Lefter to the Editor

The radiation oncologist point of view on "Predictive value of 18F-FDG PET/CT on survival in locally advanced rectal cancer after neoadjuvant chemoradiation"

Dear Editor,

In the recent paper "Predictive value of 18F-FDG PET/CT on survival in locally advanced rectal cancer after neoadjuvant chemoradiation" Niccoli Asabella et al¹ evaluate the prognostic value of 18-FDG PET/CT in terms of survival in a series of 58 patients with locally advanced rectal cancer (LARC) patients who underwent to surgery preceded by neoadjuvant chemo-radiotherapy (nCRT). The correlation between overall survival (OS) and disease-free survival (DFS) with pathological staging ((y)pTNM and TRG) was also investigated.

Niccoli Asabella et al¹ "highlight the predictive and prognostic potential role of 18F-FDG PET/CT to personalize decision in the selective risk-adapted treatment strategy, and to schedule the correct follow-up approach". We have appreciated the study; so, we offer here some considerations and comments to the discussion, focused on the "Radiation oncologist point of view". According to the NCCN Guidelines Version 3.2018, PET scan is not indicated for preoperative staging of rectal cancer². It should only be used to evaluate an equivocal finding, or in patients with a strong contraindication to intravenous (IV) contrast. However, 18-FDG PET/CT is being investigated for its ability to accurately determine response to neoadjuvant treatment, to detect distant metastases that would change the treatment strategy, and to plan the surgical approach. PET/TC can be applied in many other fields. It may be considered in select cases of oligometastatic patients if a surgical cure of M1 disease is feasible. Furthermore, in the post-treatment surveillance scenario with an elevated CEA and with negative CT scans, 18F-FDG PET/TC can be considered indicated thanks to the high sensitivity and a specificity rate (about 88%) for the detection of recurrence². According to the last Italian Association of Radiation Oncology (AIRO) Guidelines, PET/CT may be used for the definition of occult synchronous tumors or M1. From our point of view, it can also be useful for the delineation of the Biological Target Volume, the Gross Tumor or Nodal Volume and for the RT planning, especially using sophisticated technique as Intensity Modulated RT^{3,4}.

Radiation Oncologists are particularly interested in the improvements image registration, fusion algorithms, evaluation strategies of autosegmentation approaches for metabolic, biological and imaging PET data in order to reduce the inter/intraobserver variability and to permit adaptive planning RT treatments⁵⁻⁷. Finally, PET/CT offers a good performance in the early evaluation of the response to radio-chemotherapy (RTCHT) treatment. As underscored in the paper by Niccoli Asabella et al¹, pure morphological imaging techniques alone may not be sufficient to predict treatment response, because often functional tissue changes precede anatomical changes. In the last decade five reviews have been published in the literature⁸⁻¹². All these reviews conclude that data on the role of 18F-FDG PET/CT in response prediction before, during and after RTCT for locally advanced rectal cancer are emerging.

In general, a SUV (Standardized Uptake Value) decrease is associated with better response to RCT; moreover the early changes in FDG-uptake seem promising. Multicenter studies, using large patient populations, are needed to validate the role of functional imaging in order to identify those patients who may benefit from a less or a more aggressive therapeutic approach after RTCHT. Up to now, 18F-FDG PET/CT is not accurate enough to safely select patients for organ

preservation⁸⁻¹². Future research must focus on the integration of functional imaging with clinical data and molecular biomarkers.

In 2014 Van Stiphout Ruud et al¹³ have detailed and validated a "Nomogram predicting response after chemoradiotherapy in rectal cancer using sequential PETCT imaging" in a multicentric prospective study (Thunder Trial). This nomogram can be used to distinguish three types of patients: complete responders, good responders and non-responders, for which respectively a wait-and-see policy, radiotherapy boost and additional chemotherapy can be administered. This personalized treatment approach is expected to promote more complete responders, to reduce the number of surgical procedures and related complications, and to avoid unnecessary toxicities¹³. Extremely promising and exciting is to study and assess the role of the 18F-FDG PET/CT Quantitative Imaging (QI) in Radiation Oncology and the potential of radiomic-based phenotyping in precision medicine^{14,15}. The most common applications for these tools are for treatment planning, risk stratification, quidance of dose escalation, and characterization of post-treatment effects. By collaborating across disciplines, the 18F-FDG PET/CT QI could be integrated into the radiation oncology clinical workflow, including identification and standardization of clinically significant QI parameters and optimization of existing imaging methods for RT planning and response assessment. From the Radiation Oncologist point of view, these data, when validated, may be used to introduce the concept of "Sequential 18F-FDG PET/CT based RTCHT neoadjuvant treatment" in rectal cancer. In conclusion, these important investigations are necessary for the robust integration of individual patients' anatomic, biological, physiological, and genomic imaging characteristics into radiation oncology decision-making and treatment design, thereby enabling truly personalized cancer care. Then, we thank the editorial board and the Authors of the study for giving us data and considerations that, if confirmed, could become very useful in the extensive oncological vision and in the multidisciplinary clinical practice.

