HOTAIR promotes inflammatory response after acute myocardium infarction by upregulating RAGE

W. LU, L. ZHU, Z.-B. RUAN, M.-X. WANG, Y. REN, W. LI

Department of Cardiology, Taizhou People's Hospital, Taizhou, China

Abstract. – OBJECTIVE: The aim of this study was to explore the role of HOTAIR in inflammatory response after acute myocardium infarction (AMI) and to investigate its underlying mechanism.

MATERIALS AND METHODS: The AMI model was first constructed in rats, and heart tissues were harvested. Expression levels of HOTAIR and receptor of advanced glycation end-products (RAGE) in rat heart were detected by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). The protein expression level of pEKR in rat heart was detected by Western blot. The levels of tumor necrosis factor- α (TNF- α) and interleukin-6 (IL-6) in rats were determined by enzyme-linked immunosorbent assay (ELI-SA). The hypoxia-induced H9C2 cells were used to construct the MI model in vitro. Meanwhile, the expression levels of HOTAIR and RAGE in H9C2 cells were detected. The levels of TNF- α and IL-6 in the culture medium were determined by ELISA. Rescue experiments were conducted by co-transfecting pcDNA-HOTAIR and si-RAGE in H9C2 cells. Subsequently, the levels of pERK, TNF-a, and IL-6 were detected.

RESULTS: The mRNA expression levels of HOTAIR and RAGE in the AMI group were significantly higher than those of the control group. Western blot showed remarkably higher protein levels of RAGE and pERK in AMI rats when compared with those of controls. Similarly, results of ELISA indicated that the levels of TNF- α and IL-6 in AMI rats were significantly higher than those of controls. Meanwhile, overexpression of HOTAIR in H9C2 cells remarkably elevated the expression levels of HOTAIR and RAGE. In addition, upregulated pERK, TNF- α , and IL-6 were observed in H9C2 cells overexpressing HOTAIR, which could be reversed by RAGE knockdown.

CONCLUSIONS: HOTAIR promotes inflammatory response after AMI by upregulating RAGE expression.

Key Words:

AMI, Inflammatory response, HOTAIR, RAGE.

Introduction

Acute myocardium infarction (AMI), resulting from acute myocardial ischemic necrosis, is a severe disease with high morbidity. It is estimated that more than 3 million people suffer from acute ST-segment elevation myocardial infarction annually¹. Meanwhile, the number of patients increases year by year. AMI is a series of pathophysiological processes involving cardiomyocyte apoptosis and inflammatory cytokines. The main characteristics of AMI include arrhythmia and heart failure^{2,3}. The inflammatory response is one of the key steps in determining the progression of AMI. Massive necrosis of myocardial cells in infarcted tissue may lead to a rapid inflammatory reaction, immediately recruiting leukocytes and monocytes. Moreover, a large number of inflammatory factors are released, which may further aggravate myocardial damage and eventually lead to ventricular dilatation as well as cardiac remodeling⁴. Therefore, it is of great significance to explore the relevant mechanism of inflammatory response after AMI.

Long non-coding RNA (lncRNA) is a type of endogenous RNA with greater than 200 nt in length. LncRNAs, with no protein-coding function, was previously considered to be a "gene translation noise" without specific biological function⁵. Recent studies have found that lncRNAs exhibit high tissue-specificity in myocardial tissue. Meanwhile, a large number of cardiac-specific lncRNAs have unique regulatory and functional properties for poor myocardial remodeling, myocardial regeneration, and cardiac function. Therefore, lncRNAs may serve as potential target molecules and biomarkers for cardiac diseases⁶. HOTAIR was the first lncRNA discovered to regulate gene expression at transcrip-

tional level⁷. In recent years, multiple studies have indicated that HOTAIR can regulate chromatin dynamics and gene expression, thereby acting as an oncogene in tumorigenesis and development⁸. In addition, studies have reported that HOTAIR is associated with AMI⁹. However, the specific mechanism of HOTAIR in the pathogenesis of AMI remains unclear.

