Up-regulation of long non-coding RNA SNHG6 predicts poor prognosis in renal cell carcinoma

H.-X. AN¹, B. XU², Q. WANG³, Y.-S. LI⁴, L.-F. SHEN⁵, S.-G. LI⁶

Abstract. – OBJECTIVE: We aim to investigate the expression of long non-coding RNA SN-HG6 and analyze its clinicopathological significance in renal cell carcinoma (RCC).

PATIENTS AND METHODS: A total of 81 cases of RCC tissues were collected and enrolled. Total RNA was extracted using the TRIzol method followed by qRT-PCR detection of the mRNA level of SNHG6. The x2-test was used to analyze the correlation between SN-HG6 expression and clinicopathological variables, including age, gender, TNM stage, Fuhrman grade, tumor size, and overall prognosis. Kaplan-Meier survival curve was plotted to analyze the association between SNHG6 expression and overall survival. Univariate and multivariate analysis were carried out with the Cox proportional hazard analysis.

RESULTS: SNHG6 was shown to be markedly upregulated in RCC tissues as compared with normal controls. Elevated SNHG6 was found to significantly correlate with clinical stage, lymph node metastasis, Fuhrman grade, and tumor size (*p*<0.05). Kaplan-Meier survival analysis exhibited that elevated SNHG6 was remarkably associated with poor overall survival (*p*<0.001). Moreover, multivariate analysis revealed that SNHG6 expression was an independent prognostic factor in RCC.

CONCLUSIONS: We showed that up-regulated SNHG6 was significantly associated with tumor progression and was an independent prognostic factor in RCC, suggesting that SNHG6 can work as a promising prognostic predictor in RCC.

Key Words:

Long non-coding RNA SNHG6, Renal cell carcinoma, Prognosis, Predictor.

Introduction

As the most common neoplasm in the kidney, renal cell carcinoma (RCC) is the most common lethal of all urological malignancies, accounting for 2-3% of adult malignancies¹. Clinically, surgical treatment can prolong life, but only for patients with early-stage tumors. However, it is difficult for early detection to distinguish between benign and malignant kidney tumors². Therefore, potential biomarkers for earlier diagnosis and prognosis of RCC^{3,4} are required. Long non-coding RNAs (lncRNAs) are a class of RNA polymerase II transcripts which are greater than 200 nucleotides in size⁵. Recently, accumulating evidence revealed that lncRNAs are implicated in the initiation and progression⁶ of carcinoma, as well as development and spread of metastasis⁷. Researches⁸⁻¹⁰ showed that lncRNAs can be used as potential prognostic markers of carcinoma. LncRNA SNHG6, a contraction of Small Nucleolar RNA Host Gene 6, has been reported to be elevated in several types of carcinoma, including colon adenocarcinoma¹⁰, breast carcinoma¹¹, and colorectal carcinoma¹². Despite these relevant earlier reports, it has been seldom described in RCC. Given this, to learn about the clinicopathological and prognostic significance of SNHG6 expression, herein we detected, by using quantitative Real-time-PCR (qRT-PCR), the expression of SNHG6 in RCC tissues, numbering 81 cases.

¹Department of Oncology, Jinan Zhangqiu District Hospital of TCM, Jinan, China

²No. 2 Department of General Surgery, East Hospital, Qingdao Municipal Hospital, Qingdao, China

³Department of Emergency Internal Medicine, the People's Hospital of Zhangqiu Area, Jinan, China

⁴Department of Imaging, the People's Hospital of Zhangqiu Area, Jinan, China

⁵Department of Spinal Surgery, the People's Hospital of Zhangqiu Area, Jinan, China

⁶Department of Urinary Surgery, Jining First People's Hospital, Jining, China

Patients and Methods

RCC Patients and Tissue Specimens

A total of 81 cases of RCC tissues and its matched normal controls were collected from the Department of Urinary Surgery, Jining First People's Hospital from July 2007 to June 2018. No patient was given any radiotherapy or chemotherapy before undergoing nephrectomy. All cases were diagnosed histologically by two experienced pathologists independently and staged according to the TNM staging of the American Joint Committee on Cancer (AJCC 7th, 2017). All tissue samples were immediately frozen in liquid nitrogen after resection and stored at -80°C until use. This study was approved by the Committee for Ethical Review of Research involving human subjects of Jining First People's Hospital, and informed consent was obtained from each participant.