Conflict of interest

The authors declare no conflicts of interest.

References

- 1) NICCOLI ASABELLA A, SIMONE M, BALLINI A, ALTINI C, FERRARI C, LAVELLI V, DE LUCA R, INCHINGOLO F, RUBINI G. Predictive value of 18F-FDG PET/CT on survival in locally advanced rectal cancer after neoadjuvant chemoradiation. Eur Rev Med Pharmacol Sci 2018; 22: 8227-8236.
- 2) NATIONAL COMPREHENSIVE CANCER NETWORK (NCCN) Clinical Pratice Guidelines version 03-2018.
- 3) FIORICA F, CARTEI F, CARAU B, BERRETTA S, SPARTÀ D, TIRELLI U, SANTANGELO A, MAUGERI D, LUCA S, LEOTTA C, SORACE R, BERRETTA M. Adjuvant radiotherapy on older and oldest elderly rectal cancer patients. Arch Gerontol Geriatr 2009; 49: 54-59.
- 4) Gambacorta MA, Valentini V. Should we tailor the delineation of pelvic structures according to tumor presentation? In Valentini V Schmoll HJ, van de Velde CJH: Multidisciplinary management of rectal cancer. Spinger International Publishing, 2012.
- 5) Whaley JT, Fernandes AT, Robert Sackmann R, Plastaras JP, Teo BK, Grover S, Perini RF, Metz JM, Pryma DA, Apisarn-thanarax S. Clinical utility of integrated positron emission tomography/computed tomography imaging in the clinical management and radiation treatment planning of locally advanced rectal cancer. Pract Radiat Oncol 2014; 4: 226-232.
- 6) BROCK KK, MUTIC S, McNUTT TR, LI HH, KESSLER ML. Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM radiation therapy committee task group no. 132. Med Phys 2017; 44: e43-e76.
- 7) HATT M, LEE JA, SCHMIDTLEIN CR, NAOA IE, CALDWELL C, DE BERNARDI E, LU W, DAS S, GEETS X, GREGOIRE V, JERAJ R, MACMANUS MP, MAWLAWI OR, NESTLE U, PUGACHEV AB, SCHÖDER H, SHEPHERD T, SPEZI E, VISVIKIS D, ZAIDI H, KIROV AS. Classification and evaluation strategies of auto-segmentation approaches for PET: report of AAPM task group No. 211. Med Phys 2017; 44: 1-42.
- 8) Krug B, Crott R, de Canniere L, D'Hondt L, Vander Borght T. A systematic review of the predictive value of 18F-fluoro-2-deoxyglucose positron emission tomography on survival in locally advanced rectal cancer after neoadjuvant chemoradiation. Colorectal Dis 2013; 15: 627-633.
- 9) Joye I, Deroose CM, Vandecaveye V, Haustermans K. The role of diffusion-weighted MRI and 18F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol 2014; 113: 158-165.

- 10) Memon S, Linch AC, Akhurst T, Ngan SY, Warrier SK, Michael M, Heriot AG. Systematic review of FDG-PET prediction of complete pathological response and survival in rectal cancer. Ann Surg Oncol 2014; 21: 3598-3607.
- 11) Brush J, Boyd K, Chappel F, Crawford F, Dozier M, Fenwick E, Glanville J, McIntosh H, Renehan A, Weller D, Dun-Lop M. The value of FDG positron emission tomography/computerised tomography (PET/CT) in pre-operative staging of colorectal cancer: a systematic review. Health Technol Assess 2011; 15: 1-192.
- 12) ZHANG C, TONG J, SUN X, LIU J, WANG Y, HUANG G. 18F-FDG-PET evaluation of treatment response to neo-adjuvant therapy in patients with locally advanced rectal cancer: a meta-analysis. Int J Cancer 2012; 131: 2604-2661.
- 13) Van Stiphout Ruud GPM, Valentini V, Buijsen J, Lammering G, Meldolesi E, van Soest J, Leccisotti L, Giordano A, Gambacorta MA, Dekker A, Lambin P. Nomogram predicting response after chemoradiotherapy in rectal cancer using sequential PETCT imaging: a multicentric prospective study with external validation. Radiother Oncol 2014; 113: 215-222.
- 14) Aerts HJ. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2016; 2: 1636-1642.
- 15) LOVINFOSSE P, POLUS M, VAN DAELE D, MARTINIVE P, DAENEN F, HATT M, VISVIKIS D, KOOPMANSCH B, LAMBERT F, COIMBRA C, SEIDEL L, ALBERT A, DELVENNE P, HUSTINX R. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging 2017; 45: 365-375.

M.A. Signor, G. Parisi, G. Chiaulon, M. Trovo

Department of Radiation Oncology, Azienda Sanitaria Universitaria Integrata UD, Udine, Italy