Schmidt et al¹⁰ and Neeper et al¹¹ first discovered receptor of advanced glycation endproducts (RAGE) in 1992. RAGE activates the downstream nuclear transcription factor NF-kB (Nuclear Factor κB) by binding to its receptors, thereby synthesizing various inflammatory factors and cell chemokines involved in the inflammatory response¹². Previous researches have demonstrated that RAGE is highly expressed in patients with chronic inflammatory bowel disease, type 2 diabetes, chronic kidney disease, subclinical atherosclerosis, and chronic coronary heart disease¹³. Meanwhile, higher expression of RAGE indicates a higher risk of coronary heart disease. However, no studies have clearly reported the regulatory effect of RAGE on the pathogenic progression of AMI. Moreover, the relationship between HO-TAIR and RAGE are rarely referred as well. Therefore, the aim of this study was to investigate whether HOTAIR could affect the inflammatory response after AMI by acting on RAGE. Our findings might provide new suggestions for clinical diagnosis and treatment of inflammatory response after AMI.

Materials and Methods

Construction of AMI Model in Rats

Rats were first anesthetized by intraperitoneal injection of 60 mg/kg pentobarbital sodium. After tracheotomy and mechanical ventilation (expiration ratio: 1:1, frequency: 65 times/min, tidal volume: 8 mL), rat heart was exposed for the ligation of the ascending aorta. Subsequently, the color of ligated myocardium was observed, and pale myocardium indicated successful construction of the AMI model. Then, the incision was sutured layer by layer. A total of 2.0×10^5 U penicillin was intramuscular injected 30 min before the surgery and the first three days after surgery to prevent infection, respectively. Rats in the control group were only cut open without ligation. This study was approved by the Animal Ethics Committee of Taizhou People's Hospital Animal Center.

Cell Culture and Transfection

H9C2 cells were cultured in Dulbecco's Modified Eagle Medium (DMEM; Gibco, Rockville, MD, USA) containing 10% fetal bovine serum (FBS; Gibco, Rockville, MD, USA). One day before transfection, the cells were seeded into 6-well plates at a density of 4×10⁴ cells/per well. When the confluence was up to 80%, the cells were transfected with corresponding plasmids in accordance with the instructions of Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Culture medium was replaced 6 hours after transfection.

Hypoxia Induction in Cells

H9C2 cells were cultured in serum-free DMEM and maintained in an anaerobic incubator (5% CO₂ and 95% N₂) for hypoxia induction. After 12 h, cell transfection was performed for subsequent experiments.

Ouantitative Real Time-Polymerase Chain Reaction (qRT-PCR)

Total RNA in heart tissues and cells was extracted according to the instructions of TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Subsequently, extracted RNA was reversely transcribed into complementary deoxyribonucleic acid (cDNA) in accordance with PrimeScript RT reagent Kit (TaKaRa, Otsu Shiga, Japan). RNA concentration was detected by using a spectrometer. QRT-PCR was then performed based on the instructions of SYBRTM Premix Ex Taq (TaKaRa, Otsu Shiga, Japan). Relative gene expression was calculated by the 2-\(^{\Delta Ct}\) method. Primers used in the study were as follows: HOTAIR (human) forward: 5'-CAGTGGGGAACTCTGACTCG-3', reverse: 5'-GTGCCTGGTGCTCTTACC-3'; RAGE (human) forward: 5'-GAATCCTC-CCCAATGGTTCA-3', reverse: 5'-GCCCG-ACACCGGAAAGT-3'; GAPDH (human) for-5'-CATGCCGCCTGGAAACCTGCward: CA-3', reverse: 5'-TGGGCTGGGTGGTCCAG-GGGTTTC-3'; HOTAIR (rat) forward: 5'-GG-GTGGCTCACTCTTCTGGC-3', reverse: 5'-TG-GCCTTGCCCGGGCTTGTC-3'; RAGE (rat) forward: 5'-CAGGGTCACAGAAACCGG-3', reverse: 5'-ATTCAGCTCTGCACGTTCCT-3'; GAPDH (rat) forward: 5'-ACCACAGTCCAT-GCCATCAC-3', reverse: 5'-TCCACCACCCT-GTTGCTGTA-3'.

