# MiR-199 inhibits EMT and invasion of hepatoma cells through inhibition of Snail expression

H.-Y. ZHANG<sup>1</sup>, C.-H. LI<sup>2</sup>, X.-C. WANG<sup>3</sup>, Y.-Q. LUO<sup>1</sup>, X.-D. CAO<sup>1</sup>, J.-J. CHEN<sup>1</sup>

Haiyang Zhang and Chunhu Li contributed equally to this work

**Abstract.** – OBJECTIVE: MiR-199 expression is associated with liver cancer. Bioinformatics analysis revealed that miR-199 has a complementary binding site to the 3'-UTR region of Snail mRNA. This study investigated whether miR-199 plays a role in regulating Snail expression and affecting epithelial-mesenchymal transition (EMT) and invasion of hepatoma cells.

PATIENTS AND METHODS: The Dual-Luciferase reporter gene assay validated the targeted regulation between miR-199 and Snail. QRT-PCR was used to detect and compare the expression of miR-199 and Snail mRNA in human normal liver HL7702 cells, low metastatic MHCC97L cells, and high metastatic MHCC97H cells. MHCC97H cells were cultured *in vitro* and divided into two groups: miR-NC group and the miR-199 mimic group followed by the analysis of the expression of Snail, E-cadherin, and N-cadherin, as well as cell invasion ability by transwell assay.

RESULTS: There was a targeted regulatory relationship between miR-199 and Snail mRNA. Compared with HL7702 cells, miR-199 expression was significantly decreased, and Snail expression was significantly increased in MHC-C97L and MHCC97H cells, with more changes being observed in high metastatic MHCC97H cells. The transfection of miR-199 mimic significantly downregulated the expression of Snail and N-cadherin in MHCC97H cells, increased E-cadherin expression, inhibited the cell's EMT process, and invasion.

CONCLUSIONS: The decrease of miR-199 expression plays a role in upregulating the expression of Snail and promoting EMT and invasion of hepatocarcinoma cells. The increase of the expression of miR-199 can inhibit the expression of Snail and inhibit the EMT process and invasion ability of hepatoma cells.

Key Words:

MiR-199, Snail, Liver cancer, EMT, Invasion.

#### Introduction

Hepatocellular carcinoma (HCC) is a clinically common malignant tumor. Its morbidity and mortality rank among the top in global malignant tumors. The disease progresses rapidly; the treatment effect is poor with a high mortality rate, which causes serious threats to patients and brings huge burdens to families<sup>1</sup>.

Epithelial-mesenchymal transition (EMT) of tumor cells is closely related to tumor invasion, distant metastasis, and postoperative recurrence<sup>2-4</sup>. The zinc finger protein transcription factor Snail, also known as Snail, downregulates the expression of E-cadherin during EMT and upregulates the expression of N-cadhetin, thereby promoting the EMT process of tumor cells and enhancing their invasive ability<sup>5,6</sup>. Multiple studies<sup>7-9</sup> have shown that abnormal expression of Snail is associated with increased EMT, invasion, and metastasis in multiple tumors. In addition, studies<sup>10-12</sup> have shown that the abnormal expression of Snail is involved in the regulation of EMT, invasion, and metastasis of hepatoma cells.

MicroRNA is an endogenous non-coding single-stranded small molecule RNA of about 22-25 nucleotides in eukaryotes. By complementary binding to the 3'-untranslated region of the target gene mRNA (3'-untranslated region, 3'-UTR), microRNA regulates the expression of target genes by degrading mRNA or inhibiting mRNA translation, and thus participates in the regulation of biological processes such as cell proliferation, differentiation, and migration, and is closely related to tumor occurrence, progression, and metastasis. Scholars<sup>13-15</sup> have shown that the abnormal expression of miR-199 is closely related

<sup>&</sup>lt;sup>1</sup>Department of Hepatobiliary Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China

<sup>&</sup>lt;sup>2</sup>Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

<sup>&</sup>lt;sup>3</sup>Department of Gastroenterology, Shanghai Putuo District Central Hospital, Shanghai, China

to the occurrence and progression of liver cancer. Bioinformatics analysis showed that there is a targeted complementation relationship between miR-199 and Snail's 3'-UTR. This study investigated whether miR-199 plays a role in regulating Snail expression and affecting EMT processes and invasion of hepatoma cells.