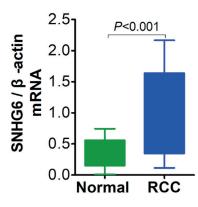
RNA Extraction and Quantitative Real-Time PCR (qRT-PCR)

Total RNA was isolated from fresh tissues using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) following the instruction. Total RNA (1 µg) was reversely transcribed into cDNA with the Moloney Leukemia Virus Reverse Transcriptase kit (Promega, Madison, WI, USA). qRT-PCR was performed on ABI 7500 fast Real-time PCR platform (Applied Biosystems, Waltham, MA, UK) with SYBR Green Mix (Promega, Madison, WI, USA) to detect the expression of SNHG6. Results were normalized to the expression of human glyceraldehyde-3-phosphate dehydrogenase (GAP-DH), as an internal loading control. The primers involved were SNHG6 Forward 5'-TTAGTCAT-GCCGGTGTGGTG-3'; Reverse 5'-AATA-CATGCCGCGTGATCCT-3'; GAPDH Forward 5'-GGGAGCCAAAAGGGTCAT-3'; Reverse 5'-GAGTCCTTCCACGATACCAA-3'. The PCR program was denaturation at 95°C for 5 s, annealing at 60°C for 30 s, elongation at 68°C for 20 s for 40 cycles. Each sample was performed in triplicates and fold changes were calculated using the relative quantification $2^{-\Delta \Delta CT}$ method. The tissues were divided into two groups according to the expression of SNHG6 (a fold-change ≥ 1 stands for high expression of SNHG6, whereas a fold-change < 1 represents low expression), high expression group (n=46) and low expression group (n=35).

Statistical Analysis

All statistical analyses were conducted using SPSS 17.0 (SPSS Inc., Chicago, IL, USA) or

GraphPad Prism 5.0 version (GraphPad Prism, La Jolla, CA, USA). Each experiment was performed independently in triplicate, and data are presented as mean \pm standard deviation (SD) of three independent experiments. The Student's t-test was used to compare the means of two groups. The correlation between SNHG6 expression and clinicopathological variables was calculated by x^2 -test. The Kaplan-Meier survival curve and Log-Rank test were used to plot the survival curve and compare differences between survival curves respectively. p-values less than 0.05 were considered statistically significant.


Results

SNHG6 Was Elevated in RCC Tissues

To understand the expression level of SNHG6, qRT-PCR was conducted in 81 RCC tissues and its paired normal control tissues. It was found that SNHG6 was markedly over-expressed in RCC tissues as compared with its paired normal control tissues (Figure 1), hinting that SNHG6 could be oncogenic in RCC.

Elevated SNHG6 Significantly Correlated with Tumor Progression and Lymph Node Metastasis in RCC

Subsequently, to learn about the clinicopathological significance of SNHG6 expression in RCC, detailed statistical analysis was performed with the clinicopathological variables available, including gender, age, T classification, Clinical stage, Lymph

Figure 1. Evaluation of SNHG6 expression by qRT-PCR in RCC and paired normal control tissues, with a total of 81 cases, respectively. Normal, a contraction of matched normal control tissues; RCC, renal cell carcinoma. Independent sample t-test was used to analyze the significant difference. p<0.001 compared with control group.

node metastasis, Fuhrman Grade, tumor size and pathological subtypes. It was shown that up-regulated SNHG6 significantly correlated with T classification (p = 0.033), clinical stage (p = 0.023), Fuhrman grade (p = 0.009), lymph node metastasis (p = 0.001) and tumor size (p = 0.012). No significant association was observed between up-regulation of SNHG6 and gender, age and pathological subtypes (Table I), indicating that SNHG6 was associated with tumor progression and lymph node metastasis in RCC.

Elevated SNHG6 was an Independent Prognostic Factor in RCC

After observing that up-regulated SNHG6 correlated with tumor progression and lymph node metastasis, we investigated whether or not there was an association between overall prognoses and SNHG6 expression in RCC. Kaplan-Meier survival curve was plotted on the basis of survival data. Analysis of Kaplan-Meier survival curve exhibited that there was an extremely significant difference of overall survival between patients with high expression of SNHG6 and patients with

low expression of SNHG6 (p<0.001, Figure 2), indicating that SNHG6 expression was associated with overall prognosis in RCC. Given that SNHG6 significantly correlated with T classification, clinical stage, Fuhrman grade, lymph node metastasis, and tumor size, we next performed the multivariate Cox regression analysis that is more stringent than univariate analysis. Results of multivariate analysis showed that among all the significant parameters obtained by univariate analysis, only SNHG6 expression was still significant (Table II), demonstrating that SNHG6 expression was an independent prognostic factor in RCC. It is noteworthy that there are strong tendencies toward the statistical significance of clinical stage (p = 0.067) and Fuhrman Grade (p=0.051), although no significant correlations can be observed (Table II).

