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Abstract. – OBJECTIVE: This study aimed 
to investigate the impact of tumor mutational 
burden (TMB) and DNA damage repair (DDR) 
gene alteration on overall survival (OS) in ad-
vanced non-small cell lung cancer (NSCLC) 
patients. 

PATIENTS AND METHODS: A DNA library of 
cancer cells from 67 NSCLC patients in stag-
es III-IV was constructed for next-generation se-
quencing (NGS). Geneseeq422 probes were used 
for hybridization enrichment. The target-enriched 
library was sequenced on HiSeqNGS platforms, 
and we analyzed the relevant signaling pathways. 
Then, we correlated the OS of the patients with 
TMB and DDR mutations.

RESULTS: Many significant alterations were 
found, including in the EGFR, p53, KRAS, 
RB1, ERBB2, NF1, DNMT3A, ALK, MYC, PIK-
3CA, ROS1, BRAF, ARID1A, PTEN, CDKN2A, 
and FGF19 genes. We also identified many 
mutations in the genes relevant to the DDR 
pathway. Interestingly, we found that the TMB 
of patients with DDR gene mutations was 
dramatically higher than that in the DDR wild-
type (WT). Univariable analysis showed that 
DNMT3A, RB1, DDR pathway-related gene 
mutations, and TMB were critical factors for 
the effects on OS. Multivariable analysis con-
firmed that DNMT3A and mutations in the DDR 
pathway-related genes were important for pre-
dicting OS.

CONCLUSIONS: Multiple mutations in the 
genes of the DDR pathway caused higher TMB 
levels, which resulted in longer OS. By con-
trast, OS was significantly longer in patients with 
non-DNMT3A mutations than in those with DN-
MT3A variants. DNMT3A alteration in NSCLC pa-
tients led to poor outcomes.

Key Words:
DNA damage and repair, DNMT3A, Non-small cell 

lung cancer, Tumor mutation burden, Overall sur-
vival.

Introduction

Worldwide, lung cancer is the leading cause 
of cancer-related deaths in men and the second 
highest cause of cancer-related mortality in wom-
en. In China, the incidence and the fatality rate 
of lung cancer are ranked first among all types 
of cancer1. Lung cancer types include small-cell 
lung carcinoma (SCLC) and non-small cell lung 
carcinoma (NSCLC). NSCLC accounts for 85% 
of all lung cancer cases. Lung cancer treatment 
includes surgery, chemotherapy, and radiother-
apy. Recently, therapies targeting the epidermal 
growth factor receptor (EGFR)2 or the anaplastic 
lymphoma kinase (ALK)3,4, and immunotherapy 
have greatly improved patients’ outcome. Risk 
factors for lung cancer development include 
smoking, air pollution, genetics, and asbestos in-
halation5,6. Similar to other cancers, lung cancer 
is associated with many gene mutations, includ-
ing those in K-ras, EGFR, LKB1, PIK3CA, and 
BRAF7. These gene alterations are both causes of 
carcinogenesis and therapeutic targets. Recent-
ly, in addition to the development of many drugs 
targeting the EGFR and ALK genes8, immuno-
therapy for lung cancer has also shown great 
progress9,10. However, the individual responses 
to immunotherapy are diverse.
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Next-generation sequencing (NGS) has high 
sensitivity and accuracy for detecting gene mu-
tations. It can detect a large number of gene al-
terations in a short time11. In the past decades, 
NGS has been widely applied for the diagnosis, 
treatment, drug-resistance exploration, and out-
come decision of various cancers. Bordi et al12 
reported that NGS was used for monitoring resis-
tance mechanisms of advanced T790M-positive 
NSCLC. Pepe et al13 reported that EGFR, KRAS, 
NRAS, BRAF, c-KIT, and PDGFRα mutations de-
tected using NGS were excellent biomarkers for 
the assessment of the treatment.

Mutations in DNA damage repair (DDR) 
genes occur frequently in both germline and so-
matic cells14,15. If DNA replication defects are not 
repaired promptly, then, they can lead to elevated 
rates of somatic mutations. One study indicated 
that alterations in DDR-relevant genes in cancer 
patients were closely associated with the outcome 
of the disease16. Tumor mutational burden (TMB) 
is the total number of somatic mutations in the 
whole genome. Cancer patients with a higher 
TMB have higher neoantigen loads, useful for 
immunotherapy17. Mei et al18 indicated that high 
TMBs were associated with markedly higher 
lymphocytic infiltrates. Therefore, higher TMB 
rates in cancer patients translate into a good re-

sponse to immunotherapy19,20. TMB rates also 
correlated with the outcome of cancer patients. 
Alterations in DDR pathway genes are closely as-
sociated with the response to immunotherapy and 
the long-term outcomes in cancer patients.