# **Materials and Methods**

# Main Reagents and Materials

Human high metastatic MHCC97H liver cancer cells and human low metastatic MHCC97L liver cancer cells were purchased from Nanjing Kezhen Biotechnology Co., Ltd. (Nanjing, Jiangsu, China); human normal liver HL7702 cells were purchased from Shanghai Gaining organism (Shanghai, China); HEK293T cells were purchased from Wuhan Punosi organism (Wuhan, China); DMEM medium, fetal bovine serum (FBS), and penicillin were purchased from Gibco (Grand Island, NY, USA); Lipofectamine 2000 was purchased from Invitrogen (Carlsbad, CA, USA); RNA extraction reagent EasyPure RNA Kit and fluorescent quantitative PCR reagent TransScript Green One-Step qRT-PCR SuperMix were purchased from Beijing Quanjin Biological (Beijing, China); miR-NC and miR-199 mimic were designed and synthesized by Guangzhou Ruibo Bio (Guangzhou, China); rabbit anti-E-cadherin, N-cadherin polyclonal primary antibody, HRP-conjugated secondary antibody were purchased from American Abcam (Cambridge, MA, USA), rabbit anti-human Snail and  $\beta$ -actin polyclonal antibody were purchased from Cell Signaling Technology (Danvers, MA, USA); transwell was purchased from Millipore (Billerica, MA, USA); Matrigel was purchased from BD Biosciences (San Jose, CA, USA); Dual-Luciferase Reporter Assay System was purchased from Promega (Madison, WI, USA); pMIR plasmid was purchased from Changsha Youbao (Changsha, Hunan, China); TGF-β1 recombinant protein was purchased from American R&D Systems (Minneapolis, MN, USA).

#### Cell Culture and EMT Induction

HL7702, MHCC97H, and MHCC97L cells were cultured in DMEM medium containing 10% FBS, in a cell culture incubator containing 5% CO<sub>2</sub> at 37°C, and sub-cultured at a ratio of 1:4. The cells in the logarithmic phase were used for experiments.

In the EMT induction experiment, MHCC97H cells were seeded in 6-well plates at a density of  $3\times10^4$ . After adherence for 24 h, TGF- $\beta$ 1 was added to the medium to a final concentration of 20 ng/mL, treating cells for 96 h to induce MHC-C97H cells. In the EMT process, a group in which TGF- $\beta$ 1 was not added was used as a control.

## Dual-Luciferase Gene Reporter Assay

Using the MHCC97H cell genome as a template, the full-length 3'-UTR fragment of Snail gene was amplified, and the PCR product was digested. The amplified product was ligated into pMIR plasmid and transformed into DH5 $\alpha$  competent cells. The positive clones were screened, and the correct sequencing plasmids were picked for transfection and subsequent experiments and designated as pMIR-Snail-WT and pMIR-Snail-MUT, respectively.

pMIR-Snail-WT (or pMIR-Snail-MUT) was transfected into HEK293T cells with miR-199 mimic (or miR-NC) using Lipofectamine 2000. After 48 h of culture, the relative Luciferase activity was detected to follow the instructions of the Dual-Glo Luciferase Assay System Kit.

## Cell Transfection and Grouping

MHCC97H cells were cultured *in vitro* and divided into two groups: miR-NC transfection group and miR-199 mimic transfection group. The general procedure for transfection was: dilute  $10~\mu L$  Lip 2000, 50~mol miR-NC, 50~with  $100~\mu L$  Opti-MEM. Nmol miR-199 mimic was incubated for 5~min at room temperature, a mix of Opti-MEM with Lipofectamine 2000, miR-NC or miR-199 mimic were incubated for 20~min at room temperature, we added the transfectant mixture to the cell culture medium, we continued to culture 72~hours, and then, we collected the cells for testing.

