Long noncoding RNA UCA1 promotes proliferation and metastasis of thyroid cancer cells by sponging miR-497-3p

H. GAO¹, J.-Y. YANG², L.-X. TONG³, H. JIN¹, C.-Z. LIU¹

Abstract. – OBJECTIVE: Recently, long noncoding RNAs (IncRNAs) have attracted much attention for their roles in tumor progression. The aim of this study was to investigate the exact role of IncRNA UCA1 in the development of thyroid cancer (TC) and to explore the possible underlying mechanism.

PATIENTS AND METHODS: UCA1 expression in both TC cells and tissues was detected by quantitative Real Time-Polymerase Chair Reaction (qRT-PCR). Colony formation assproliferation, and transwell assay were ed *in vitro*. Subsequent luciferase report and assay was applied to investigate the under mechanism. Furthermore, the function of *in vivo* was monitored as well.

RESULTS: UCA1 expression TC sar ples was significantly high of cor responding normal tissur After A1 was knocked down in vitro a n vivo, t proliferof T ation, migration, and in significantly inhibited Mor resse the knockof miR-497-3p was down of UCA1. Fu rmore, mir was directly targeted b

CONCLUSIO A kdown of User could inhibit TC controlling and metastasis via sponging miR-497-3p. In dings might offer a new the ceutic intervention of TC patients.

Key W

Lo noncodi RNA, UCA1, Thyroid cancer (TC),

duction

Toold cancer (TC) is one of the most prevaler world. Over the past decades, more of TC has greatly increased world-Currently, TC remains the eighth most cancer in China². In recent years, a huge development has been made in the effective treat-

ment of TC. However to its unsatisfied survively brings a substant burden to patients a trace ty³. Therefore, it is urgent to identify w biomarkers for an early diagnosis of TC.

Long non-co RNAs (lncRNA) are a subof non-prote coding RNAs with more than ength. Authors have indicated leotides ve as major contributors in carcinogenesis, including cell apoptosis, cell proliftion, and cell metastasis. LncRNA LINC01133 colorectal cancer metastasis through action of the epithelial-mesenchymal ransition (EMT)⁴. By regulating vasculogenic angiogenesis, lncRNA MALAT1 is reported to promote tumorigenicity and cell metastasis in gastric cancer⁵. Meanwhile, lncRNA MALAT1 accelerates the migration and invasion of hepatocellular carcinoma cells via targeting miR-2046. Besides, lncRNA CRNDE-h⁷ has been reported to be a novel serum biomarker for colorectal cancer. However, the clinical role and biological mechanism of lncRNA UCA1 in the development of TC have not been fully elucidated.

In this study, we found that the expression of UCA1 was remarkably up-regulated in TC tissues. The knockdown of UCA1 significantly inhibited the proliferation and metastasis of TC cells. Moreover, our further experiment explored the underlying mechanism of UCA1 function in TC development.

Patients and Methods

Cell Lines and Clinical Samples

54 paired TC tissues and adjacent non-tumor tissues were sequentially gathered from TC patients undergoing surgery in the Tumor Hos-

¹Department of Thyroid Head and Neck Surgery, Tumor Hospital of Jin Sovince Thangchun, China

²Department of Anesthesiology, Tumor Hospital of Jinlin Province, pingo sina

³Department of Ultrasonography, Tumor Hospital of Jinlin Proving Changche has

pital of Jinlin Province from February 2017 to December 2018. Written informed consent was obtained from each patient before the operation. No radiotherapy or chemotherapy was applied for any patient before the operation. The tissues obtained from the surgery were stored immediately at –80°C for use. All collected tissues were analyzed by an experienced pathologist. This investigation was approved by the Ethics Committee of Tumor Hospital of Jinlin Province.

Cell Culture

K1, TPC-1, SW579 and Nthy-ori 3–1 (normal human thyroid cell line) cells were offered by the Chinese Academy of Science (Shanghai, China). All cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM; Gibco, Rockville, MD, USA) consisting of 10% of fetal bovine serum (FBS; Life Technologies, Gaithersburg, MD, USA) and penicillin. Besides, the cells were maintained in an incubator with 5% CO₃ at 37°C.

