Curcumin prevents experimental autoimmune encephalomyelitis by inhibiting proliferation and effector CD4+ T cell activation

J.-Q. LIU¹, Y.-Q. YAN¹, J.-T. LIU², Y.-R. WANG³, X. WANG⁴

Abstract. - OBJECTIVE: Multiple sclerosis (MS) has affected over 2 million people worldwide and it is thought to be initiated by the activated central nervous system (CNS). Reactive CD4+ T cells (TH1, TH17, and Treg phenotypes) are crucial to MS. The TH1 phenotype can promote major histocompatibility complex-II expression and TH17 can induce inflammatory gene expression. Curcumin, a yellow pigment, is found in turmeric rhizomes and has been reported to have various activities, such as anti-proliferative and anti-inflammatory activity. Curcumin has great potential in MS treatment. Little is known about the effect of curcumin on MS. Therefore, we investigated the effect of curcumin on MS, especially on CD4+ T cells.

MATERIALS AND METHODS: CD4+ T cells (TH1, TH17, and Treg cells) were cultured in Iscove's Modified Dulbecco's Medium (IMDM) medium. Cell proliferation was evaluated by MTT assay. The ability of individual CD4+ T cells to aggregate into viable colony clusters was assessed by clonogenic survival assay. Apoptosis of CD4+ T cells was determined by flow cytometry. The expression of Bcl-2, Bax, and active caspase-3 was detected by Western blotting. The effect of curcumin on the activation molecule was also evaluated by flow cytometry.

RESULTS: MTT assay showed that curcumin significantly inhibited CD4+ T cell viability. Furthermore, TH1, TH17, and Treg all showed a dose-dependent but not time-dependent. The results of clonogenic survival assay revealed that curcumin markedly decreased the colony formation ability of CD4+ T cells. Flow cytometry results indicated that curcumin-induced remarkable apoptosis in TH1, TH17, and Treg cells. After treatment with curcumin, the expression of Bcl-2 was decreased and that of Bax and active caspase-3 was increased. Western blot-

ting results also showed that curcumin-induced apoptosis in CD4+ T cells. Hence, our results demonstrated that curcumin inhibited CD4+ T cell proliferation via inducing apoptosis in CD4+ T cells. Meanwhile, flow cytometry results also showed that curcumin directly inhibited CD4+ T cell activation.

CONCLUSIONS: Curcumin could inhibit CD4+ T cell proliferation and effector cell activation.

Key Words:

Curcumin, Proliferation, CD4+ T, Multiple sclerosis, Apoptosis.

Introduction

Multiple sclerosis (MS), an inflammatory demyelinating disorder of the central nervous system (CNS), has affected over 2 million people worldwide1. MS is dominantly diagnosed at an average age of 30 years and thought to be initiated by activated CNS^{2,3}. CD4⁺ T cells are crucial to MS. In MS, reactive CD4⁺T cells that acquire the TH1, TH17, and Treg phenotypes always appear at the periphery⁴. The effector for phenotype is dictated by the composition and concentration of cytokines in which they were primed. The TH1 effector develops in the presence of the cytokines, including interleukin (IL)-2 and IL-12. TH17 is driven by the cytokine, including IL-6 and transforming growth factor-beta 1 (TGF-β1). Treg cells are driven by the cytokines IL-2 and IL-10⁵⁻⁷. In MS, the TH1 phenotype is considered to activate macrophage function and promote major histocompatibility complex (MHC)-II expression. The

¹Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China

²Department of Breast and Thyroid Surgery, Dalian Central Hospital, Dalian, China

³Department of Cardiology, Affiliated People's Hospital, Shanxi Medical University, Taiyuan, China

⁴Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China

TH17 phenotype is thought to induce inflammatory gene expression and enhance peripheral TH17 migration. Treg cells are thought to be related to the occurrence of autoimmune diseases and their abnormal expression can lead to autoimmune diseases. Animal models of experimental autoimmune encephalomyelitis (EAE) have widely been used for MS. It is necessary to identify effective agents to inhibit cell proliferation and induce cell death in CD4+T cells for MS treatment.