# qRT-PCR Detection of Gene Expression

One-step qRT-PCR was used to detect the relative expression of genes using TransScript Green One-Step qRT-PCR SuperMix in the 20 µL reaction system including: 1 µg of RNA template, 0.3 µM of pre-primer, 0.3 µM of post-primer, 10 µL of 2 × TransStart Tip Green qPCR SuperMix, 0.4 µL of RT Enzyme Mix, 0.4 µL of Dye II, and deionized water. qRT-PCR reaction conditions were: 45°C, 5 min, reverse transcription; 94°C, 30 s; (94°C, 5 s; 60°C, 30 s) × 40 cycles, detection of gene expression on Bio-Rad CFX96 Real Time-PCR in-

strument. The primer sequences for miR-199 was: F-5'-AGAAGGCGATTGATACGAGTCA-3' (sense) and 5'-GGTCTCCCCAGTGTTCAGA-TA-3' (antisense); U6: 5'-GTGCAGGGTCCGAG-GT-3' (sense) and 5'-CGCTTCGGCAGCACAT-3' (antisense); Snail: 5'-TTCTTCTGCGCTACT-GCTGCG-3' (sense) and 3'-GGGCAGGTATG-GAGAGGAAGA-5' (antisense); GAPDH: 5'-TG-GTATCGTGGAAGGACTCATGAC-3' and 3'-ATGCCAGTGAGCTTCCCGTTCAGC-5' (antisense); E-cadherin: 5'-TCCCATCAGCT-GCCCAGAAA-3' (sense) and 3'-TGACTCCT-GTGTTCCTGTTA-5' (antisense); N-cadherin: 5'-AGGGTGGACGTCATTGTAGC-3' (sense) and 5'-CTGTTGGGGTCTGTCAGGAT-3' (antisense).

#### Western Blot

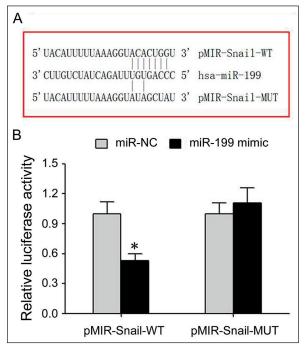
The total protein was extracted from RIPA lysate. After quantification of the protein concentration by BCA method, 40 µg protein was separated on 12% SDS-PAGE, transferred to PVDF membrane (250 mA, 100 min), blocked with 5% skim milk powder at room temperature for 60 min, and incubated with the primary antibody at 4°C overnight (E-cadherin, N-cadherin, Snail, β-actin dilution ratios were 1:2000, 1:2000, 1:600, 1:5000). After washing the membrane 3 times with PBST, HRP-conjugated secondary antibody (1:8000 dilution) was added and incubated for 60 min at room temperature followed by washing the membrane 3 times with PBST, adding enhanced chemiluminescence (ECL) solution for 2-3 min. exposing and developing under the dark.

#### Transwell Assay Analysis of Cell Invasion

 $100~\mu L$  of Matrigel gel was placed on the upper surface of the transwell chamber filter. After gel polymerization,  $500~\mu L$  of complete medium containing 10% FBS was added to the 24-well plate, and the transwell chamber containing Matrigel gel was placed in a 24-well plate.  $200~\mu L$  of MHCC97H cells resuspended in serum-free DMEM medium was then added to the upper chamber, continued to culture for 48 h, discarded the medium in the transwell upper chamber, and wiped the cells that failed to pass through the sterile cotton swab. After methanol fixation and crystal violet staining, cell invasion was observed under an inverted microscope.