Cell Transfection

Lentiviral small hairpin RNA (shRNA) targeting UCA1 was synthesized and cloned into ti-EF1a-EGFP-F2A-Puro vector (Bioset San Diego, CA, USA). Subsequently, synthesized shRNA was transfected into TPC-1 TC cercording to the instructions of Lipofectamine (Invitrogen, Carlsbad, CA, USA).

Quantitative Real Time (1)ms Chain Reaction (qRT-[1])

Total RNA in tissues by using TRIzol Reacent total RNA CA, USA). Subsequ y, the ex was reverse-trans ed into comp ary deoxyribose nucla (cDNAs) thro. the re-KaRa Biotechnology on 1 verse Transca Co., Ltd., Palian, China, ers used for qRT-PCR wer follows: UCA. ard 5'- TTTG-CCAG(CAGCTTAAT-3', reverse 5'- TTGTC-TTTCC TCAT-3'; glyceraldehyde CCC 3-p drogenase (GAPDH) forward CAGAT 5'-CC GGCAATGCTGG-3' **TGA** GCATGGACTGTGGTreve CA-3'. no-cycling condition was ws: 30 s a C, 5 s for 40 cycles at 95°C, as s at 60°C. and

nation Assay

6-well plates. Ten days later, formed were fixed with 10% of formaldehyde

for 30 min and stained with 0.5% of crystal violet for 5 min. CANON camera we photographs of colonies, and Image to Plus (Silver Springs, MD, USA) was sed for data analysis.

Cell Proliferation Assa

TC cells were first se d into 96-v well. Subsequen at a density of 1×10³ c (CCK μL Cell Counting J Dojindo, Nuells at deferent mamoto, Japan) was time points, foll wed oation f 2 h in leasured the dark. Aba Wa ance at reader (Bio-K cules, CA, by a micron USA).

Transwell Assay

ecting the T migration, 2×10^5 d cells in 100 µ serum-free DMEM re transformed into the upper chamber of 8-μm cultur sert (Corning, Corning, NY,). Meanwhil 0% of FBS-DMEM was adde lower mber of the insert. 24 h later, treated with methanol for 30 thes min and started with hematoxylin for 20 min. number of migrating cells was counted by an icroscope (×20). The three fields were selected for each sample. For detecting the TC cell invasion, 2 ×10⁵ transfected cells in 100 µL serum-free DMEM were transformed into the upper chamber of an 8-µm culture insert Corning, Corning, NY, USA) coated with 50 ug of Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). Meanwhile, 20% of FBS-DMEM was added to the lower chamber of the culture insert. 24 h later, these inserts were treated with methanol for 30 min and stained with hematoxylin for 20 min. The number of invaded cells was counted by an inverted microscope (×20). The three fields were randomly selected for each sample.

Xenograft Model

For the tumor formation assay, the transfected TPC-1 cells were subcutaneously injected into NOD/SCID mice (4-5 weeks old). Tumor diameters were detected every 5 days after inoculation. Tumor volume was calculated as the following formula: volume = length × width² × 1/2. The mice were sacrificed and tumors were extracted after 4 weeks. For the tumor metastasis assay, transfected TPC-1 cells were injected into the tail vein of NOD/SCID mice (4-5 weeks old). The mice were sacrificed and lung tissues were extracted after 4 weeks. The number of metastat-

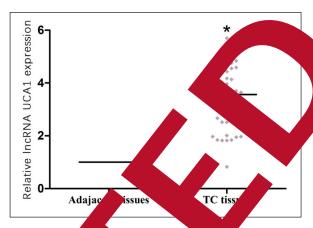
ic nodules in the lung was then counted. Animal experiments in this study were approved by the Animal Ethics Committee of the Tumor Hospital of Jinlin Province.