Discussion

In the present study, LncRNA SNHG6 was shown to be remarkably up-regulated in RCC

Table 1. The clinicopathological significance of SNHG6 expression in RCC.

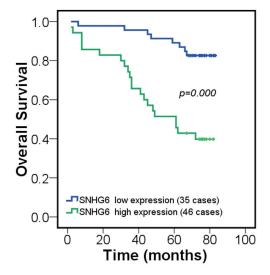

		SNHG6 ex	pression		
Clinicopathological parameters	Total	High (-, +)	Low (++)	χ^2	P
Renal carcinoma	81	46	35	32.044	0.000
Paired normal control	81	13	68		
Gender					
Male	41	26	15	1.485	0.266
Female	40	20	20		
Age (years)					
≤60	36	19	17	0.425	0.652
> 60	45	27	18		
T classification					
T ₁₋₂	28	11	17	5.343	0.033
T ₃₋₄	53	35	18		
Clinical stage					
Stage I-II	32	13	19	5.633	0.023
Stage III-IV	49	33	16		
Lymph node metastases					
NO NO	38	14	24	12.662	0.001
N1-2	43	32	11		
Fuhrman grade					
G1-2	31	10	21	7.491	0.009
G3-4	50	36	14		
Tumor diameter (cm)					
≤3	33	13	20	6.868	0.012
> 3	48	33	15		
Pathological subtypes					
Clear cell RCC	29	18	11	0.647	0.886
Papillary RCC	26	14	12		
Chromophobe RCC	12	6	6		

Table II. Univariate and multivariate Cox regression analysis of SNHG6 and survival in RCC.

	Univariate analysis			Multivariate analysis		
Clinical variables	HR	95% CI	P	HR	95% CI	p
Gender (Male vs. Female)	0.776	0.500-1.203	0.257			
Age (≥ 60 y vs. < 60 y) Pathological subtype	0.978	0.639-1.496	0.918			
(Clear cell vs. the remainder 3) Tumor diameter	0.784	0.512-1.199	0.261			
$(\geq 5 \text{ cm vs.} < 5 \text{ cm})$	1.413	0.913-2.185	0.121			
Clinical stage	1.855	0.960-3.587	0.046			
T stage (T1-2 vs. T3-4)	4.126	1.512-11.259	0.006			
Lymph node metastasis						
(N1-N2 vs. N0)	2.117	1.304-3.436	0.002			
Clinical stage (III-IV vs. II-I)	2.493	1.352-4.595	0.003	2.210	1.010-4.835	0.067
Fuhrman Grade (G1-2 vs. G3-4) SNHG6 expression	1.855	1.024-3.360	0.022	0.722	0.468-1.114	0.051
(high vs. low)	0.381	0.244-0.597	< 0.001	0.517	0.328-0.815	0.005

Abbreviation: HR, hazard ratio; CI, confidence interval.

tissues relative to normal controls, and elevated SNHG6 was displayed to be markedly associated with inferior overall survival. Elevated SNHG6 was also found to significantly correlate with T classification, clinical stage, Fuhrman grade, lymph node metastasis, and tumor size after detailed clinicopathological analysis. Moreover, the multivariate analysis showed that up-regulated SNHG6 was an independent prognostic factor in RCC. Recently, several excellent review articles¹³⁻¹⁵ have been available regarding the involvement of lncRNAs in RCC. Therefore, we focus on lncRNA SNHG6 as an example for its potential use in RCC. Factually, the first study on SNHG6 in carcinoma came from hepatocellular carcinoma^{8,16}, and it was then extended to other different types of carcinoma, including colon adenocarcinoma¹⁰, gastric carcinoma^{9,17}, glioma^{18,19}, breast carcinoma¹¹, esophageal squamous cell carcinoma²⁰, colorectal carcinoma^{12,21,22}, lung adenocarcinoma²³, and osteosarcoma²⁴. This strongly suggested that SNHG6 was oncogenic whose expression was independent of tissue or cancer type. Despite this, it has been little described in RCC and the expression and its clinicopathological significance remain to be investigated. Given this, our study was important since we firstly provided direct evidence regarding SNHG6 in RCC that elevated SNHG6 was an independent prognostic factor in RCC. Several lines of evidence revealed that SNHG6 works as an oncogene in the initiation, development, and progression of carcinomas. Chang et al²⁵ suggested that SNHG6 was

