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Abstract. – OBJECTIVE: The aim of this study 
was to explore whether miR-128 could promote 
the apoptosis of glioma cells by targeting NIMA 
related kinase-2 (NEK2), thus participating in the 
occurrence and progression of glioma. 

PATIENTS AND METHODS: Expression lev-
els of miR-128 and NEK2 in glioma tissues and 
normal brain tissues were detected by quan-
titative Real Time-Polymerase Chain Reaction 
(qRT-PCR). The relationship between miR-128 
expression, tumor size and stage of glioma was 
analyzed. The effect of miR-128 on the apoptosis 
of glioma cells was detected by flow cytometry 
and Western blot, respectively. Dual-luciferase 
reporter gene assay was applied to verify the 
binding condition of miR-128 and NEK2. Mean-
while, rescue experiments were conducted to 
determine whether miR-128 could promote the 
apoptosis of glioma cells by targeting NEK2.

RESULTS: The expression level of miR-128 in 
glioma tissues was significantly lower than that 
of normal brain tissues. However, NEK2 was 
highly expressed in glioma tissues. MiR-128 ex-
pression was correlated to tumor size and ma-
lignant level of glioma, whereas not related to 
age and gender of glioma patients. Meanwhile, 
overexpression of miR-128 promoted the apop-
tosis of U87 cells, upregulated protein levels 
of cleaved Caspase-3 and BCL2-associated X 
(Bax), and downregulated B-cell lymphoma-2 
(Bcl-2). Dual-luciferase reporter gene assay indi-
cated that miR-128 directly bound to NEK2. Fur-
ther rescue experiments suggested that NEK2 
overexpression partially reversed the effect of 
miR-128 on the apoptosis of glioma cells. 

CONCLUSIONS: Downregulated miR-128 in-
hibited the apoptosis of glioma cells via target-
ing NEK2.
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Introduction

Glioma is the most common intracranial tu-
mor, accounting for over 50% of brain tumors. 

According to the differentiation degree and pro-
liferation potential of tumor cells, gliomas are 
classified into four pathological grades by the 
WHO classification system. Low-grade glio-
mas may develop local relapse and progress to 
high-grade gliomas1,2. Although huge progress 
has been achieved in surgical procedures and 
other adjuvant therapies for glioma, the mortali-
ty of these patients remains high. Even managed 
with the most aggressive treatments including 
surgery, radiotherapy, and chemotherapy, the 
two-year survival rate of low-grade astrocyto-
ma, degenerative astrocytoma, and polygenic 
glioblastoma is only 66%, 45%, and 9%, re-
spectively3.

MicroRNA (MiRNA) is a type of endogenous, 
single-stranded, non-coding RNA discovered 
in recent years, with 22 nucleotides in length. 
It’s reported that miRNA can recognize target 
mRNA to promote its degradation and/or inhi-
bit translation at the post-transcriptional level4. 
Many studies have shown that miRNAs parti-
cipate in the development of malignant tumors 
by regulating the expression of target genes5. For 
example, miR-21 promotes the invasion and me-
tastasis of colorectal cancer by downregulating 
programmed cell death gene 46. In non-meta-
static and non-invasive breast cancer, miR-10b 
promotes invasion and metastasis by acting on 
the homologous gene DIO7. Meanwhile, miR-143 
and miR-21 are served as tumor biomarkers for 
cervical cancer8,9. A large number of studies have 
demonstrated that miR-128 is lowly expressed in 
medulloblastoma9. However, miR-128 is highly 
expressed in acute lymphoblastic leukemia10 and 
letrozole-resistant breast cancer11. These results 
suggest that differentially expressed miR-128 
may exert different roles in tumor development. 

In the present work, we aimed to explore the 
specific role of miR-128 in glioma, which might 
provide new directions for further treatment of 
glioma. 
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Patients and Methods

Sample Collection
From July 2013 to August 2017, fresh glioma 

tissues and normal brain tissues of 40 gliomas 
patients undergoing surgery in the Third Af-
filiated Hospital of Soochow University were 
collected. All patients enrolled in this study 
were pathologically diagnosed as glioma. The 
clinic-pathological data of all patients were col-
lected, including sex, age, tumor size, and the 
number of tumors. Follow-up data were also 
collected in each patient. All patients did not 
receive any preoperative treatment, and no one 
had the family history of glioma. Signed written 
informed consent was obtained from each pa-
tient. The Ethics Committee of the Third Affi-
liated Hospital of Soochow University approved 
this investigation. All specimens were imme-
diately stored in liquid nitrogen.