#### **Ethics Statement**

All research subjects signed the informed consents. This study has been approved by the Ethical Committee of Jining No. 1 People's Hospital.


# Statistical Analysis

Statistical analysis was performed using the Statistical Product and Service Solution (SPSS) 18.0 software (SPSS Inc., Chicago, IL, USA). The measurement data were expressed as mean  $\pm$  standard deviation (SD). The Student's *t*-test was used to compare the measurement data between groups. p<0.05 was considered statistically significant.

#### Results

# A Targeted Regulation Relationship Between MiR-199 and Snail

Bioinformatics analysis revealed a complementary binding site between miR-199 and the 3'-UTR of Snail mRNA (Figure 1A). The Dual-Luciferase gene reporter assay showed that the transfection of miR-199 mimic significantly reduced the relative Luciferase activity in pMIR-Snail-WT transfected HEK293T cells, while the transfection of miR-NC or miR-199 mimic did not have significant effect on relative Luciferase activity in pMIR-Snail-MUT-transfected HEK293T cells (Figure 1B), indicating a targeted regulatory relationship between miR-199 and Snail mRNA.



**Figure 1.** There is a targeted regulation relationship between miR-199 and Snail. **A,** Schematic diagram of a targeted binding site between miR-199 and Snail. **B,** Dual-Luciferase reporter gene assay. \*Represents p < 0.05 compared to miR-NC.

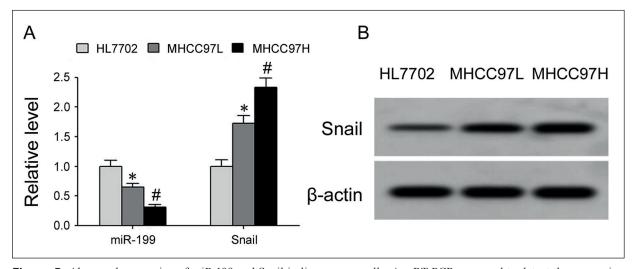
# Abnormal Expression of MiR-199 and Snail in Liver Cancer Cells

The results of qRT-PCR showed that, compared with human normal liver HL7702 cells, the expression of miR-199 in liver cancer cells MHCC97L and MHCC97H was significantly decreased, while the expression of Snail mRNA was significantly increased with more changes being observed in highly metastatic MHCC97H cells (Figure 2A). Western blot analysis showed that compared with HL7702 cells, the expression of Snail protein in MHCC97L and MHCC97H cells was significantly increased, and the expression of Snail protein in MHCC97H cells was significantly higher than that in MHCC97L cells (Figure 2B).

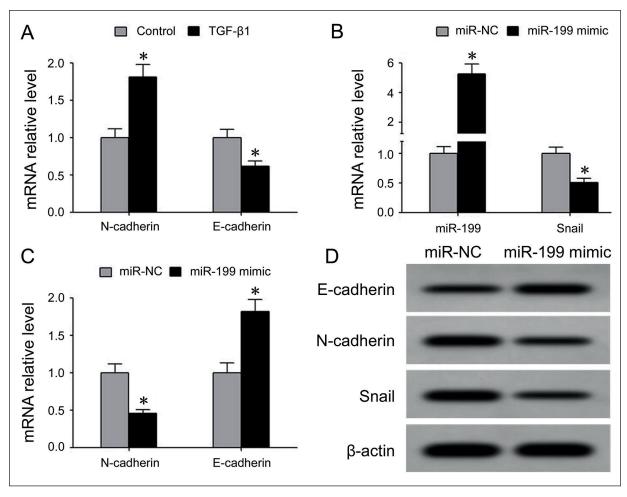
# Transfection of MiR-199 Mimic Significantly Inhibits EMT Process