In this study, we performed a NGS study of 
tumor samples collected from 67 advanced stage 
(stages III-IV) NSCLC patients and we analyzed 
the patterns of somatic gene mutations and alter-
ations in DDR pathway genes.

Patients and Methods

Patients and Samples
We collected 67 tumor samples from stages 

III-IV NSCLC patients treated in our department 
between January 2016 and February 2019. Cancer 
tissue samples were fixed in 10% formalin and 
embedded in paraffin (FFPE) after biopsy. Ge-
nomic DNA from patients’ peripheral blood was 
used as a control for detecting somatic mutations. 
The clinical characteristics of the 67 NSCLC pa-
tients are shown in Table I. All sequencing data 
were obtained from the initial biopsy samples. 
This study protocol was approved by our Hospital 
Ethical Committee. All participants had given in-
formed consent.

Table I. Clinical profile of the 67 patients with non-small cell lung cancer (NSCLC).

M, male; F, female; N, patient’s number; TKI: Tyrosine kinase inhibitors.

 Characteristics	 Category	 Number

Age, median, (range)		  65 (38-80)
Sex, N, (%)	 M	 45 (0.67)
	 F	 22 (0.33)
Smoking history, N, (%)	 Yes	 25 (0.37)
	 No	 42 (0.63)
Histology type at initial diagnosis, N, (%)	 Adenocarcinoma	 60 (0.90)
	 Squamous	 6 (0.09)
	 Adenosquamous	 1 (0.01)
Surgical history, N, (%)	 Yes	 18 (0.27)
	 No	 49 (0.73)
Clinical stage at initial diagnosis, N, (%)	 IIIa	 7 (0.10)
	 IIIb	 6 (0.09)
	 IV	 53 (0.79)
	 Unknown	 1 (0.02)
History of treatment, N, (%)	 Treatment-naive	 22 (0.33)
	 First-line	 10 (0.15)
	 Second-line	 4 (0.06)
	 Third-line and above	 7 (0.10)
	 Unknown	 24 (0.36)
History of treatment with TKI, N, (%)	 Yes	 11 (0.16)
	 No	 30 (0.45)
	 Unknown	 26 (0.39)
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DNA Preparation and NGS
The cell pellets obtained from the samples were 

thawed to room temperature, and as much media 
or phosphate-buffered saline (PBS) as possible was 
removed from the thawed pellets. DNA was ex-
tracted using the DNeasy Blood & Tissue Kit (Qia-
gen, Venlo, Hilden, Germany). The purified DNA 
was analyzed qualitatively using Nanodrop One 
(Thermo Fisher Scientific, Waltham, MA, USA) 
and quantitatively with Qubit 3.0 (Life Technolo-
gies, Singapore, Singapore) using the ds DNA HS 
Assay Kit (Life Technologies, Eugene, OR, USA) 
according to the manufacturer’s recommendations.

Library Preparation
Sequencing libraries were prepared using the 

KAPA Hyper PreP Kit (KAPA, Biosystem, Cape 
Town, South Africa) with an optimized manufac-
turer’s protocol. In brief, 50 ng-1 μg of genomic 
DNA was sheared into 350-bp fragments using 
Bioruptor Pico (Denville, NJ, USA). The frag-
ments were subjected to end-repairing, A-tailing, 
and ligation process that had indexed adapters se-
quentially, followed by size selection using Agen-
court AMPure XP beads (Beckman Coulter, Inc., 
Indianapolis, IN, USA). Finally, the libraries were 
amplified by Polymerase Chain Reaction (PCR) 
and purified for target enrichment.

Hybridization Capture and Sequencing
Different libraries with unique indices were 

pooled together in desirable ratios for up to 2 μg 
of total library input. Human cot-1 DNA (Life 
Technologies, Waltham, MA, USA) and xGen 
Universal blocking oligos (Integrated DNA Tech-
nologies, Coralville, IA, USA) were added as 
blocking reagents. Geneseeq 422 probes (Genese-
eq ONE, Nanjing, Jiangsu, China) were used for 
hybridization enrichment. The capture reaction 
was performed with the NimbleGen SeqCap EZ 
Hybridization and Wash Kit (Roche, Madison, 
WI, USA) and Dynabeads M-270 (Life Technol-
ogies,Vilnius, Lithuania) with optimized manu-
facturers’ protocols. Captured libraries were on-
beads amplified with Illumina p5 (5’-AAT GAT 
ACGGCG ACC ACC GA-3’) and p7 primers 
(5’-CAA GCAGAAGACGGC ATA CGA GAT-
3’) in KAPA HiFi HotStartReadyMix (KAPA 
Biosystems,Cape Town, South Africa). The 
postcapture amplified library was purified using 
AgencourtAMPure XP beads and quantified by 
qPCR using the KAPA Library Quantification kit 
(KAPA Biosystems, Cape Town, South Africa). 
Library fragment size was determined by using 