Luciferase Reporter Gene Assay

The 3'-UTR of UCA1 was first cloned into the pGL3 vector (Promega, Madison, WI, USA). Site-directed mutagenesis of the miR-497-3p binding site in UCA1 3'-UTR was performed using the QuickChange site-directed mutagenesis Kit (Stratagene, La Jolla, CA, USA). Subsequently, the cells were transfected with UCA1 WT-3'-UTR or UCA1 MUT-3'-UTR and miR-ctrl or miR-497-3p for 48 h. Finally, the dual-luciferase reporter assay system (Promega, Madison, WI, USA) was utilized to detect the luciferase activity.

Statistical Analysis

Statistical Product and Service Solutions (SPSS) 20.0 (SPSS, Chicago, IL, USA) was adopted for all statistical analysis. Data were presented as mean \pm SD (Standard Deviation). Chisquare test and Student's *t*-test were so when appropriate. p<0.05 was considered to cally significant.


Results

UCA1 Expression Level 10 haves and Cell Lines

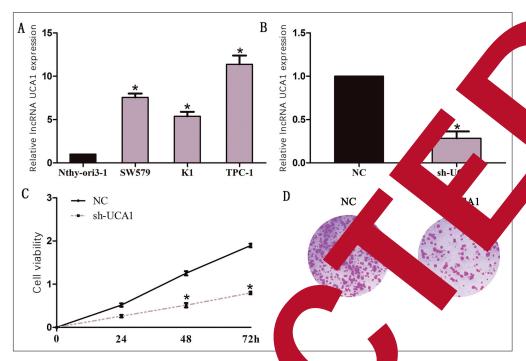
First, the qRT-PCR aduct UCA1 expression in 5 TC cell lines. As a p it, UCA gnificantly up-regulated in T ed with ssues when Figure 1). UC adjacent norma expresvas s antly higher than that sion in TC cel of Nthy-ori 3-1 cells as w gure 2A).

Knock wn of UCA1 Inhibated Growth of Taxells

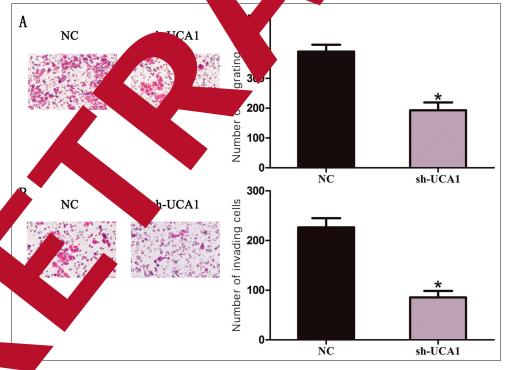
JCA1 expression, TPC-1 TC chosen the knockdown of cell LICA1. Q sed to detect UCA1 exe 2B). Subsequent CCK-8 n in c after UCA1 was knocked ass evealed n TC cells, the cell proliferation was dow pressed (Figure 2C). Furtherrei ony formation assay revealed that UCA1 was knocked down, the number of colonies of TC cells decreased signifirigure 2D).

in TC tissues we compare the the corresponding normal tissues. Data were present the mean \pm 0.05.

nockdown (CA1 Inhibited Migration IC Cells


that the perfect ed transwell assay and found that an of UCA1 significantly inhibited TC cent migration (Figure 3A). Moreover, the pults of transwell assay demonstrated that the form TC cells was remarkably inhibited et al. Al knock-down *in vitro* (Figure 3B).

UCA1 Promoted TC Tumorigenesis via miR-497-3p


Starbase v2.0 (http://starbase.svsu.edu.cn/mirLncRNA.php) was used to search for miRNAs that contained complementary bases with UCA1. Then, we selected miR-497-3p which contained the binding area of UCA1 (Figure 4A), as it was reported to suppress the tumorigenesis of various tumors. QRT-PCR results showed that significantly up-regulated miR-497-3p was observed in UCA1 shRNA group when compared with negative control group (Figure 4B). Furthermore, the luciferase reporter gene assay showed that the luciferase activity was significantly reduced after co-transfection of UCA1-WT and miR-497-3p. However, no significant changes were observed in luciferase activity after the co-transfection of UCA1-MUT and miR-497-3p (Figure 4C). All these data revealed that miR-497-3p was a direct target of UCA1.