Western Blot

Radio-immunoprecipitation assay (RIPA) lysate (Beyotime, Shanghai, China) was employed to extract total protein of tissues and transfected cells. After centrifugation, the supernatant was collected and the protein concentration was determined by the bicinchoninic acid (BCA) method (Abcam, Cambridge, MA, USA). Protein samples were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred onto polyvinylidene difluoride (PVDF) membranes (Merck Millipore, Billerica, MA, USA). After blocking with 5% skimmed milk, the membranes were incubated with primary antibody (Cell Signaling Technology, Danvers, MA, USA) at 4°C overnight. After rinsing with Tris-Buffered Saline with Tween 20 (TBST), the membranes were incubated with corresponding secondary antibody. Immunoreactive bands were exposed by enhanced chemiluminescence (ECL) method (Thermo Fisher Scientific, Waltham, MA, USA).

Enzyme-Linked Immunosorbent Assay (ELISA)

Cell supernatant was first collected and then incubated with primary antibodies at 37°C for 30 min. After washing with phosphate-buffered saline (PBS), the samples were incubated with corresponding secondary antibodies, followed by color development in the dark. Finally, the TMB solution was added for development termination. Optical density (OD) value was detected at the wavelength of 450 nm by a microplate reader.

Statistical Analysis

Statistical Product and Service Solutions (SPSS) 19.0 was used for all statistical analysis (IBM, Armonk, NY, USA). Data were expressed as mean \pm standard deviation ($\bar{x} \pm s$). The *t*-test was used for comparison between two groups. p < 0.05 was considered statistically significant.

Results

HOTAIR and RAGE Were Highly Expressed in AMI Rats

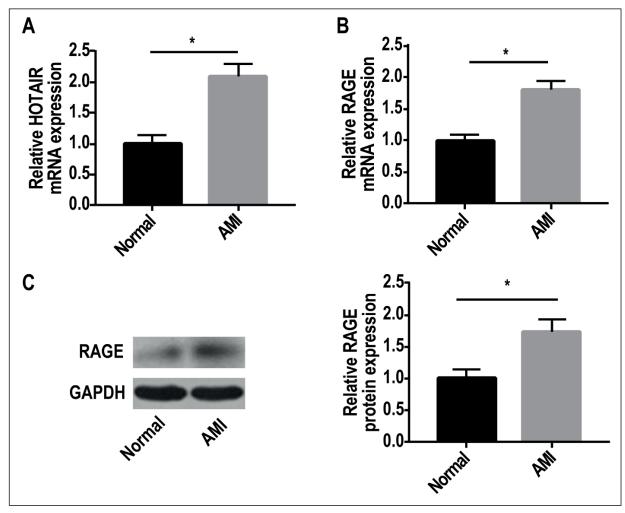
After construction of the AMI model in rats, heart tissues were collected and harvested for RNA and protein extraction. QRT-PCR results showed that the mRNA expression level of HO-TAIR in the AMI group was significantly higher than that of the control group (Figure 1A).

Meanwhile, both the mRNA and protein levels of RAGE were remarkably higher in the AMI group when compared with those of the control group (Figure 1B and 1C). These results indicated that the expression levels of HOTAIR and RAGE were upregulated in AMI rats.

HOTAIR Upregulated RAGE Expression

After transfecting with pcDNA-HOTAIR in H9C2 cells, we found that the mRNA level of HOTAIR remarkably increased, indicating good transfection efficacy (Figure 2A). Furthermore, HOTAIR overexpression significantly elevated the mRNA and protein levels of RAGE (Figure 2B and 2C). This suggested that HOTAIR overexpression could upregulate RAGE expression in H9C2 cells.

