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Abstract. - OBJECTIVE: Dysfunctional metab-
olisms have contributed towards ischemia-reper-
fusion (I/R) injury. However, the role of remote
ischemic preconditioning (RIP) in I/R injury is not
well known. The present study showed alleviated
I/R injury in kidneys treated with RIP.

MATERIALS AND METHODS: We utilized GC/
MS-based metabolomics to characterize the
variation of metabolomes.

RESULTS: Metabolic category using differ-
ential metabolites showed the lower percent-
age of amino acids in I/R group in comparison
to RIP+I/R group, confirming the importance of
amino acid metabolism in RIP-treated rat kidney.
Further, pathway enrichment analysis showed
alanine, aspartate and glutamate metabolism to
be involved in the beneficial effects of RIP during
renal I/R injury. Furthermore, another crucial en-
richment pathway is biosynthesis of unsaturat-
ed fatty acids. Other vital metabolites detected
in independent component analysis (ICA) analy-
sis were d-glucose, lactic acid and cholesterol.
The variation tendency of above-mentioned me-
tabolites was overall consistent with the protec-
tive nature of RIP.

CONCLUSIONS: These findings elicited a view-
point that metabolic strategy affected by RIP are
linked to underlying mechanisms of RIP and
highlighted the importance of metabolic strate-
gy against I/R injury.
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Introduction

Acute kidney injury (AKI) is interpreted as
an abrupt failure of kidney function and is often

related to surgeries like renal transplantation,
sepsis, etc., AKI has a high morbidity and poor
prognosis due to its vague pathogenesis'. Isch-
emia/reperfusion (I/R) is one of the most com-
mon reasons responsible for AKI. Since 1993, the
first investigation of the protective phenomenon
of remote ischemic preconditioning in myocardial
I/R injury?, many similar adaptive phenomenon
have also been reported, which were induced by
ischemia/reperfusion of other organs in addition
to kidneys*~. Although the hopeful results of the
preliminary studies revealed clinical applications
of this procedure®®, the detailed mechanisms un-
derlying this protective phenomenon are still not
well understood.

Metabolomics characterizes small-molecule
metabolite profiles in a biological cell, tissue, or-
gan or organism. It is concerned with the quanti-
tative understanding of integrated living systems
and their dynamic responses to the physiologi-
cal as well as pathological changes’. It has been
exploited in various diseases like diabetes mel-
litus'®, heart disease'', cancer'?, as well as in the
kidney disease cases'*'*. Further, one metabolic
enzyme namely lysine deacetylase was required
for rapid cardio-protective metabolic adaptation's.
The present study explored the altered metabol-
ic pathway under ischemic preconditioning, as
underlying metabolic mechanisms related to al-
leviated ischemia-reperfusion injury induced by
remote ischemic preconditioning are still limited.

In contrast to the metabolic investigation of
ischemic preconditioning, a line of studies re-
vealing some metabolic mechanisms of I/R injury
have been reported. There is evidence presenting
that depletion of ATP after I/R injury is respon-
sible for cell death in the kidney due to depletion
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of ATP protected renal function'”'®. Of note, the
accumulation of intracellular calcium could be
triggered by the rapid loss of ATP, which finally
activated the phospholipase A2 (PLA2) ["°]. PLA2
metabolizes the membrane phospholipid to gen-
erate free fatty acids (FFAs) and a lysophospho-
lipid. So, the above two by-products might have
contributed towards I/R injury in kidney through
TLR4-dependent signaling pathway'’?*. More-
over, L-Carnitine, a vital component of activated
fatty acids transport mechanism across the mito-
chondrial membrane®, has been reported to im-
prove energy metabolism and prohibit oxidative
stress in various animal I/R models**.

It is a well-known fact that gas chromatogra-
phy/mass spectrometry (GC-MS), liquid chroma-
tography-mass spectrometry (LC-MS) and nu-
clear magnetic resonance (NMR) are three most
common analytical technologies in metabolomics
investigation®®. While each technology has its
own unique advantages and disadvantages, GC-
MS is specifically efficient for the analyses of
volatile compounds?’*8. Therefore, in the present
study, GC-MS-based metabolomics have been
used to exploit important metabolites and key
pathways in the differentiation of I/R treatment
from the treatment of remote ischemic precondi-
tioning (RIP).