UCA1 Knockdown Inhibited Tumor Formation and Metastasis In Vivo

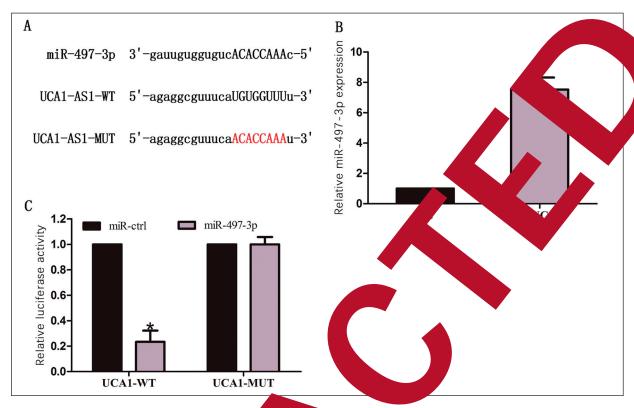
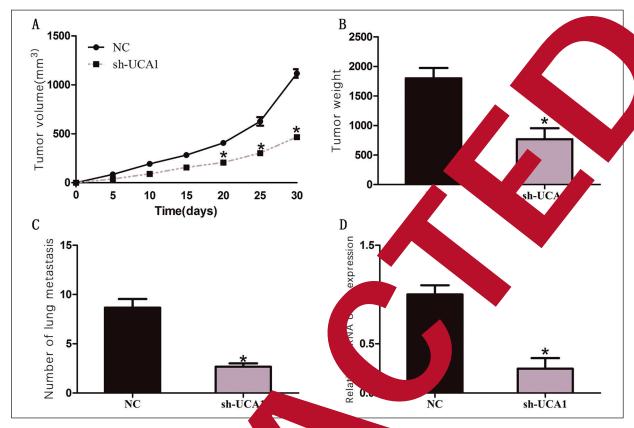

The ability of UCA1 in tumor formation and metastasis was detected *in vivo*. Results indicated that tumor size in UCA1 shRNA group

Figure 2. Knockdown of UCA1 inhibited TC cell proliferation. **A,** Expense levels of UCA1 expression in TC cell lines and Nthy-ori 3-1 (normal human thyroid cell line) were determined as PCR and CA1 expression in TC cells transduced with UCA1 shRNA (sh-UCA1) and negative control (NC) was detected by the CA1 expression in TC cells transduced with UCA1 shRNA (sh-UCA1) and negative control (NC) was detected by the CA1 expression in TC cells transduced with UCA1 shRNA (sh-UCA1) and negative control (NC) was detected by the CA1 expression in TC cells (represented that the proliferation of TC cells (negatificantly inhibited via knockdown of UCA1. **D,** Colony formation assay showed that knockdown of UCA1 significantly in the property of the presented the average of three independent in the proliferation of the mean). *p<0.05.

3. Knockdown of UCA1 inhibited TPC-1 TC cell migration and invasion. **A,** Transwell assay showed that knockdown significantly repressed the migration of TPC-1 TC cells (magnification: 40×). **B,** Transwell assay showed that knockdown of UCA1 significantly repressed the invasion of TPC-1 TC cells (magnification: 40×). The results represented the average of three independent experiments (mean ± standard error of the mean). *p<0.05, as compared with control cells.

Figure 4. The association between UCA1 and miles of the property of the binding sites of miR-497-3p on UCA1. **B,** MiR-497-3p expression increased significantly in sh-UCA1 up with NC group. **C,** Co-transfection of miR-497-3p and UCA1-WT strongly decreased luciferase activity. The results represented the average of three dependent experiments. Data were presented as mean \pm standard error of the mean. *p<0.05, as compared with the collection of the standard error of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean. *p<0.05, as compared with the collection of the mean.

was significantly smaller, negan th tive control group (Figu eight of δA). The dissected tumors in U RNAsignificantly less w tive control group ure 5B while, the number of metas nodules in sues of educed UCA1 shRNA as significant ative control group when compa (Figure 5C) Subsequent expression level dissected tunof UCA sues was de-RT-PCR. Results showed that UCA1 tected ssed in UCA1shRNA group was with regative control group wh he abox esults suggested that (Figur UCA1 co nor formation and meduce s in vi


Discussion

oncogenesis and progression of TC, include cell proliferation, motility, invasion, and

netastasis. Meanwhile, lncRNAs can be applied as potential biomarkers and therapeutic targets for TC⁸⁻¹⁰.