Figure 2. Kaplan-Meier survival analysis of SNHG6 expression. Of these 81 cases of RCC, the patients with high SNHG6 expression were 46, whereas the patients with low SNHG6 were 35 cases. Log-rank test was employed to analyze the significant difference.

up-regulated in hepatocellular carcinoma and up-regulation of SNHG6 was closely associated with histological grade, which partly supports our findings that elevated SNHG6 was shown to be significantly correlated with T classification, clinical stage, and Fuhrman grade in RCC. Concordantly, Cao et al⁸ also reported that high expression of SNHG6 closely correlated with tumor progression and shorter survival, which was

totally in line with our data obtained on prognostic analysis of SNHG6 expression in RCC. Moreover, Yan et al9 demonstrated in gastric carcinoma that over-expressed SNHG6 was significantly associated with invasion depth, lymph node metastasis, distant metastasis, TNM stage and poor prognosis, which was in agreement with our study in the case of the clinicopathological significance of over-expression of SNHG6. Nevertheless, Yan et al9 failed to analyze using multivariate Cox regression whether or not over-expressed SNHG6 could be used as an independent prognostic predictor. By contrast, in our investigation, using multivariate Cox regression, we did a more stringent analysis of some significant correlations preliminarily obtained by univariate analysis, exhibiting that SNHG6 expression can independently predict the prognosis in RCC. In spite of our first description of SNHG6 in RCC, there were still some limitations that deserve to be acknowledged from the outset. Firstly, further study with a larger sample size needs to be warranted; secondly, the possible working mechanism by which SNHG6 works in RCC should have been explored.

Conclusions

We showed that lncRNA SNHG6 was pronouncedly up-regulated in RCC tissues as compared with paired normal controls and that up-regulated SNHG6 significantly correlated with T classification, clinical stage, Fuhrman grade, lymph node metastasis and tumor size of RCC. Moreover, SNHG6 expression was an independent prognostic factor of RCC, fully supporting that lncRNA SNHG6 was a generic oncogenic lncRNA in carcinomas, regardless of types.

Conflict of Interest

The Authors declare that they have no conflict of interest.

References

- COURTHOD G, TUCCI M, DI MAIO M, SCAGLIOTTI GV. Papillary renal cell carcinoma: a review of the current therapeutic landscape. Crit Rev Oncol Hematol 2015; 96: 100-112.
- QI JJ, LIU YX, LIN L. High expression of long non-coding RNA ATB is associated with poor prognosis in patients with renal cell carcinoma. Eur Rev Med Pharmacol Sci 2017; 21: 2835-2839.

- Wang PQ, Wu YX, Zhong XD, Liu B, Qiao G. Prognostic significance of overexpressed long non-coding RNA TUG1 in patients with clear cell renal cell carcinoma. Eur Rev Med Pharmacol Sci 2017; 21: 82-86.
- 4) HE ZH, QIN XH, ZHANG XL, YI JW, HAN JY. Long noncoding RNA GIHCG is a potential diagnostic and prognostic biomarker and therapeutic target for renal cell carcinoma. Eur Rev Med Pharmacol Sci 2018; 22: 46-54.
- ZHOU HY, ZHU H, WU XY, CHEN XD, QIAO ZG, LING X, YAO XM, TANG JH. Expression and clinical significance of long-non-coding RNA GHET1 in pancreatic cancer. Eur Rev Med Pharmacol Sci 2017; 21: 5081-5088.
- GE J, WU XM, YANG XT, GAO JM, WANG F, YE KF. Role of long non-coding RNA SNHG1 in occurrence and progression of ovarian carcinoma. Eur Rev Med Pharmacol Sci 2018; 22: 329-335.
- LIAO Y, CHENG S, XIANG J, LUO C. IncRNA CCHE1 increased proliferation, metastasis and invasion of non-small lung cancer cells and predicted poor survival in non-small lung cancer patients. Eur Rev Med Pharmacol Sci 2018; 22: 1686-1692.
- 8) CAO C, ZHANG T, ZHANG D, XIE L, ZOU X, LEI L, WU D, LIU L. The long non-coding RNA, SNHG6-003, functions as a competing endogenous RNA to promote the progression of hepatocellular carcinoma. Oncogene 2017; 36: 1112-1122.
- YAN K, TIAN J, SHI W, XIA H, ZHU Y. LncRNA SNHG6 is associated with poor prognosis of gastric cancer and promotes cell proliferation and EMT through epigenetically silencing p27 and Sponging miR-101-3p. Cell Physiol Biochem 2017; 42: 999-1012.
- XUE W, LI J, WANG F, HAN P, LIU Y, CUI B. A long non-coding RNA expression signature to predict survival of patients with colon adenocarcinoma. Oncotarget 2017; 8: 101298-101308.
- 11) DING X, ZHANG Y, YANG H, MAO W, CHEN B, YANG S, DING X, ZOU D, MO W, HE X, ZHANG X. Long non-coding RNAs may serve as biomarkers in breast cancer combined with primary lung cancer. Oncotarget 2017; 8: 58210-58221.
- 12) Li Z, Qiu R, Qiu X, Tian T. SNHG6 promotes tumor growth via repression of P21 in colorectal cancer. Cell Physiol Biochem 2018; 49: 463-478.
- 13) SELES M, HUTTERER GC, KIESSLICH T, PUMMER K, BERINDAN-NEAGOE I, PERAKIS S, SCHWARZENBACHER D, STOTZ M, GERGER A, PICHLER M. Current insights into long non-coding RNAs in renal cell carcinoma. Int J Mol Sci 2016; 17: 573.
- 14) LIU X, HAO Y, YU W, YANG X, LUO X, ZHAO J, LI J, HU X, LI L. Long non-coding RNA emergence during renal cell carcinoma tumorigenesis. Cell Physiol Biochem 2018; 47: 735-746.
- 15) AL-ALI BM, RESS AL, GERGER A, PICHLER M. MicroR-NAs in renal cell carcinoma: implications for pathogenesis, diagnosis, prognosis and therapy. Anticancer Res 2012; 32: 3727-3732.

