavidin peroxi-
dase at 37°C for 10 min, and the chromogen-treat-
ed sections were then stained with hematoxylin 
and covered with water-based sealer. 

For immunohistochemical analysis, at least 10 
images were randomly obtained from each sec-
tion at 40× magnification using the Leica DFC-
280 research microscope and Leica Q Win Image 
Analysis System (Leica Microsystems, Wetzlar, 
Germany). The percentage of immunohistochem-
ical staining in each image was determined using 
ImageJ (National Institutes of Health, Bethesda, 
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MD, USA) and calculated as (immunohistochem-
ically stained area/total area) × 100.

Statistical Analysis
To detect even small effects, sample sizes re-

quired for a power of 0.80 were calculated using 
NCSS software (NCSS, Kaysville, UT, USA). 
The data were analyzed using SPSS for Windows 
(version 22.0; IBM Corp., Armonk, NY, USA). 
The normality of the distribution was confirmed 
by applying the Kolmogorov-Smirnov ’s test. 
Based on the results of the normality test, analy-
sis of variance (ANOVA) was performed followed 
by multiple comparison testing using Tukey’s 
test for homogeneous variance. The results of 
the histopathological analyses are expressed as 
the mean ± standard deviation (SD). Biochemical 
analysis values that were significant in the Krus-
kal-Wallis’ H test were then subjected to the Con-
over’s test. The values are reported as the median 
(min-max). In all analyses, p<0.05 was taken to 
indicate statistical significance.

Results

Histopathological Analysis
On histological analysis, the cerebral cortex 

was normal in appearance in the Control and TQ 

groups. Neurons in sections from these groups 
showed round, large, euchromatic nuclei and nor-
mal morphological features (Figure 1A and B). 
On the other hand, degenerative changes were 
observed in neurons in the CIS group, includ-
ing shrunken acidophilic cytoplasm and pycnot-
ic nuclei (Figure 1C). In addition to the changes 
observed in the cerebral cortex, the CIS group 
showed cerebral cortex congestion. The CIS+TQ 
group also showed degenerated neurons and con-
gestion but less severe than those in the CIS group 
(Figure 1D).

Immunohistochemical Analysis
Low levels of caspase-3 immunoreactivity were 

observed in the neuronal cell bodies in the Con-
trol and TQ groups (Figure 2A and B). Caspase-3 
immunoreactivity was significantly higher in the 
CIS group than the Control group (Figure 2C). 
The CIS+TQ group showed a significant decrease 
in the level of caspase-3 immunoreactivity com-
pared with the CIS group (Figure 2D). The levels 
of caspase-3 immunoreactivity in all of the ex-
perimental groups are presented in Table I. The 
Control and TQ groups showed low levels of tau 
protein immunoreactivity in neurons and neu-
roglia cells (Figure 3A and B) in contrast to the 
higher immunoreactivity in the CIS group (Fig-
ure 3C), but this difference was not significant (p 

Figure 1. It is observed that the cerebral cortex belonging to the control (A) and TQ (B) groups has a normal histological 
structure. The presence of degenerated neurons (arrows) in the cerebral cortex was striking in the CIS-treated group (C). De-
generative changes in neurons were observed to decrease in the CIS+TQ group (D). H-E x40.
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aSignificant increase compared to the control group (p=0.002). bSignificant decrease compared to CIS-treated group (p=0.041).

Table I. Percentage of caspase-3, tau and neurofilament immunoreactivity of the groups.

 Caspase-3 Tau Neurofilament

Control 0.14±0.18 1.35±0.79 19.60±5.32
TQ 0.17±0.23 0.70±0.35 24.28±4.48
CIS 1.71±1.07a 1.98±0.95 18.51±6.98
CIS+TQ 0.49±0.92b 1.82±0.90 17.13±5.03

aSignificant increase when compared to control group (p=0.017).

Table II. Biochemical parameters.

Cerebrum tissue MDA (nmol/gwt) GSH (nmol/gwt) SOD (U/g protein)

Control 88.05 (84.30-112.20) 248.30 (240.10-264.60) 215.20 (193.20-267.60)
TQ 101.70 (80.90-104.70) 248.30 (223.90-260.50) 214.90 (188.00-274.90)
CIS 106.10 (93.20-119.00)a 252.30 (240.10-276.80) 194.05 (166.80-241.10)
CIS+TQ 96.90 (92.50-109.50) 254.35 (223.90-272.70) 187.50 (161.50-216.10)

> 0.05). The intensity of tau protein immunoreac-
tivity was similar between the CIS+TQ and CIS 
groups (p < 0.05) (Figure 3D). Table I shows the 
tau immunoreactivity levels in all groups. Neu-
rofilament immunoreactivity intensity in neuro-
nal extensions was similar among all groups (p > 
0.05) (Figure 4, Table I).

Biochemical Findings
The tissue MDA, GSH, and SOD levels were 

examined in all groups, and the results demon-
strated significantly higher MDA levels in the CIS 
group than the Control group (p = 0.017). There 
were no differences in the MDA level among the 
other groups or in GSH and SOD levels among 
any of the groups (Table II).