Cell Culture and Transfection
One human fetal glial cell line (SVGP12) and 

three glioma cell lines (U87, U373, and T98) 
were obtained from American Type Culture Col-
lection (ATCC, Manassas, VA, USA). All cel-
ls were cultured in Dulbecco’s Modified Eagle 
Medium (DMEM; Gibco, Rockville, MD, USA) 
containing 10% fetal bovine serum (FBS; Gibco, 
Rockville, MD, USA), 1000 U/mL penicillin and 
100 µg/mL streptomycin. The cells were maintai-
ned in a 37°C, 5% CO2 incubator. For cell tran-
sfection, glioma cells were first seeded in 6-well 
plates for overnight culture. After cell density 
reached 70-80%, the cells were transfected with 
corresponding plasmid in accordance with the 
instructions of Lipofectamine 2000 (Invitrogen, 
Carlsbad, CA, USA). 

RNA Extraction
1 mL of TRIzol reagent (Invitrogen, Carl-

sbad, CA, USA) and chloroform were added 
into cells for gentle mixture. After centrifu-
gation (12000 rpm/min) at 4°C for 10 min and 
isopropanol incubation, the precipitant was wa-
shed with 75% ethanol, followed by air dry at 
room temperature. Total RNA was finally dis-
solved in diethyl pyrocarbonate (DEPC) water. 
The concentration of RNA was determined by a 
spectrophotometer, and those with A260/A280 
of 1.8-2.1 were considered as high purity. All 
RNA samples were stored at -80°C for subse-
quent experiments. 

Quantitative Real-Time Fluorescence 
Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted from the tissues and 
cells using the TRIzol kit (Invitrogen, Carlsbad, 
CA, USA), respectively, followed by measure-
ment of RNA concentration using an ultravio-
let spectrophotometer (Hitachi, Tokyo, Japan). 
The complementary Deoxyribose Nucleic Acid 
(cDNA) was synthesized according to the in-
structions of the PrimeScriptTM RT MasterMix 
kit (Invitrogen, Carlsbad, CA, USA). QRT-PCR 
reaction conditions were as follows: 94°C for 30 
s, 55°C for 30 s, and 72°C for 90 s, for a total 
of 40 cycles. The relative expression level of 
the target gene was expressed by 2-ΔΔCt. Primers 
used in the study were as follows: MiR-128, F: 
TCACAGTGAACCGGTCTCTTT, R: GAGC-
CATAGTCAAGTTCTCCA; U6, F: CTCGCT-
TCGGCAGCAGCACATATA, R: AAATATG-
GAACGCTTCACGA; NEK2 (NIMA Related 
Kinase 2), F: TGCTTCGTGAACTGAAACA-
TCC, R: CCAGAGTCAACTGAGTCATCACT; 
Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH), F: AGCCACATCGCTCAGACAC, R: 
GCCCAATACGACCAAATCC. 

Dual-Luciferase Reporter Gene Assay
The 3’-UTR sequence of NEK2 was amplified 

by PCR, followed by primer insertion in the re-
striction sites of Xho I and Not I. The amplified 
primers were ligated to psiCHECK-2 vector for 
wild-type NEK2 (NEK2-WT) and mutant-type 
NEK2 (NEK2-MUT) construction. Luciferase 
activity of glioma cells was detected after cell 
transfection. 

Western Blot
Transfected cells were lysed with cell lysis 

buffer, followed by shaken on ice for 30 min and 
centrifugation at 14,000×g, at 4°C for 15 min. 
The concentration of total proteins was deter-
mined by the bicinchoninic acid (BCA) protein 
assay kit (Pierce Biotechnology, Rockford, IL, 
USA). Extracted proteins were separated by 
sodium dodecyl sulphate-polyacrylamide gel 
electrophoresis (SDS-PAGE) and transferred 
onto polyvinylidene difluoride (PVDF) mem-
branes (Millipore, Billerica, MA, USA). After 
blocking with 5% skim milk at room tempe-
rature for 2 h, the membranes were incubated 
with primary antibodies at 4°C overnight. After 
washing three times with Tris-Buffered Saline 
with Tween 20 (TBST) (Beyotime, Shanghai, 
China), the membranes were incubated with 
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corresponding secondary antibody at room 
temperature for 1-2 h. Immunoreactive bands 
were exposed by enhanced chemiluminescence 
(ECL) method (Thermo Fisher Scientific, Wal-
tham, MA, USA).