- 16) BIRGANI MT, HAJJARI M, SHAHRISA A, KHOSHNEVISAN A, SHOJA Z, MOTAHARI P, FARHANGI B. Long non-coding RNA SNHG6 as a potential biomarker for hepatocellular carcinoma. Pathol Oncol Res 2018; 24: 329-337.
- 17) LI Y, LI D, ZHAO M, HUANG S, ZHANG Q, LIN H, WANG W, LI K, LI Z, HUANG W, CHE Y, HUANG C. Long noncoding RNA SNHG6 regulates p21 expression via activation of the JNK pathway and regulation of EZH2 in gastric cancer cells. Life Sci 2018; 208: 295-304.
- CAI G, ZHU Q, YUAN L, LAN Q. LncRNA SNHG6 acts as a prognostic factor to regulate cell proliferation in glioma through targeting p21. Biomed Pharmacother 2018; 102: 452-457.
- MENG Q, YANG BY, LIU B, YANG JX, SUN Y. Long non-coding RNA SNHG6 promotes glioma tumorigenesis by sponging miR-101-3p. Int J Biol Markers 2018; 33: 148-155.
- FAN RH, GUO JN, YAN W, HUANG MD, ZHU CL, YIN YM, CHEN XF. Small nucleolar host gene 6 promotes esophageal squamous cell carcinoma cell proliferation and inhibits cell apoptosis. Oncol Lett 2018; 15: 6497-6502.

- 21) Li M, Bian Z, Yao S, Zhang J, Jin G, Wang X, Yin Y, Huang Z. Up-regulated expression of SNHG6 predicts poor prognosis in colorectal cancer. Pathol Res Pract 2018; 214: 784-789.
- 22) ZHU Y, XING Y, CHI F, SUN W, ZHANG Z, PIAO D. Long noncoding RNA SNHG6 promotes the progression of colorectal cancer through sponging miR-760 and activation of FOXC1. Onco Targets Ther 2018; 11: 5743-5752.
- 23) LIANG R, XIAO G, WANG M, LI X, LI Y, HUI Z, SUN X, OIN S, ZHANG B, DU N, LIU D, REN H. SNHG6 functions as a competing endogenous RNA to regulate E2F7 expression by sponging miR-26a-5p in lung adenocarcinoma. Biomed Pharmacother 2018; 107: 1434-1446.
- 24) RUAN J, ZHENG L, HU N, GUAN G, CHEN J, ZHOU X, LI M. Long noncoding RNA SNHG6 promotes osteosarcoma cell proliferation through regulating p21 and KLF2. Arch Biochem Biophys 2018; 646: 128-136.
- 25) CHANG L, YUAN Y, LI C, GUO T, QI H, XIAO Y, DONG X, LIU Z, LIU Q. Upregulation of SNHG6 regulates ZEB1 expression by competitively binding miR-101-3p and interacting with UPF1 in hepatocellular carcinoma. Cancer Lett 2016; 383: 183-194.