the Agilent Technologies 2100 Bioanalyzer (Agi-
lent, Santa Clara, CA, USA). The target-enriched 
library was then sequenced on HiSeqNGS plat-
forms (Illumina, San Diego, CA, USA) according 
to the manufacturer’s instructions. The mean cov-
erage depth was over 300× for lung cancer tissues.

Sequence Data Processing 
Trimmomatic software was used for FASTQ 

file quality control. Readings from each sample 
were mapped to the reference sequence hg19 (Hu-
man Genome version 19, NCBI, NIH, USA) using 
Burrows-Wheeler Aligner (BWA-mem, v0.7.12, 
Broad institute, Cambridge, MA, USA). VarScan2 
(Washington University, St. Louis, MI, USA) was 
employed for the detection of somatic mutations. 
Somatic variants were selected with at least 0.2% 
mutant allele frequency (MAF) and three sup-
porting-reads from both directions. Common 
SNPs were screened with dbSNP (v137) and the 
1000 Genomes database. Annotation was per-
formed using ANNOVAR software on the hg19 
reference genome and 2014 versions of standard 
databases and functional prediction programs.

Genomic fusions were identified by FACTERA 
with default parameters. Copy number variations 
(CNVs) were detected using ADTEx (http://adtex.
sourceforge.net) with default parameters. TMB 
was defined as the number of somatic, coding base 
substitutions, short insertions and deletions (indels) 
per megabase (MB) of the genome examined using 
Geneseeq ONE (Nanjing, Jiangsu, China). The fre-
quently mutated genes are identified by MutSigCV 
and Lauren classification. A total of 24 DDR gene 
panels were used for determining genetic alter-
ations using in Geneseeq ONE.

Statistical Analysis
For OS analysis, Kaplan-Meier curves were 

constructed using a log-rank test. Statistical anal-
ysis was performed with GraphPad Prism soft-
ware, version 5.0 (GraphPad Software Inc., San 
Diego, CA, USA) and R software, version 3.5.0 
(R Foundation for Statistical Computing, Boston, 
MA, USA). p-value of less than 0.05 was consid-
ered to indicate statistical significance.

Results

Clinical Characteristics
The clinical features of the 67 advanced stage 

(III-IV) NSCLC patients are shown in Table I. 
Their age range was 38-80 years old. Thirty-sev-
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en percent of the patients had a history of smok-
ing. Adenocarcinoma, squamous carcinoma, and 
adenosquamous carcinoma at the initial histol-
ogy diagnosis were 90% (n=60), 9% (n=6), and 
1% (n=1), respectively. Patients with  stages IIIa 
and IIIb accounted for 19% of all patients. By 
contrast, 79% of the patients had stage IV. Twen-
ty-seven percent of the patients had a surgical his-
tory. Treatment-naïve, first-line, second-line, and 
third-line and beyond targeted drug therapy was  
given in 33%, 15%, 6%, and 10%, respectively. 
Sixteen percent of patients experienced treatment 
with a tyrosine kinase inhibitor (TKI).

Mutation Landscape
The profile of mutated genes from the 67 NS-

CLC patients before treatment is shown in Figure 
1. The most frequently mutated genes were EGFR 
(52.4%), TP53 (58.7%), KRAS (15.9%), RB1 (11.1%), 
ERBB2(7.9%), NF1 (7.9%), DNMT3A (9.5%), and 
PIK3CA (7.9%) (Figure 1). In addition to these fre-
quently mutated genes, in most cancers, we also 
found less frequently mutated genes including ALK 
(6.3%), MYC (6.3%), ROS1 (6.3%), CDKN2A (6.3%), 
BRAF(4.8%), ARID1A (3.2%), FGF19 (3.2%), and 
PTEN (1.6%). Different gene alterations had dis-
tinct mutation styles. For example, EGFR mainly 

had missense, frameshift, indel, and copy number 
variation (CNV) mutations. By contrast, TP53 had 
other mutations including frameshift, nonsense, and 
fusion except missense and CNV. These mutations 
also occurred in other cancers (gastric cancer, pan-
creatic cancer21, colon cancer22, etc.).