Materials and Methods

Animals

Adult female Sprague-Dawley rats weighing
200-220 g were kept in an environmentally con-
trolled breeding room (temperature: 20 + 2°C,
humidity: 60 = 5%, 12 h dark/light cycle). They
were fed standard laboratory chow with water
ad libitum. They were maintained in accordance
with internationally accepted principles for lab-
oratory animal use. All work was conducted in
strict accordance with the recommendations in
the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. The
protocol was approved by the Institutional Ani-
mal Care (Animal Welfare Assurance Number:
201508023).

Remote Ischemic Preconditioning (RIP)
and Renal Ischemia-reperfusion

Animals were anesthetized with pentobarbital
sodium (60 mg/kg intraperitoneally) and admin-
istered 1 ml of 0.85% NaCl (37°C) on the day of
surgery. Body temperature was sustained at 36.0-
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37.5°C. Animals were divided into three groups.
Rat kidneys were exposed by flank incisions. An-
imals in Group 1 (Control group) were subjected
to sham surgery, and rats in Group 2 (I/R group)
underwent bilateral renal ischemia by clamping
both renal pedicles with nontraumatic microan-
eurysm clamps (Roboz Surgical Instrument Co.,
Inc., Gaithersburg, MD, USA). After 30 min, the
clamps were removed, and reperfusion of the
kidneys was visually confirmed. Rats in Group
3 (I/R+RIP group) received splenic artery oc-
clusion (15 min) and reperfusion (15 min) before
above-mentioned renal ischemia/reperfusion pro-
tocol.

Histology Analyses

Before paraffin embedding, hippocampal
slices were fixed in 4% paraformaldehyde over-
night at room temperature and then transferred
to 70% ethanol. Organs were then embedded and
freezed using liquid nitrogen-cooled isopentane.
They were then sectioned at a thickness of 4 pum.
For pathological analysis, paraffin sections were
stained with hematoxylin and eosin (H&E). Scor-
ing was performed by examining at least 40 con-
secutive fields at 40 X magnification.

Extraction of Metabolites of the Kidney

For the metabolomic investigation, the kidney
tissues were homogenized and dissolved for 30 s
in methanol at 4°C. To extract metabolites, a vol-
ume of 500 pL of methanol was used for each 100
mg of spleen tissues in the sample. The homoge-
nates were centrifuged at 12,000 x g for 10 min
at 4°C. The resulting supernatant (300 uL) was
transferred to a GC sampling vial containing ribi-
tol (10 puL, 0.1 mg/mL). Samples were concentrat-
ed before the subsequent derivatization.

Derivatization and GC-MS Analysis

80 pL of methoxamine/pyridine hydrochlo-
ride (20 mg/mL) was added to dried samples to
induce oximation for 1.5 h at 37°C. It was then
followed by addition of 80 uL of the derivatiza-
tion reagent N-Methyl-N-(TrimethylSilyl) Trifluo-
roacetamide (MSTFA) Sigma-Aldrich (St. Louis,
MO, USA) and was reacted with the samples for
0.5 h at 37°C. 1 uL aliquot of the derivative of
the supernatant was added to a tube and analyzed
using GC-MS Trace DSQ II Thermo Scientific
(Waltham, MA, USA). The separation conditions
of GC-MS consisted of an initial temperature of
70°C (5 min) with a uniform increase to 270°C at
a speed of 2°C/min (5 min).
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RIP+I/R
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Figure 1. RIP relieves the renal I/R injury. Light microscopy photomicrographs depicting sections from kidney of rat with

operation. 40 x.

Statistical Analysis

Metabolomic data were obtained using Ther-
mo Foundation 1.0.1. The resulting data matrix
was normalized using the sum abundance value,
and then we centered the computed abundance of
metabolites for each tissue sample on their medi-
an value and scaled by their inter-quartile range
(IQR) to reduce between-sample variation'?*’. We
analyzed the differential metabolites using sig-
nificant analyses of microarray (SAM)**3!, Inde-
pendent component analysis (ICA) was selected
as the pattern recognition method*?. All data were
expressed as means + standard deviation (SD)
and subjected to the analysis of variance (one-fac-
tor-rANOVA) followed by LSD (Least Signifi-
cant Difference) as its Post Hoc Test to perform
the treatment effects SPSS 13.0 software (SPSS
Inc., Chicago, IL, USA). The Student’s t-test was
applied to test for the statistically significant dif-
ferences between individual groups. p<0.05 was
considered statistically significant.