The results of qRT-PCR showed that the expression of E-cadherin mRNA in MHCC97H cells was significantly downregulated and the expression of N-cadherin mRNA was upregulated during the EMT of MHCC97H cells induced by TGF-β1 treatment (Figure 3A). The results of qRT-PCR showed that the expression of miR-199 (Figure 3B) and E-cadherin mRNA (Figure 3C) was significantly increased in MHCC97H cells of miR-199 mimic transfection group compared with a miR-NC group (Figure 3B) and the expression of N-cadherin mRNA (Figure 3C) was significantly reduced. Western blot analysis showed that compared with miR-NC, the tran-

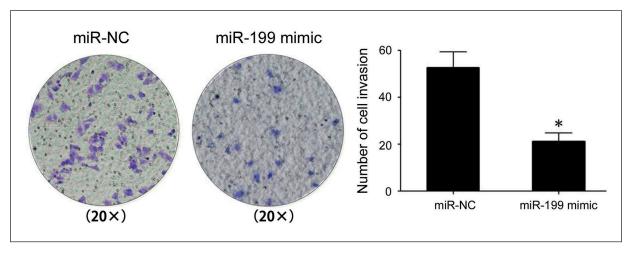
sfection of miR-199 mimic significantly reduced the expression of Snail and N-cadherin protein in MHCC97H cells, and significantly increased the expression of E-cadherin protein (Figure 3D).


# Transfection of MiR-199 Mimic Significantly Attenuated the Invasion of MHCC97H Cells

The results of the transwell assay showed that the invasive ability of MHCC97H cells in the miR-199 mimic transfection group was significantly reduced, and the number of invasions was significantly reduced compared with the miR-NC group (Figure 4).


#### Discussion

The incidence of HCC is the fifth in malignant tumors, and the disease progresses rapidly, with high malignancy, easy invasion and metastasis, high postoperative recurrence rate, poor survival, and prognosis<sup>16-18</sup>. Therefore, studies on the pathogenesis of HCC and abnormal signal transduction molecules are important for improving the diagnosis, treatment, and prognosis.


EMT is the initial step in the acquisition of motor cells' ability to invade and metastasize, and is closely related to the surrounding tissue invasion, distant metastasis, postoperative recurrence, and poor prognosis<sup>2-4</sup>. Snail is an important regulator of EMT and can downregulate the expression of E-cadherin, a negative regulator of EMT, by bin-



**Figure 2.** Abnormal expression of miR-199 and Snail in liver cancer cells. **A,** qRT-PCR was used to detect the expression of miR-199 and Snail mRNA in cells. **B,** Western blot analysis of intracellular Snail protein expression. \* represents p<0.05 compared with HL7702 cells; # represents p<0.05 compared with MHCC97L cells.



**Figure 3.** Transfection of miR-199 mimic significantly inhibits EMT process in MHCC97H cells. (**A**) qRT-PCR was used to detect the expression of N-cadherin and E-cadherin mRNA in cells; (**B**) qRT-PCR was used to detect the expression of miR-199 and Snail mRNA in cells; (**C**) qRT-PCR was used to detect the expression of N-cadherin and E-cadherin mRNA in cells; (**D**) Western blot detection of intracellular protein expression. \* represents p < 0.05 compared to the two groups.



**Figure 4.** Transfection of miR-199 mimic significantly attenuated the invasion of MHCC97H cells. \* represents p<0.05 compared to the miR-NC group.

ding to the E-box region of E-cadherin gene promoter. The adhesion is reduced, the cell junction becomes loose, and the expression of the EMT positive regulator N-cadherin is upregulated, thereby promoting the EMT process of tumor cells and enhancing their invasive ability<sup>5,6</sup>. A number of studies have shown that abnormal expression of Snail is closely related to EMT, invasion, and metastasis of various tumors such as breast cancer<sup>7</sup>, lung cancer<sup>8</sup>, and intestinal cancer<sup>9</sup>. A number of studies have shown that miR-199 is associated with the occurrence, progression, metastasis of several tumors such as lung cancer<sup>19</sup>, intestinal cancer<sup>20</sup>, and bladder cancer<sup>21</sup>. Studies<sup>13-15</sup> have shown that the abnormal expression of miR-199 is closely related to the occurrence and progression of liver cancer. This study investigated whether miR-199 plays a role in regulating the expression of Snail and affecting the process and invasion of hepatoma cells.