Tumor Mutation Burden and DDR of NSCLC
Recent reports revealed that TMB is a crit-

ical biomarker for assessing the response of 
cancer patients to immune checkpoint inhibi-
tors, such asanti-PD-1 or anti-PD-L1 antibody 
therapy14,23. NGS is a sensitive and reliable tool 
to detect TMB, and it has been used in many 
investigations24,25. Alterations in DDR pathway 
genes, including genes related to mismatch re-
pair (MMR), base excision repair (BER), ho-
mology-dependent recombination (HDR)26, and 
nucleotide excision repair (NER), were fre-
quently identified in both germline and somatic 
cells. Previous studies identified 27 genes rel-
evant to DDR. In the current study, we found 
that most DDR-related gene mutations had mis-
sense-type alteration and, in addition to MLH1, 
frameshift of MLH1, fusion of RECQL4, and 
nonsense of ATM (Figure 2A). We also com-
pared the TMB of wild-type (n=43) and mutat-

Figure 1. Landscape of mutations from patients with stages III and IV lung cancer. The frequently mutated genes are iden-
tified by MutSigCV and Lauren classification. The top panel presents tumor mutation burden (TMB), mutations per MB. The 
middle panel indicates smoking history, histological types, and clinical stages for 67 patients. The lower panel shows the per-
centages of the frequently mutated genes. LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; LUAS: lung 
adenosquamous carcinoma; ND: no disease; CNV: copy number variation.
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ed (n=20) DDR-relevant genes, which revealed 
significant differences between the wild-type 
and the mutated genes (p<0.01, Figure 2B). 
We further classified TMB as caused by a sin-
gle mutation, multiple mutations, or wild type 
(WT). We found that the TMB of multiple mu-
tated genes was dramatically higher than that of 
single mutated and wild-type genes, respective-
ly (p<0.001, Figure 2C). These results imply 
that patients with multiple DDR mutations may 
show a good response to therapy with immune 
checkpoint inhibitors.

Outcome Evaluation of TMB 
and DDR Mutations in NSCLC 
Patients for Targeted Therapy

To assess the impact of the gene mutation pro-
file on treatment decisions, we performed univari-
able and multivariable analyses of OS in a few gene 
mutations, taking into account the TKI therapy 
history, TMB levels, DNMT3A, FLT4, RB1, and 
the DDR pathway (Table II). Univariable analyses 
revealed that TMB high vs. low levels (p=0.0375), 
DNMT3A mutation vs. WT (p=0.0151), RB1 gene 
mutation vs. WT (p=0.0217) and DDR pathway 
gene alteration vs. WT (p=0.0036) had signifi-
cant effects on OS. By contrast, the multivariable 

analysis revealed that mutations in DDR pathway 
genes (Table II and Figure 3A) and DNMT3A (Fig-
ure 3B) were critical factors for OS as assessed by 
log-rank analysis. However, DDR pathway gene 
alterations had more benefits than the DNMT3A 
mutation (Figure 3A, B).

Discussion

In this study, we performed an NGS study 
for the detection of individual gene mutations, 
DDR pathway mutated genes, and TMB evalu-
ation of tumors in 67 NSCLC patients. Our re-
sults showed that the most frequently observed 
mutations were TP53 (58.7%), EGFR (52.4%), 
and KRAS (15.9%). The major genes in the DDR 
pathway had 5-10% alterations. Interestingly, 
TMB levels in patients with DDR pathway mu-
tated genes were significantly higher than those 
in patients with non-DDR gene alterations. Fi-
nally, we found that alterations in the DNMT3A 
and DDR genes were relevant to an NSCLC pa-
tient’s outcomes as determined on univariable 
and multivariable analyses.