HOTAIR Promoted an Inflammatory Response in Cardiomyocytes


Compared with the control group, a higher expression level of pERK was observed in the AMI group (Figure 3A). Besides, the expression levels of TNF- α and IL-6 were markedly elevated in the AMI group than those of the control group (Figure 3B). Subsequently, we performed hypoxia treatment in H9C2 cells and constructed the MI model *in vitro*. Similarly, the expression levels of pERK, TNF- α , and IL-6 were also significantly increased in hypoxia-induced H9C2 cells (Figure 3C and 3D). We might conclude that HOTAIR promoted cardiomyocyte inflammation.

HOTAIR Promoted an Inflammatory Response by Regulating RAGE

To further explore the mechanism of HOTAIR in promoting an inflammatory response, hypoxia-induced H9C2 cells were transfected with pcDNA-HOTAIR or co-transfected with pcDNA-HOTAIR and si-RAGE, respectively. Results indicated that HOTAIR overexpression remarkably increased the expression levels of pERK, TNF-α, and IL-6, which were partially reversed by RAGE knockdown (Figure 4A and 4B). Our findings demonstrated that HOTAIR promoted an inflammatory response in cardiomyocytes by regulating RAGE.

Discussion

AMI has become a serious disease that endangers human health¹⁴, and its incidence is increasing year by year. AMI and hypoxia may cause in-

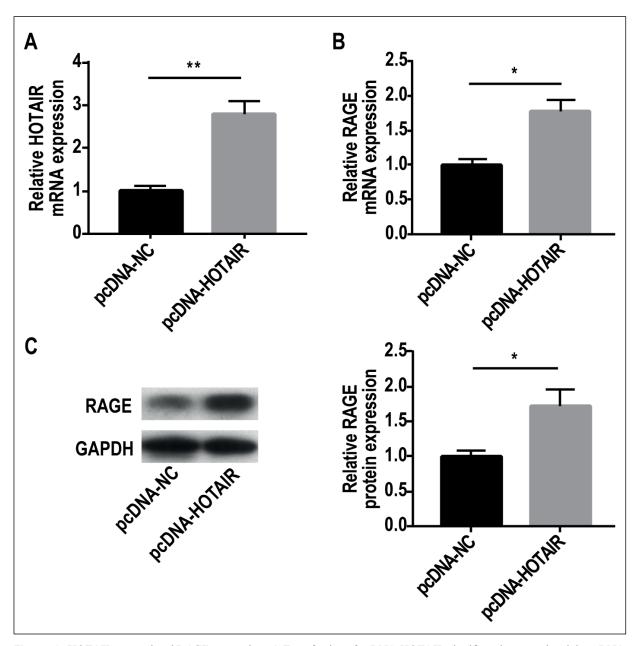
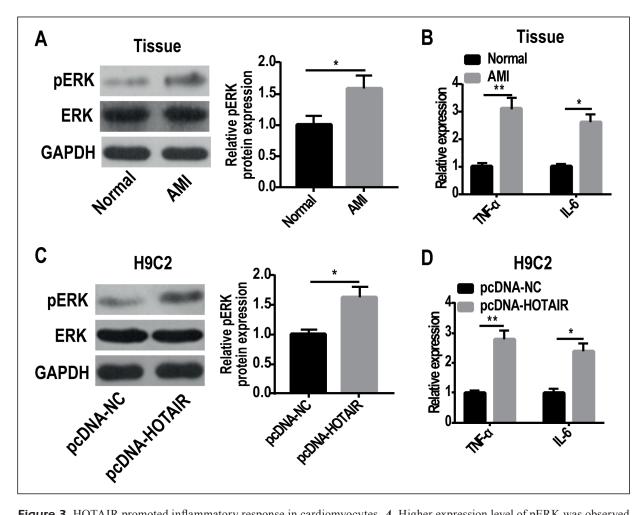
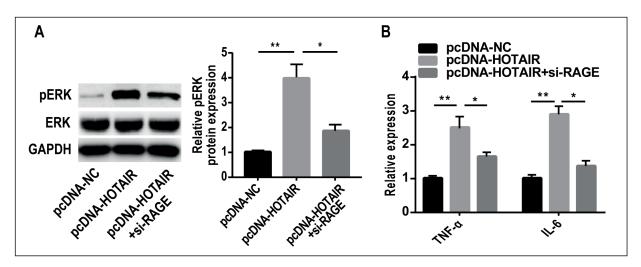