In this research, the Dual-Luciferase gene reporter assay showed that the transfection of miR-199 mimic significantly reduced the relative Luciferase activity in pMIR-Snail-WT transfected HEK293T cells, but miR-199 mimic did not have an effect on the relative Luciferase activity in the HEK293T cells transfected with pMIR-Snail-MUT, confirming the targeted regulation between miR-199 and Snail. These results showed that, compared with human normal liver HL7702 cells, the expression of miR-199 was significantly decreased, while the expression of Snail was significantly increased in liver cancer cells MHC-C97L and MHCC97H with more changes found in high metastatic MHCC97H cells. The findings showed that the decrease of miR-199 expression may play a role in upregulating the Snail expression and promoting the regulation of liver cancer pathogenesis and metastasis. In the study of the relationship between miR-199 and liver cancer, Lou et al<sup>22</sup> showed that the expression of miR-199 in tumor tissues of HCC patients was significantly decreased compared with adjacent tissues. and the expression of its target genes XBP1 and cyclin D were significantly increased. Zhan et al<sup>15</sup> observed that the expression of miR-199 was significantly decreased in HCC tumor tissues and cells compared with adjacent tissues. Our study also found that the decrease in miR-199 expression was associated with poor prognosis. Zhang et al<sup>13</sup> detected that the expression of miR-199 was abnormally decreased in the liver cancer cell line. Amr et al23 indicated that compared with patients with chronic hepatitis, the expression of miR-199 in peripheral blood of patients with HCC was significantly decreased; and the expression of miR-199 in HCC tumor tissues was decreased compared with adjacent tissues. ROC curve analysis showed that the decrease of the expression of miR-199 has a high diagnostic value for HCC. Giovannini et al<sup>14</sup> found that the expression of miR-199 in tumor tissues of HCC patients was abnormally decreased, and there was a significant negative correlation with the target gene Notch1. In the present study, we demonstrated that the expression of miR-199 is related to liver cancer, which was consistent with the data of Zhan et al<sup>15</sup>, Zhang et al<sup>13</sup>, Amr et al<sup>23</sup>.

EMT refers to the biological process of transforming epithelial cells into mesenchymal cells. The decrease of E-cadherin expression, which mediates tight junctions between cells and cells, is an important marker of EMT process. EMT processes are closely related to tumor cells progress, metastasis, recurrence, and poor prognosis<sup>24,25</sup>. In this report, MHCC97H cells were treated with TGF-β1 to induce EMT in MHCC97H cells, and MHCC97H cells were transfected with miR-NC or miR-199 mimic to observe the changes in cellular EMT process. The results showed that compared with miR-NC, the transfection of miR-199 mimic significantly reduced the expression of Snail and N-cadherin, upregulated the expression of E-cadherin, inhibited the cell EMT process, and cell invasion. In the study of the relationship between miR-199 and the biological effects of liver cancer cells, Lou et al<sup>22</sup> revealed that there is a mutual regulation between miR-199 and the oncogene XBP1 and cyclin D in Hep3B2.1-7 cells. Overexpression of miR-199 inhibits the proliferative activity of Hep3B2.1-7 cells by inhibition of XBP1 and cyclin D expression. Zhan et al<sup>15</sup> verified that increasing the expression of miR-199 in hepatocellular carcinoma cells can significantly inhibit cell proliferation and attenuate the migration and invasion of hepatoma cells, and the anti-cancer effect is achieved by inhibition of ROCK1. Zhang et al<sup>13</sup> showed that the overexpression of miR-199 in hepatocarcinoma cells can inhibit the proliferation of hepatocarcinoma cells and attenuate cell migration and invasion by significantly inhibiting the expression of RGS17 gene, while the overexpression of RGS17 can antagonize the anti-cancer effect of miR-199. This study combines the targeted regulatory relationship between miR-199 and Snail, revealing that the decreased expression of miR-199 plays a role in upregulating Snail expression and promoting EMT and invasion in hepatoma cells, while increasing miR-199 expression can inhibit the EMT process and invasion of liver cancer cells by targeting inhibition of Snail expression, which has not been reported previously. However, whether the regulatory relationship between miR-199 and Snail and its effect on invasion of liver cancer plays a role in the human body remains unclear and requires further research.