Cell Apoptosis 
Transfected cells were collected and washed 

twice with phosphate-buffered saline (PBS; 
Beyotime, Shanghai, China). Then, the cells 
were res-uspended in 240 µL l × binding buffer, 
and the density of cells was adjusted to 2 × 105/
mL. Subsequently, the cells were incubated with 
5 µL Annexin V-APC and 10 µL 7-AAD for 30 
min in the dark. Transfected cells were further 
diluted in 260 µL l × binding buffer. Finally, 
cell apoptosis was detected by flow cytometry 
(Becton-Dickinson, Franklin Lakes, NJ, USA), 
and FACS express version 3 software (BD Bio-
sciences, Franklin Lakes, NJ, USA) was used for 
analysis. 

Statistical Analysis
Statistical Product and Service Solutions 

(SPSS) 18.0 Software (SPSS Inc., Chicago, IL, 
USA) was used for all statistical analysis. Data 
were expressed as mean ± standard deviation. 
The t-test was used to compare the difference 
between the two groups. p<0.05 was considered 
statistically significant.

Results 

MiR-128 Was Lowly Expressed in Glioma 
Expression levels of miR-128 and NEK2 in 

40 glioma tissues and 18 normal brain tissues 
were detected by qRT-PCR. Results showed that 
the expression of miR-128 in glioma tissues was 
significantly lower than that of normal brain 
tissues, whereas NEK2 was highly expressed 
in glioma tissues (Figure 1A and 1B). Subse-
quently, we analyzed the relationship between 
clinic-pathological data and miR-128 expression 
in glioma patients. Results demonstrated that 
larger tumor size and higher tumor stage were 
found in glioma patients with lower expression 
level of miR-128 than those with higher level of 
miR-128 (Table I).

Overexpressed MiR-128 Promoted the 
Apoptosis of Glioma Cells

MiR-128 expression was markedly decrea-
sed in U87, U373, and T98 cells than that of 
SVGP12 cells (Figure 2A). Subsequently, U87 
cells were selected for the following in vitro 
experiments. We first verified the transfection 
efficiency of miR-128 mimics and miR-128 
inhibitor (Figure 2B). Cell apoptosis was de-
tected by flow cytometry and Western blot, re-
spectively. Flow cytometry results demonstra-
ted that overexpression promoted the apoptosis 

Table I. The correlation between microRNA-128 expression and pathological characteristics in glioma patients with glioma 
(n = 40).

	 lncRNA NBAT1 expression	  

Clinicopathologic features	 Number of cases	 Low (n=20)	 High (n=20)	 p-value

Age (years)				    0.7491
	 <50	 23	 11	 12	
	 ≥50	 17	 9	 8	
Gender				    0.7515
	 Male	 19	 10	 9	
	 Female	 21	 10	 11	
Tumor size				    0.0267*
	 <5 cm	 21	 7	 14	
	 ≥ 5 cm	 19	 13	 6	
WHO stage				    0.0004*
	 I-II	 21	 6	 15	
III-IV	 19	 14	 5	

*p<0.05
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of U87 cells (Figure 2C and 2D). Meanwhile, 
miR-128 overexpression upregulated cleaved 
Caspase-3 and BCL2-associated X (Bax), and 
downregulated B-cell lymphoma-2 (Bcl-2) in 
U87 cells (Figure 2E and 2F). 