In this study, we identified 16 significantly 
mutated genes (Figure 1). Similar to other can-

Figure 2. DDR mutations are associated with TMB in lung cancers. A, Landscape of the mutated genes in the DDR pathway 
in NSCLC. B, Comparison of tumor mutational burden in samples of DDR wild-type (WT, n=43) and DDR mutations (DDR 
mut, n=20). C, Comparison of DDR wt, DDR-single mut and multi-mut.NER: nucleotide excision repair; MMR: mismatch 
repair; FA: Fanconi anemia; HR: homology-dependent recombination; CPF: cleavage and polyadenylation factor; DDR mut: 
DNA damage and repair mutations; DDR WT: DNA damage and repair mutations wild type.**p<0.01; ***p<0.001.
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cers, the tumor suppressor gene TP53 and the 
oncogene KRAS were the most frequently mu-
tated genes21,27,28. TP53 mutation was associat-
ed with not only clinical characteristics such as 
gender and tumor location29, but also TMB rate. 
Interestingly, we found EGFR and ALK gene 
alterations in 52.4% and 6.3% of the cases, re-
spectively. This is a critical finding for clinical 
therapy because many drugs targeting EGFR 
and ALK mutations are widely used in clinical 
therapy30-32.

We observed extensive mutations in the 
genes of the DDR pathway, as shown in Fig-

ure 2. There are evident differences concerning 
DDR gene alterations between different kinds of 
cancers. Gee et al33 reported 63-67% BER and 
50% HR alterations in ovarian cancer patients. 
Mouw34 indicated that the major DDR muta-
tion types were double-strand break (DSB) and 
NER in bladder tumors. Here, our data showed 
that the alteration rate in the genes of the DDR 
pathway was 5-15% in NSCLC patients. This 
alteration rate was lower than that observed in 
ovarian cancer and bladder cancer. However, 
TMB levels of patients with DDR gene alteration 
were higher than those of patients without DDR 

Table II. Univariable and multivariable analysis of overall survival.

HR, hazard ratio; OR, odds ratio; CI, confidence interval; TKI, tyrosine kinase inhibitors; WT, wild type; DDR, DNA damage 
repair; TMB, tumor mutation burden.

		  Univariable Analysis			  Multivariable Analysis

Parameter	 HR	 95% CI	 p-value	 HR	 95% CI	 p-value

History of treatment with TKI						    
    Yes vs. No	 2.28	 0.968 to 5.35	 0.0528			 
TMB
    High vs. Low	 2.99	 1.01 to 8.84	 0.0375			 
DNMT3A gene						    
    Alterations vs. WT	 3.72	 1.19 to 11.6	 0.0151	 4.455	 1.357 to 14.628	 0.014
FLT4 gene						    
    Alterations vs. WT	 1.23E-08	 0 to Inf	 0.0927			 
RB1 gene						    
    Alterations vs. WT	 0.134	 0.018 to 1	 0.0217			 
DDR pathway gene						    
    Alterations vs. WT	 0.196	 0.058 to 0.663	 0.0036	 0.181	 0.053 to 0.620	 0.006

Figure 3. Overall survival (OS) of lung cancer patients with DDR variants and DNMT3A mutation. A, OS of with and 
without DDR variants; p=0.0036 calculated using log-rank test. B, Comparison of OS with and without DNMT3A mutation
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gene mutations. Our results also demonstrated 
that more DDR gene alterations caused higher 
TMBs, which indicates that these patients may 
show a good response to immune checkpoint in-
hibitors25,35 and platinum-based therapy.

DNMT3A alteration had an important impact 
on the outcome of cancer36,37. DNMT3A encodes 
a DNA methyltransferase that is involved in gene 
transcription and maintain de novo DNA meth-
ylation. Husni et al38 showed that high DNMT3A 
alteration had poor outcome in lung adenocar-
cinoma patients. Chen et al39 reported that high 
DNMT3A alteration was relevant to the severity 
of leukemia. Our data showed that DNMT3A al-
teration led to a short OS. This result indicates 
that DNMT3A alteration plays a critical role in 
NSCLC outcome.

Higher TMB levels in cancer patients had 
greater benefits for the treatment of disease20. 
Wang et al25 reported that TMB in melanoma 
patients had a direct impact on the outcome of 
cancer. Our current data show that higher TMB 
in NSCLC patients led to better OS as observed 
on  univariable analysis, although there were no 
significant correlations with OS on multivariable 
analysis. This finding implies that NSCLC pa-
tients with high TMB may show good responses 
to immunotherapy. 

Our study indicated that DDR gene and DN-
MT3A alterations had tremendous the effects on 
the outcomes of NSCLC patients. To the best of 
our knowledge, our results are the first to uncov-
er a relationship between DNMT3A and the out-
comes of NSCLC.

Conclusions

We performed a comprehensive mutational 
landscape in 67 NSCLC patients. We showed that 
alterations in DDR genes and DNMT3A signifi-
cantly contributed to OS in lung cancer, which 
was mediated by increasing TMB in patients. 
This provides a theoretical foundation for therapy 
targeting DDR genes and DNMT3A.
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