## **Conclusions**

The decrease of miR-199 expression plays a role in upregulating the expression of Snail and promoting EMT and invasion of hepatocarcinoma cells. Increasing the expression of miR-199 can inhibit the expression of Snail and repress the EMT process and invasion ability of hepatoma cells.

#### **Conflict of Interest**

The Authors declare that they have no conflict of interests.

#### References

- WALLACE MC, PREEN D, JEFFREY GP, ADAMS LA. The evolving epidemiology of hepatocellular carcinoma: a global perspective. Expert Rev Gastroenterol Hepatol 2015; 9: 765-779.
- HE Z, Yu L, Luo S, Li M, Li J, Li Q, Sun Y, Wang C. Mir-296 inhibits the metastasis and epithelial-mesenchymal transition of colorectal cancer by targeting S100A4. BMC Cancer 2017; 17: 140.
- LIU J, YU GZ, CHENG XK, LI XD, ZENG XT, REN XO. LGR5 promotes hepatocellular carcinoma metastasis through inducting epithelial-mesenchymal transition. Oncotarget 2017; 8: 50896-50903.
- ZHAO M, ANG L, HUANG J, WANG J. MicroRNAs regulate the epithelial-mesenchymal transition and influence breast cancer invasion and metastasis. Tumour Biol 2017; 39: 1010428317691682.
- Bai L, Yu Z, Zhang J, Yuan S, Liao C, Jeyabal PV, Ru-Bio V, Chen H, Li Y, Shi ZZ. Ola1 contributes to epithelial-mesenchymal transition in lung cancer by modulating the gsk3beta/snail/e-cadherin signaling. Oncotarget 2016; 7: 10402-10413.
- FENG H, Lu JJ, WANG Y, PEI L, CHEN X. Osthole inhibited TGF β-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells. Cell Adh Migr 2017; 11: 464-475.