Located on human chromosome 19p13.12 positive strand, urothelial cancer associated 1 (UCA1) was initially discovered and investigated in bladder cancer. Previous studies11 have indicated that UCA1 functions as an oncogene in bladder cancer by promoting cell proliferation and metastasis. Recently, UCA1 has emerged as a novel regulator in the initiation and progression of various cancers. Through suppressing miR-204-5p expression, UCA1 promotes cell proliferation and drug resistance in colorectal cancer¹². Induced by SP1, UCA1 facilitates the proliferation of gastric cancer cells through recruiting EZH2 and activating the AKT pathway¹³. Furthermore, UCA1 functions as an oncogene in pancreatic cancer via promoting tumor growth and cell metastasis by sponging miR-135a¹⁴.

In this study, we found that UCA1 was significantly up-regulated in both TC tissues and cell lines. After UCA1 was knocked down, TC cell

Figure 5. Knockdown of UCA1 inhibited tumor for significantly smaller than that of NC group. **B,** The woof discrete times as in sh-UCA1 group was markedly smaller when compared with NC group. **C,** The number of metastal when compared with NC group. **D,** UCA1 was lowly a find dissected tumors of sh-UCA1 group compared with NC group. *p<0.05, as compared with corresponding to the compared with the compared with the corresponding to the corresp

proliferation, migration, a myasion re markedly inhibited. The about the interest of Total acted as an one generation of the property of the p

he interaction In recent year en lncRNA/miRNA tracted ا networks h rgeting miR-20b, ln-Thro much attention cRNA CAMTA1 enhance proliferation and mobility reast cancer¹⁵. b ging miR-211-3p, Inc A SNHG15 enhances he proliferation, migr n, and i vasion of human breast cancer vely regulating the expression cek ne 429, lp A ILF3-AS1 faciliof m ratio nvasion, and migration the this study, bioinformatics anoma predict the possible targetwas us SOI oRNAs of UCA1. MiR-497-3p, a highly ed 1 A on the human chromosome selected from predicted miRNAs important role in various cancers¹⁸⁻²⁰. Our dicated that miR-497-3p expression was intly down-regulated after the knockdown sign

of UCA1. Subsequent luciferase reporter gene assay showed that miR-497-3p could directly bind to UCA1. By conducting tumor formation and metastasis assays, we found that the knockdown of UCA1 also inhibited tumor formation and metastasis *in vivo*. All the above results suggested that UCA1 might promote tumorigenesis of TC *via* sponging miR-497-3p.