Results

Histology Analysis Shows the Helpful
Effect of RIP on Renal I/R injury

The histology revealed that the kidney struc-
ture of control group was normal, while the tissue
structure of I/R group was significantly disrupt-
ed. Notably, betterment in the structure was ob-
served in RIP+I/R group (Figure 1).

Metabolomic Profiling of rat Kidney

To identify the pivotal metabolic pathway, key
metabolites were found responsible for the protec-
tive effects of RIP on renal I/R injury. GC-MS was
utilized to quantitatively measure levels of known
metabolites in rat kidney from six individuals in
each group. Typical total ion current chromato-

grams (TIC) are shown in Figure 2A. 68 metab-
olites with reliable signal were detected in each
sample. The correlation coefficient of two techni-
cal repeats indicated the reliability of the detection
technology (Figure 2B). The category showed that
50.00%, 14.71%, 33.82% and 1.47% of metabolites
belonged to carbon sources, amino acids, lipids,
and nucleotides, respectively (Figure 2C). The
abundance of the metabolites sourced from the
three groups was clustered as a heat map (Figure
2D). The metabolome variations among the three
groups suggested an association between the me-
tabolomics responses and degree of I/R injury.

Differential Metabolomic Profiling
Between I/R and I/R+RIP Samples

To further explore altered metabolome identifi-
cation, the I/R+RIP group from the I/R group, a
two-sided Wilcoxon rank-sum test coupled with
a permutation test was utilized to ascertain dif-
ferential metabolites. Forty-six (67.65%) and for-
ty-three (63.24%) metabolites out of the 68 me-
tabolites were differential at p < 0.05 in I/R and
I/R+RIP group (Figure 3A), respectively. Further,
z-score plot showed that it spanned from -5.29 to
67.96 in I/R group and from -5.62 to 53.22 in I/
R+RIP group (Figure 3B). Higher varied abun-
dances of metabolites were found in the I/R group
than in the I/R+RIP group. Specifically, 17 me-
tabolites down-regulated and 29 metabolites were
up-regulated in the I/R group. On the other hand,
16 metabolites were decreased, and 27 metabo-
lites showed an increase in the I/R+RIP group.
Metabolic categories of these differential metabo-
lites in abundance were further investigated. They
showed analogous varying percentage in the two
groups (Figure 3C). Figure 3D shows the number
of up-regulated and down-regulated metabolites
in these categories. Amino acid metabolism was
likely to be more affected in the I/R+RIP than I/R
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Figure 2. Metabolomic profiling of rat kidney. (4) Representative total ion current chromatograms from control, the I/R and I/
R+RIP samples. (B) Reproducibility of metabolomic profile platform used in the discovery phase. The abundances of metabolite
quantified in cell samples over two technical replicates are presented. Correlation coefficient between technical replicates varies
between 0.995 and 0.999. This plot reveals the two replicates with the smallest correlation of 0.995. (C) Metabolic category of
recognized metabolites. (D) Heat map exhibiting the 68 metabolites. Yellow and navy indicate increase and decrease of metab-
olites relative to the median metabolite level, respectively (see color scale).

groups. These results suggested that changes in
metabolites were related to protective response
induced by RIP.

Characterization of Pathways Involved in
Helpful Response Induced by RIP

Using an online tool, Metaboanalyst 3.0, seven
and six pathways were developed in the I/R and
I/R+RIP groups, respectively. Shared and differ-
ential enriched pathways between them are rep-
resented in Figure 4A. Among these pathways,
two were uniquely related to the I/R injury, which
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were pentose, glucuronate interconversions, and
nitrogen metabolism (Figure 4B). Metabolites en-
riched in the pentose and glucuronate inter-con-
versions were all decreased. Although all metab-
olites enriched in the biosynthesis of unsaturated
fatty acids were augmented in I/R and I/R+RIP
groups in contrast to the control group, abun-
dance of most metabolites in I/R+RIP group were
lesser than I/R group. In other words, RIP had
the capability to reduce the abundance of these
up-regulated metabolites enriched in the biosyn-
thesis of unsaturated fatty acids in I/R-treated
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kidney. These metabolites included eicosenoic
acid, palmitic acid, stearic acid, eicosanoic acid,
oleic acid, arachidonic acid and linoleic acid. Col-