MiR-128 Directly Regulated NEK2 
Expression

According to TargetScan, miRDB, and mi-
croRNA websites, NEK2 was predicted as the 
target gene of miR-128 (Figure 3A). Lucifera-
se Reporter Assays was used to further verify 
the binding condition of miR-128 and NEK2. 
The results of Luciferase Reporter Assays indi-
cated that miRNA-128 mimics transfection re-
markably downregulated luciferase activity of 
NEK2-WT. However, no significant change in 
luciferase activity of NEK2-MUT was found, 
indicating that miR-128 directly bound to NEK2 
(Figure 3B). To further explore the interaction 
between miR-128 and NEK2, we detected their 
expression levels by Western blot, respectively. 
Results confirmed that NEK2 expression was 
negatively regulated by miR-128 (Figure 3C). 
Moreover, the effect of miR-128 on cell apopto-
sis could be reversed by NEK2 overexpression 
(Figure 3D).

Discussion 

Glioma is the most common intracranial ma-
lignancy with highest incidence among central 
nervous system diseases. Meanwhile, the thera-
peutic efficiency of glioma is poor, especially 

for high-grade glioma with rapid postoperative 
recurrence12. Therefore, it is of great significan-
ce to investigate the potential mechanism of 
glioma, thereby improving clinical outcomes. 
Apoptosis is an active process controlled by 
multiple gene expression programs. It’s known 
to all that apoptosis is greatly involved in the 
evolution of organisms, stability of internal 
environment, and development of multiple sy-
stems. Abnormal cell apoptosis may lead to 
the occurrence and progression of malignant 
tumors. MiRNAs participate in the process of 
tumorigenesis via regulating anti-apoptotic ge-
nes. For example, miR-29 regulates the anti-a-
poptotic gene Mcl-113. MiR-3414, miR-15, and 
miR-16 served as tumor-suppressor genes via 
acting on Bcl-215. P53 mutation or 13q14 dele-
tion inhibits the expression of anti-apoptotic 
genes and apoptosis of tumor cells. MiR-128 
is highly expressed in benign tumors, which is 
also reported to be involved in the development 
of different stages of prostate cancer via pro-
moting cell adhesion and reducing invasive abi-
lity16. In this study, we found that miR-128 was 
significantly lowly expressed in glioma tissues. 
Flow cytometry results showed that miR-128 
overexpression could promote the apoptosis of 
U87 cells. Moreover, Western blot indicated 
that the protein expression levels of cleaved Ca-
spase-3, Bcl-2, and Bax could be regulated by 
miR-128.

NEK2 is a member of the NI-MA-related seri-
ne/threonine protein kinase family, which is clo-
sely related to cell mitosis. The expression level 
of NEK2 reaches the peak in the S-G2 phase17. 

Figure 1. MiR-128 was lowly expressed in glioma. Expression levels of miR-128 (A) and NEK2 (B) in 40 glioma tissues and 
18 normal brain tissues.
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Moreover, NEK2 dysregulation may lead to ab-
normal formation and/or dysfunction of the mi-
totic metaphase, formation of abnormal centroso-
me, unipolar spindle, and aneuploid cells18. These 
pathological alterations have been showed to be 
closely related to tumorigenesis. Some studies19-22 
have found that NEK2 expression is abnormally 
elevated in Ewing’s sarcoma, diffuse large B lym-

phoma, breast cancer, prostate cancer, cholangio-
carcinoma, and testicular seminoma. However, 
no reports have clarified whether NEK2 is dif-
ferentially expressed in glioma. In this study, we 
found that NEK2 was a target gene of miR-128 
by dual-luciferase reporter gene assay. QRT-PCR 
results indicated that NEK2 was highly expres-
sed in glioma. In addition, rescue experiments 

Figure 2. Overexpressed miR-128 promoted the apoptosis of glioma cells. A, MiR-128 was downregulated in U87, U373, and 
T98 cells than that of SVGP12 cells. B, Transfection efficiency of miR-128 mimics and miR-128 inhibitor was first verified. 
C, D, Flow cytometry demonstrated that overexpression of miR-128 promoted the apoptosis of U87 cells. E, F, MiR-128 ove-
rexpression upregulated cleaved Caspase-3 and Bax, and downregulated Bcl-2.
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showed that NEK2 could reverse increased apop-
tosis caused by miR-128 overexpression.

Conclusions

We revealed that the ownregulated miR-128 
inhibited the apoptosis of glioma cells via targe-
ting NEK2, thus participating in the incidence 
and progression of glioma. 
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