Conclusions

We identified that LncRNA UCA1 enhances TC cell proliferation and metastasis through sponging miR-497-3p. Our findings suggest that UCA1 may contribute to therapy for TC as a target candidate.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- ZHANG X, ZHANG X, CHANG Z, Wu C, Guo H. Correlation analyses of thyroid-stimulating hormone and thyroid autoantibodies with differentiated thyroid cancer. J BUON 2018; 23: 1467-1471.
- WANG Y, WANG W. Increasing incidence of thyroid cancer in Shanghai, China, 1983-2007. Asia Pac J Public Health 2015; 27: P223-P229.
- VIGNERI R, MALANDRINO P, VIGNERI P. The changing epidemiology of thyroid cancer: why is incidence increasing? Curr Opin Oncol 2015; 27: 1-7.
- Kong J, Sun W, Li C, Wan L, Wang S, Wu Y, Xu E, Zhang H, Lai M. Long non-coding RNA LINC01133 inhibits epithelial-mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6. Cancer Lett 2016; 380: 476-484.
- Li Y, Wu Z, Yuan J, Sun L, Lin L, Huang N, Bin J, Li-Ao Y, Liao W. Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis. Cancer Lett 2017; 395: 31-44.
- Hou Z, Xu X, Zhou L, Fu X, Tao S, Zhou J, Tan D, Liu S. The long non-coding RNA MALAT1 promotes the migration and invasion of hepatocellular carcinoma by sponging miR-204 and releasing SIRT1. Tumour Biol 2017; 39: 1010428317718135
- 7) LIU T, ZHANG X, GAO S, JING F, YANG Y, DE THEN G, LI P, LI C, WANG C. Exosomal long no ling RNA CRNDE-h as a novel serum-based bleer for diagnosis and prognosis of colorectal cer. Oncotarget 2016; 7: 85551-85563.
- 8) LIU L, ZHOU XY, ZHANG JQ, WORK HE J, CHI YY, HUANG C, LI L, LI SQ. Lnow promotes non-small cell lung cance cell propertion and inhibits the apoptosis up-regul g sphingosine kinase 1 (SP and its PI3K/Akt pathway. Fur 1, 2018; 22: 8722-87
- 9) ZHONG X, LONG WU S, XIAO W. Ln-cRNA-SNHC lates proliferation optosis and invasing a cancer cells ssurance guidelines. BUON 23: 776-781.
- 10) KHAITAN DINGER ME, N. CRAWFORD J, SMITH MA, TICK JS, PERERA RJ. Lanoma-upregulationg noncoding RNA PRY4-IT1 modulapoptoris and invasion. Cancer Res 2011;
- 11) Ang Z, W HC, Cai JL, Xu QW, Li MC, YC, Qiay , Lu TJ, Yu LZ, Zhang Y,

- XIN DQ, NA YQ, CHEN WF. Rapid identification of UCA1 as a very sensitive and spermarker for human bladder carcino cer Res 2006; 12: 4851-4858.
- 12) BIAN Z, JIN L, ZHANG J, YIN Y, COLO, C, HU Y, FENG Y, LIU H, FEI B, MAO Y, ZHOU L, LIVE HUANG S, HUANG D, XING C, HUANG Z. LncRNA-Us ances cell proliferation and 5-fluore racil results in colorectal cancer by inhibit
- L, HE CYLI JF, QUAN 13) Wang ZQ, Cai Q oncoding RNA Liu BY, Li C, otes cell UCA1 induced by blifernd activ g AKT ation via re iting Dе Dis 2017; pathway i stric canc 8: e283
- 14) ZHANG ZHOU L, WANG SHI G, TAN X. UCA egula growth and metastasis of pancreatic cancer ponging miR-135a. Oncol Res 2017; 25: 1525
- 15 Gu Y, Li L, Wang Yang X, Yang Y. Long noncoding RNA CAMTAT promotes proliferation and mobility of the human breast cancer cell line MDA-MB-23 can targeting miR-20b. Oncol Res 2018; 26: 625 5.
- Long noncoding RNA SNHG15 to be a breast cancer proliferation, migration invasion by sponging miR-211-3p. Biochem Biophys Res Commun 2018; 495: 1594-1600.
- , LIU S, ZHAO X, MA X, GAO G, YU L, YAN D, De 3 H, SUN W. Long noncoding RNA ILF3-AS1 promotes cell proliferation, migration, and invasion via negatively regulating miR-200b/a/429 in melanoma. Biosci Rep 2017; 37: pii: BSR20171031.
- (8) CHENG H, XUE J, YANG S, CHEN Y, WANG Y, ZHU Y, WANG X, KUANG D, RUAN Q, DUAN Y, WANG G. Co-targeting of IGF1R/mTOR pathway by miR-497 and miR-99a impairs hepatocellular carcinoma development. Oncotarget 2017; 8: 47984-47997.
- 19) Song J, Wu X, Liu F, Li M, Sun Y, Wang Y, Wang C, Zhu K, Jia X, Wang B, Ma X. Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulatin miR-497/HK2 axis in osteosarcoma. Biochem Biophys Res Commun 2017; 490: 217-224
- 20) CHAI L, KANG XJ, SUN ZZ, ZENG MF, YU SR, DING Y, LIANG JQ, LI TT, ZHAO J. MiR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by targeting hTERT in melanoma A375 cells. Cancer Manag Res 2018; 10: 989-1003.