groups. In Figure 5B, the loading of different in-
dependent components ICO1 and IC02 were visu-
alized in a heat map. Ranking of the varied me-

tabolites displayed lactic acid, d-glucose, palmitic
acid, stearic acid, oleic acid, glycolic acid, phos-
phoric acid, docosahexaenoic acid (DHA), mono-
linolein, 3-hydroxybutyric acid, 2-monostearin,
linoleic acid, cholesterol, a-monopalmitin as the
metabolites with the largest loading in IC0O1 and
IC02. Out of these metabolites, palmitic acid,
stearic acid, oleic acid, DHA, 3-hydroxybutyric
acid and linoleic acid were significant metabolites
detected in the above pathway enrichment analy-
sis, while others were the new crucial metabolites

lectively, above data indicated that biosynthesis of
unsaturated fatty acids, alanine, aspartate, gluta-
mate metabolism, arginine and proline metabo-
lism might be significantly related to the RIP-in-
duced benefit during I/R injury.

ICA Analysis for the Identification of the
Crucial Metabolites

Figure 5A, shows control group and I/R group
were separated clearly on IC01, and IC02 depict-
ing the differentiation between I/R and I/R+RIP
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Figure 3. Varied metabolomes differentiating [/R+RIP from I/R in rat kidney. (4) Heat map revealing relative abundance of 46
and 43 significantly varied metabolites in the I/R and I/R+RIP as indicated, respectively. (B) Z-scores (standard deviation from
average) corresponding to data in (4). Upper, the I/R group; lower, the I/R+RIP group. (C) Percentage of varied metabolites in
four categories. (D) The number of metabolites increased and decreased in different categories.
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Figure 4. Pathway analysis and integrative analysis. (4) Pathway enrichment analysis of differential metabolites form I/R and
I/R+RIP using an online tool, metaboanalyst 3.0 (http://www.metaboanalyst.ca/). Significantly enriched pathways are selected
to plot. (B) Integrative analysis of metabolites in significantly enriched pathways. Up-regulation and down-regulation of metab-
olites are indicated as red and green, respectively. The number reveals the ratio of differential metabolites.

found in ICA analysis. Further, only d-glucose,
lactic acid and cholesterol were differentiated sig-
nificantly between control, I/R group, as well as
between I/R and I/R+RIP group (Figure 5C).

Discussion

The underlying mechanisms of RIP have not
been investigated in detail to date’3. Further,
some new beneficial molecules, including capsa-
icin-activated C sensory fibers, hypoxia-inducible
factor lo (HIF-la), connexin 43, extracellular
vesicles, microRNA-144, microRNA-1, and ni-
trite, modulated by RIP were identified®. Recent
evidence'”® revealed that the dysfunctional me-
tabolisms were responsible for I/R injury. How-
ever, information regarding protection offered by
RIP against I/R injury through mounting meta-
bolic strategy is still not known. Therefore, in the
present study, we aimed to examine a metabolic
response of RIP-pretreated I/R injury using GC/
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MS-based metabolomic. Our study not only sug-
gested that metabolic response was likely linked
to the degree of I/R injury, but also discovered
some crucial pathways and key metabolites.