- CAI F, XIAO H, SUN Y, WANG D, TANG J. Expression of snail and E-cadherin in drug-resistant mcf-7/adm breast cancer cell strains. J Coll Physicians Surg Pak 2019; 29: 240-244.
- 8) FURUTA M, KIKUCHI H, SHOJI T, TAKASHIMA Y, KIKUCHI E, KIKUCHI J, KINOSHITA I, DOSAKA-AKITA H, SAKAKIBA-RA-KONISHI J. DLL3 regulates the migration and invasion of small cell lung cancer by modulating snail. Cancer Sci 2019; 110: 1599-1608.
- PRZYGODZKA P, PAPIEWSKA-PAJAK I, BOGUSZ-KOZIARSKA H, SOCHACKA E, BONCELA J, KOWALSKA MA. Regulation of miRNAs by snail during epithelial-to-mesenchymal transition in ht29 colon cancer cells. Sci Rep 2019; 9: 2165.
- 10) LIU GM, LI Q, ZHANG PF, SHEN SL, XIE WX, CHEN B, WU J, HU WJ, HUANG XY, PENG BG. Restoration of FBP1 suppressed Snail-induced epithelial to mesenchymal transition in hepatocellular carcinoma. Cell Death Dis 2018; 9: 1132.
- 11) QIN Y, ZHAO D, ZHOU HG, WANG XH, ZHONG WL, CHEN S, GU WG, WANG W, ZHANG CH, LIU YR, LIU HJ, ZHANG Q, GUO YQ, SUN T, YANG C. Apigenin inhibits NF-kB and snail signaling, EMT and metastasis in human hepatocellular carcinoma. Oncotarget 2016; 7: 41421-41431.
- 12) XIA W, MA X, LI X, DONG H, YI J, ZENG W, YANG Z. MiR-153 inhibits epithelial-to-mesenchymal transition in hepatocellular carcinoma by targeting snail. Oncol Rep 2015; 34: 655-662.
- 13) ZHANG W, QIAN S, YANG G, ZHU L, ZHOU B, WANG J, LIU R, YAN Z, QU X. MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma. Gene 2018; 659: 22-28.
- 14) GIOVANNINI C, FORNARI F, DALLO R, GAGLIARDI M, NIPOTI E, VASURI F, COADA CA, RAVAIOLI M, BOLON-DI L, GRAMANTIERI L. MiR-199-3p replacement affects E-cadherin expression through notch1 targeting in hepatocellular carcinoma. Acta Histochem 2018; 120: 95-102.
- 15) ZHAN Y, ZHENG N, TENG F, BAO L, LIU F, ZHANG M, GUO M, GUO W, DING G, WANG Q. Mir-199a/b-5p inhibits hepatocellular carcinoma progression by post-transcriptionally suppressing rock1. Oncotarget 2017; 8: 67169-67180.
- 16) Zuo X, Kong W, Feng L, Zhang H, Meng X, Chen W. Elevated platelet distribution width predicts poor prognosis in hepatocellular carcinoma. Cancer Biomark 2019; 24: 307-313.
- RONOT M, PURCELL Y, VILGRAIN V. Hepatocellular carcinoma: current imaging modalities for diagnosis and prognosis. Dig Dis Sci 2019; 64: 934-950.
- Dong JJ, Ying L, Shi KQ. Expression of the Wnt ligands gene family and its relationship to prognosis in hepatocellular carcinoma. Cancer Cell Int 2019; 19: 34.
- 19) AHMADI A, KHANSARINEJAD B, HOSSEINKHANI S, GHANEI M, AND MOWLA SJ. MiR-199a-5p and miR-495 target GRP78 within UPR pathway of lung cancer. Gene 2017; 620: 15-22.

- 20) Chao CC, Wu PH, Huang HC, Chung HY, Chou YC, Cai BH, Kannagi R. Downregulation of miR-199a/b-5p is associated with GCNT2 induction upon epithelial-mesenchymal transition in colon cancer. FEBS Lett 2017; 591: 1902-1917.
- 21) SAKAGUCHI T, YOSHINO H, YONEMORI M, MIYAMOTO K, SUGITA S, MATSUSHITA R, ITESAKO T, TATARANO S, NAKAGAWA M, ENOKIDA H. Regulation of ITGA3 by the dual-stranded microRNA-199 family as a potential prognostic marker in bladder cancer. Br J Cancer 2017; 116: 1077-1087.
- 22) Lou Z, Gong YQ, Zhou X, Hu GH. Low expression of miR-199 in hepatocellular carcinoma contributes to tumor cell hyper-proliferation by negative-

- ly suppressing XBP1. Oncol Lett 2018; 16: 6531-6539
- 23) AMR KS, EZZAT WM, ELHOSARY YA, HEGAZY AE, FA-HIM HH, KAMEL RR. The potential role of miRNAs 21 and 199-a in early diagnosis of hepatocellular carcinoma. Gene 2016; 575: 66-70.
- 24) MATYSIAK M, KAPKA-SKRZYPCZAK L, JODLOWSKA-JEDRYCH B, KRUSZEWSKI M. EMT promoting transcription factors as prognostic markers in human breast cancer. Arch Gynecol Obstet 2017; 295: 817-825.
- 25) ZHOU P, LI B, LIU F, ZHANG M, WANG Q, LIU Y, YAO Y, LI D. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer 2017; 16: 52.