Figure 1. HOTAIR and RAGE were highly expressed in AMI rats. *A*, QRT-PCR results showed that the mRNA level of HOTAIR in the AMI group was significantly higher than that of the control group. *B*, *C*, Both mRNA and protein levels of RAGE were markedly higher in the AMI group when compared with the control group.

sufficient myocardial energy supply, myocardial cell metabolism alterations, ion channel and oxidative stress, eventually leading to cell necrosis and apoptosis. Non-infectious inflammatory responses can further aggravate myocardium damage. Although inflammation after AMI contributes to myocardium repair and reconstruction, an excessive inflammation may have a negative impact on cardiomyocyte and cardiac function¹⁵. Therefore, exploration of the occurrence and development of inflammatory response after AMI is of great significance for finding effective diagnostic indicators and therapeutic targets.

LncRNAs can regulate the gene expression at epigenetic, transcriptional and post-transcriptional levels, thus participating in pathological and physiological processes. Meanwhile, lncRNAs have


been found to be differentially expressed in a variety of diseases, including neurodegenerative diseases, cardiovascular and cerebrovascular diseases, and tumors¹⁶⁻¹⁸. Human HOTAIR is located on chromosome 12q13. Studies on genetic regulation have found that HOTAIR regulates downstream oncogenes and tumor-suppressor genes by recruiting protein complexes¹⁹. Moreover, HOTAIR can serve as an oncogene in tumor development²⁰. Previous studies have reported that HOTAIR is up-regulated in patients with endometrial cancer and is associated with epithelial-mesenchymal transition²¹. In addition, multiple researches have indicated that HOTAIR is an essential mediator of AMI²². In the present investigation, we found that HOTAIR was highly expressed in AMI rats, which is similar to previous studies.


Figure 2. HOTAIR upregulated RAGE expression. *A*, Transfection of pcDNA-HOTAIR significantly upregulated the mRNA level of HOTAIR in H9C2 cells. *B*, *C*, Both mRNA and protein levels of RAGE were remarkably elevated by HOTAIR overexpression.

As one of the most crucial specific receptors for AGEs, RAGE is a multi-ligand receptor belonging to the immunoglobulin family. RAGE is expressed in different types of cells and is generally lowly expressed in tissues. The serum level of RAGE can be upregulated in the presence of a corresponding high-level ligand, which is closely related to inflammatory responses²³. Scholars have found that under hypoxic reperfusion injury, the myocardial damage was markedly

less in RAGE knockout mice and RAGE inhibitors injected mice. Meanwhile, the infarct size was significantly smaller than those of controls²⁴. In recent years, RAGE and its downstream related signaling pathways have been extensively studied. Inhibition of the RAGE-NF-κB/Nrf2 pathway influences downstream inflammatory response, oxidative stress, and apoptosis, ultimately protecting the nervous system²⁵. Some researchers have also found that RAGE is asso-

Figure 3. HOTAIR promoted inflammatory response in cardiomyocytes. A, Higher expression level of pERK was observed in the AMI group compared with that of the control group. B, Expression levels of TNF- α and IL-6 were markedly elevated in the AMI group than the control group. C, D, Expression levels of pERK, TNF- α , and IL-6 increased remarkably in hypoxia-induced H9C2 cells.