The results of current metabolic category
showed that I/R+RIP group has a higher percent-
age of amino acids than I/R group. Subsequent
pathway enrichment analysis further made it clear
that alanine, aspartate, glutamate, arginine and
proline metabolism might be involved in the ben-
eficial effect of RIP. Four amino acids enriched
in this metabolism were l-alanine, 1-glutamine, ci-
trulline and l-arginine. These enriched amino ac-
ids showed stronger abundance in I/R+RIP than
I/R group, confirming that the high levels of these
amino acids are beneficial for the alleviation of
renal I/R injury. In general, l-alanine, a signifi-
cant energy substrate for the cell, is beneficial for
supporting gluconeogenesis and leukocyte me-
tabolism through unknown mechanisms®*. One
paper studying metabolomic profiling of ischemic
preconditioning also observed that l-alanine was
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Figure 5. Investigation of vital metabolites that separate I/R+RIP from the I/R using independent component analysis (ICA).
(A) ICA directly represents variation of metabolites among control, I/R and I/R+RIP. Each dot in the plot represents the rep-
licate analysis of samples. (B) The weight distribution on IC01 and IC02 for the metabolites is shown. The weight (also called
loadings) is proportional to the importance or significance of a metabolite for a corresponding independent component, in oth-
er words, the observed biological phenomenon. The interpretations of IC01 and IC02 correspond to (A). Red box indicates the
metabolites which have largest the loadings. (C) Comparison of D-glucose, lactic acid and cholesterol among control, I/R and

I/R+RIP. Error bars + SD, "p < 0.01.

up-regulated, leading to consistent protective na-
ture of ischemic preconditioning'®. L-glutamine
is known to support optimal cytokine production
and high concentration of glutamine in serum and
was helpful in maintaining an effective immune
function in patients undergoing surgery***’. More-
over, glutamine-dependent anaplerosis produced
succinic acid, a TCA cycle intermediate, which
in turn stabilized the hypoxia-inducible factor-1a
(HIF-1a*®. HIF-1 activated 1110 gene transcrip-
tion which war required by RIP*°. As the higher
abundance of succinic acid was found in I/R+RIP
group than that in control and I/R groups, indicat-
ing a possibility that modulation of succinic acid

concentrations rendered strong host protection in
renal I/R injury*. The boosted citrulline and de-
clined urea found in current study revealed that
NO might be the major metabolic director of I-ar-
ginine in RIP. Further, pharmacological and ge-
netic inhibition of NO generation by endothelial
NOS within the target organ has been noticed to
abrogate the cardioprotection by RIP*#2,

In combined current pathway enrichment anal-
ysis with ICA, the shared lipid-related metabo-
lites were palmitic acid, stearic acid, oleic acid,
and linoleic acid. It had been reported earlier that
palmitic acid (16:0), stearic acid (18:0), oleic acid
(18:1) and linoleic acid (18:2) are capable of uti-
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lizing TLR4 signaling to induce an inflamma-
tory response*, which eventually contributed to
I/R injury in kidney®. Also, other lipid-related me-
tabolites separately found in pathway enrichment
analysis or ICA analysis were arachidonic acid or
cholesterol, which also have a remarkable ability to
induce the severe inflammation®#*. These metab-
olites were up-regulated by I/R treatment, but got
down regulated by RIP. This confirmed that RIP
possessed an anti-inflammatory action.

Furthermore, d-glucose and lactic acid were
the two highest loadings in differentiating 1/
R+RIP from the I/R. D-glucose was decreased
and lactic acid was increased by I/R. RIP re-
sumed the abundance of d-glucose and declined
the lactic acid abundance. In corporation with our
report, a recent study also observed that ischemic
preconditioning was slightly lower'®. Tong et al*
demonstrated that ischemic preconditioning in-
creases glucose transport and is mediated by the
p38 Mitogen-Activated Protein (MAP) kinase.
Ji et al*® had examined the role of glucose me-
tabolism during RIP using genetic modulation in
vivo. The above work proved that myocardial
augmented glucose via co-activation of myocar-
dial AMPK and Akt in the reperfused myocar-
dium was essential to RIP-alleviated I/R injury.
So, RIP might a relieved the renal I/R injury by
elevating the d-glucose uptake and reducing the
lactic acid production.

Conclusions

The present research used GC/MS-based me-
tabolomics to characterize the variation of me-
tabolomes in response to I/R and RIP before I/R.
Metabolic category using differential metabolites
showed the lower percentage of amino acid in I/R
group than RIP+I/R group, revealing that amino
acid metabolism might play an important role in
RIP-treated rat kidney to combat I/R injury. Sub-
sequent pathway enrichment analysis further re-
vealed that alanine, aspartate glutamate arginine
and proline metabolisms were involved in the pro-
tective effects of RIP during renal I/R injury. So,
these findings elicited a viewpoint that underlying
mechanisms of RIP are linked to the metabolic
strategy and highlight the importance of metabol-
ic strategy against I/R injury.
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