Discussion

Cancer treatment remains difficult in many 
cases. The platinum complex CIS is widely used 
in chemotherapy. The therapeutic effect of CIS 
can be increased by administering a high dose. 
However, high doses of the drug are associated 
with serious side effects, including neurotoxicity, 
ototoxicity, and nephrotoxicity. These side effects 
limit the use of high doses and therefore reduce 
the therapeutic efficacy4,7,24-27. Neurotoxicity is the 
most common side effect of CIS and can be very 
difficult or impossible for patients to tolerate8. It 
was originally believed that CIS neurotoxicity 
affects the peripheral sensory nerves, while the 
brain and spinal cord tissues are protected by the 

blood-brain barrier, and thus the central nervous 
system is rarely affected16. However, it has been 
reported that this is not true in cases where blood-
brain barrier integrity is impaired, such as brain 
metastasis16,26,28. In addition, it has been report-
ed29,30 that side effects, such as posterior reversible 
encephalopathy syndrome, headache, gait insta-
bility, hallucinations, cognitive disorders, epilep-
tic seizures, and dysarthria, occur with the use of 
CIS. Thus, CIS can show side effects that affect 
both the peripheral and central nervous systems. 
Neurotoxic complications, such as headache, gait 
instability, hallucinations, cognitive disorders, 
encephalopathy, seizures, dysarthria, glove-sock-
style paresthesia, numbness, and sensory pe-
ripheral neuropathy, occur frequently in patients 
undergoing chemotherapy with CIS26,28,29. In addi-
tion, Dietrich et al31 reported that CNS progenitor 
cells and oligodendrocytes were strongly affected 
by administration of CIS both in vivo and in vitro. 
In their study, application of CIS induced apoptot-
ic events in the corpus callosum and dentate gyrus 
of the hippocampus30. Some studies32-34 reported 
that CNS findings, such as increased anxiety, de-
pression, and behavioral changes in the form of 
cognitive dysfunction, can be observed due to 
oxidative damage, inflammation, and apoptosis 
with the use of platinum compounds. Therefore, 
the present study was performed to evaluate the 
beneficial effects of TQ against CIS-induced neu-
rotoxicity in rats due to its powerful antioxidant 
and anti-inflammatory effects.

Oxidative damage, inflammation, and apop-
tosis occur with mitochondrial dysfunction. The 
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Figure 2. Caspase-3 immunoreactivity intensity. Control (A), TQ (B), CIS (C), CIS+TQ (D) groups. Arrows point to caspase-3 
positive neurons. Caspase-3 x40.

Figure 3. Tau immunoreactivity intensity. Control (A), TQ (B), CIS (C), CIS+TQ (D) groups. Arrows point to tau positive 
neurons. Tau x40.
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id peroxidation in the cell leads to production of 
aldehydes, hydrocarbon gases, and MDA as end 
products. The amount of MDA formed by lipid 
peroxidation is used to determine the degree of 
oxidative damage in tissues38. Therefore, we ex-
amined the changes in MDA, GSH, and SOD lev-
els to determine the degree of oxidative damage 
in the cerebral cortical tissues of the rats in our 
study. Consistent with the literature, we found a 
significantly increased MDA level, which is an 
indicator of oxidative damage due to lipid peroxi-
dation, in the CIS group compared to the Control 
group. Antioxidant supplementation has been re-
ported9,11,14,18,39,40 to be effective in reducing ROS 
levels or attenuating the effects of ROS by reduc-
ing tissue damage. In this context, antioxidant 
supplementation to reduce or prevent the effects 
of increased ROS levels associated with CIS treat-
ment may have beneficial effects on neurotoxic 
side effects. Some studies11,14,18,39 have emphasized 
that antioxidant supportive therapy is beneficial 
in reducing neurotoxicity due to platinum-based 
chemotherapy and increasing the effectiveness of 

increase in production of reactive oxygen species 
(ROS) as a result of mitochondrial dysfunction in 
neurons has been identified as a potential mech-
anism of CIS neurotoxicity. CIS administration 
has been reported to down-regulate cytochrome 
B mRNA expression, resulting in mitochondrial 
DNA damage, thus leading to excessive ROS pro-
duction14,35,36. The histopathological results of the 
present study showed that degenerative changes 
occurred in neurons in the treatment groups given 
CIS. The degenerative neurons exhibited shrunk-
en acidophilic cytoplasm and pycnotic nuclei and 
cerebral cortex congestion in the neurons in these 
groups (Figure 1C and D). This degeneration was 
thought to be due to oxidative damage and inflam-
mation. Excessive ROS production causes lipid 
peroxidation that damages biological membranes. 
Under normal conditions, cells have antioxidant 
mechanisms that protect tissues against ROS-in-
duced damage. The endogenous antioxidants 
GSH and SOD are the main defense mechanisms 
against the damage induced by ROS by rescuing 
potentially damaging free radical groups37. Lip-

Figure 4. Neurofilament immunoreactivity intensity. Control (A), TQ (B), CIS (C), CIS+TQ (D) groups. Neurofilament x40.
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