Figure 4. HOTAIR promoted inflammatory response in cardiomyocytes by regulating RAGE. A, B, HOTAIR overexpression significantly increased the expression levels of pERK, TNF- α , and IL-6 in H9C2 cells, which were partially reversed by RAGE knockdown.

ciated with poor prognosis of breast cancer. Targeting inhibition of RAGE by siRNA can reduce the excessive inflammatory infiltration, alleviate the tumor cell proliferation and metabolism, and inhibit the breast cancer cell invasion²⁶. In addition, RAGE protects persistent atrial fibrillation by binding to AGEs and activating NF-κB²⁷. We found that RAGE was regulated by HOTAIR, thereafter alleviating inflammatory response of cardiomyocytes after AMI.

Conclusions

We showed that HOTAIR promotes inflammatory response after AMI by upregulating RAGE. Our findings may provide new directions for the treatment of inflammation after AMI.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- DI MARIO C, DUDEK D, PISCIONE F, MIELECKI W, SAVONITTO S, MURENA E, DIMOPOULOS K, MANARI A, GASPARDONE A, OCHALA A, ZMUDKA K, BOLOGNESE L, STEG PG, FLATHER M. Immediate angioplasty versus standard therapy with rescue angioplasty after thrombolysis in the Combined Abciximab REteplase Stent Study in Acute Myocardial Infarction (CARESS-in-AMI): an open, prospective, randomised, multicentre trial. Lancet 2008; 371: 559-568.
- CHANG HY, Li X, TIAN Y. Telmisartan reduces arrhythmias through increasing cardiac connexin43 by inhibiting IL-17 after myocardial infarction in rats. Eur Rev Med Pharmacol Sci 2017; 21: 5283-5289.
- 3) Pu J, Mintz GS, Brilakis ES, Banerjee S, Abdel-Karim AR, Maini B, Biro S, Lee JB, Stone GW, Weisz G, Maehara A. In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy. Eur Heart J 2012; 33: 372-383.
- UELAND T, GULLESTAD L, NYMO SH, YNDESTAD A, AUKRUST P, ASKEVOLD ET. Inflammatory cytokines as biomarkers in heart failure. Clin Chim Acta 2015; 443: 71-77.
- Meng YB, He X, Huang YF, Wu QN, Zhou YC, Hao DJ. Long noncoding RNA CRNDE promotes multiple myeloma cell growth by suppressing miR-451. Oncol Res 2017; 25: 1207-1214.

- LORENZEN JM, THUM T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol 2016; 12: 360-373.
- LIU S, ZHANG M, QU P. Expression level and clinical significance of HOX transcript antisense intergenic RNA in cervical cancer: a meta-analysis. Sci Rep 2016; 6: 38047.
- 8) ENDO H, SHIROKI T, NAKAGAWA T, YOKOYAMA M, TAMAI K, YAMANAMI H, FUJIYA T, SATO I, YAMAGUCHI K, TANAKA N, IJIMA K, SHIMOSEGAWA T, SUGAMURA K, SATOH K. Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. PLoS One 2013; 8: e77070.
- GAO L, LIU Y, GUO S, YAO R, WU L, XIAO L, WANG Z, LIU Y, ZHANG Y. Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell Physiol Biochem 2017; 44: 1497-1508.
- 10) SCHMIDT AM, VIANNA M, GERLACH M, BRETT J, RYAN J, KAO J, ESPOSITO C, HEGARTY H, HURLEY W, CLAUSS M, ET A. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 1992; 267: 14987-14997.
- 11) NEEPER M, SCHMIDT AM, BRETT J, YAN SD, WANG F, PAN YC, ELLISTON K, STERN D, SHAW A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992; 267: 14998-15004.
- LIN L, PARK S, LAKATTA EG. RAGE signaling in inflammation and arterial aging. Front Biosci (Landmark Ed) 2009; 14: 1403-1413.
- DAFFU G, DEL PC, O'SHEA KM, ANANTHAKRISHNAN R, RAMASAMY R, SCHMIDT AM. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci 2013; 14: 19891-19910.
- 14) HUANG M, WEI R, WANG Y, SU T, LI Q, YANG X, CHEN X. Protective effect of glucagon-like peptide-1 agents on reperfusion injury for acute myocardial infarction: a meta-analysis of randomized controlled trials. Ann Med 2017; 49: 552-561.
- DUARTE C, COUTO M, VAZ C, INES L, MALCATA A. [Cardiovascular risk profile in a Portuguese cohort of SLE Portuguese patients]. Acta Reumatol Port 2009; 34: 349-357.
- 16) NI Y, HUANG H, CHEN Y, CAO M, ZHOU H, ZHANG Y. Investigation of long non-coding RNA expression profiles in the substantia nigra of Parkinson's disease. Cell Mol Neurobiol 2017; 37: 329-338.
- ARCHER K, BROSKOVA Z, BAYOUMI AS, TEOH JP, DAVILA A, TANG Y, SU H, KIM IM. Long non-coding RNAs as master regulators in cardiovascular diseases. Int J Mol Sci 2015; 16: 23651-23667.
- MOHANTY V, GOKMEN-POLAR Y, BADVE S, JANGA SC. Role of IncRNAs in health and disease-size and shape matter. Brief Funct Genomics 2015; 14: 115-129.
- 19) Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham

- PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129: 1311-1323.
- 20) ENDO H, SHIROKI T, NAKAGAWA T, YOKOYAMA M, TAMAI K, YAMANAMI H, FUJIYA T, SATO I, YAMAGUCHI K, TANAKA N, IJIMA K, SHIMOSEGAWA T, SUGAMURA K, SATOH K. Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. PLoS One 2013; 8: e77070.
- Luczak A, Supernat A, Lapinska-Szumczyk S, Jachimowicz D, Majewska H, Gulczynski J, Zaczek AJ. HOTAIR in relation to epithelial-mesenchymal transition and cancer stem cells in molecular subtypes of endometrial cancer. Int J Biol Markers 2016; 31: e245-e251.
- 22) GAO L, LIU Y, GUO S, YAO R, WU L, XIAO L, WANG Z, LIU Y, ZHANG Y. Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell Physiol Biochem 2017; 44: 1497-1508.
- 23) UELAND T, OTTERDAL K, LEKVA T, HALVORSEN B, GABRI-ELSEN A, SANDBERG WJ, PAULSSON-BERNE G, PEDERSEN TM, FOLKERSEN L, GULLESTAD L, OIE E, HANSSON GK, AUKRUST P. Dickkopf-1 enhances inflammatory in-

- teraction between platelets and endothelial cells and shows increased expression in atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29: 1228-1234.
- 24) BUCCIARELLI LG, ANANTHAKRISHNAN R, HWANG YC, KANE-KO M, SONG F, SELL DR, STRAUCH C, MONNIER VM, YAN SF, SCHMIDT AM, RAMASAMY R. RAGE and modulation of ischemic injury in the diabetic myocardium. Diabetes 2008; 57: 1941-1951.
- 25) ABDELSALAM RM, SAFAR MM. Neuroprotective effects of vildagliptin in rat rotenone Parkinson's disease model: role of RAGE-NFkappaB and Nrf2-antioxidant signaling pathways. J Neurochem 2015; 133: 700-707.
- 26) RADIA AM, YASER AM, MA X, ZHANG J, YANG C, DONG O, RONG P, YE B, LIU S, WANG W. Specific siRNA targeting receptor for advanced glycation end products (RAGE) decreases proliferation in human breast cancer cell lines. Int J Mol Sci 2013; 14: 7959-7978.
- 27) LANCEFIELD TF, PATEL SK, FREEMAN M, VELKOSKA E, WAI B, SRIVASTAVA PM, HORRIGAN M, FAROUQUE O, BURRELL LM. The receptor for advanced glycation end products (RAGE) is associated with persistent atrial fibrillation. PLoS One 2016; 11: e161715.