Curcumin, a yellow pigment, is found in turmeric rhizomes. Curcumin has no cytotoxic effects on healthy individuals and exhibits various properties, including anti-proliferative, anti-oxidant, analgesic, anti-inflammatory, antiseptic activities, and so on⁹. Curcumin has also been reported to induce apoptosis in malignant cells¹⁰. Meanwhile, previous studies have found that MS is driven by reactive CD4⁺T cells (TH1, TH17, and Treg)^{11,12}. Apoptosis, a programmed cell death process, is very important in embryonic development and tissue homeostasis¹³. The Bcl-2 protein family is a central regulator of apoptosis and plays a role in controlling mitochondrial membrane potential. Bcl-2 and Bax are two important members of the Bcl-2 protein family. Bcl-2 is an anti-apoptotic protein and Bax is a pro-apoptotic protein^{14,15}. Caspases are a family of cysteine proteases that respond to pro-apoptotic signals. Caspase-3 is one member of the caspase family and modulates the expression of some enzymes that participate in DNA fragmentation^{16,17}. It is surprising that little is known about the effect of curcumin on CD4⁺T cells. Curcumin has great potential in MS treatment. The activation molecule, IL-2 receptor-α chain CD25, and CD44 have been reported to be important in cell proliferation¹⁸. Hence, the expression of both CD25 and CD44 was explored after treatment with curcumin. In this work, we investigated the effect of curcumin on CD4⁺ T cells and whether the effect is related to apoptosis. Meanwhile, the effect of curcumin on the expression of CD25 and CD44 was also evaluated. The results showed that curcumin significantly inhibited CD4⁺ T cell viability and the ability of individual cells to aggregate into viable colony clusters by inducing apoptosis, and suppressed CD4⁺ T cell activation.

Materials and Methods

Materials

Iscove's Modified Dulbecco's Medium (IMDM) and fetal bovine serum (FBS) were purchased from

Gibco (Grand Island, NY, USA). Dimethylsulfoxide (DMSO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Hoechst 33342, lysis buffer, and bicinchoninic acid (BCA) protein kit were from Beyotime Institute of Biotechnology (Shanghai, China). The enhanced chemiluminescence (ECL) kit and Annexin V-FITC (fluorescein isothiocyanate) apoptosis detection kit were obtained from Pharmingen-Becton Dickinson (San Diego, CA, USA). The mouse CD4⁺ T cell isolation kit was from Stem Cell Technologies (Vancouver, Canada). The plate-bound α -CD3 and soluble α-CD28 were from BD Pharmingen (San Jose, CA, USA). IL-2, IL-12, IL-6, and TGF-β1 antibodies were from PeproTech (Rocky Hill, NJ, USA). Antibodies against α -IL-4 and α -IFN γ were from BioLegend (San Diego, CA, USA). IL-23 and IL-1β were purchased from R&D Systems (Minneapolis, MN, USA).

Mice

Mice, which have a transgenic T-cell receptor for MOG₃₅₋₅₅ peptide (2D2 mice) were purchased from Harlan Laboratories and fed in our animal laboratory. Female C57BL/6 mice were obtained from the National Cancer Institute (NCI). Female mice were used for experiments. All animal studies were approved by the Animal Care and Use Committee of the Shanxi Medical University of Medicine.

T Cell Activation and Culture In Vitro

Female C57BL/6 mice were fed for 6-8 weeks. Spleens were harvested and naïve CD4⁺ T cells were isolated using the mouse CD4⁺ T cell isolation kit. For activation, CD4⁺ T cells were plated at a density of 2×10^5 cells/well in flat-bottomed 24-well plates. CD4⁺ T cells were maintained in IMDM containing plate-bound α -CD3 (5 μ g/mL) and soluble α -CD28 (1 $\mu g/mL$). For TH1 polarization, cells were treated with IL-2 (5 ng/mL), IL-12 (10 ng/mL), and α -IL-4 (2.5 ng/mL). For TH17 generation, cells were treated with α -IL-4 (2.5 ng/mL), α-IFNγ (2.5 ng/mL), IL-6 (20 ng/ mL), TGF-β1 (2.5 ng/mL), IL-23 (10 ng/mL), and IL-1 β (10 ng/mL). For Treg generation, cells were treated with TGF-β1 (10 ng/mL), α-IL-4 (2.5 ng/ mL), and α -IFN γ (2.5 ng/mL).

MTT Assay

TH0, TH1, TH17, and Treg were seeded at a density of 6000 cells/well in 96-well plates. After 24 h, cells were treated with curcumin (5, 10,

20, 40, and 60 μ M) for 24 h or 40 μ M curcumin for 24, 48, and 72 h. The control group was Phosphate-Buffered Saline (PBS) in IMDM. Then, MTT solution (20 μ L, 0.5 mg/mL in PBS) was added to each well and the plates were incubated at 37°C for 4 h. Finally, the medium was removed and DMSO (150 μ L) was added to each well for 10 min to dissolve the purple formazan crystals. Absorbance was measured at 570 nm using a microplate reader. Cell viability was determined based on the following formula: A_{570} Experiment/ A_{570} Control \times 100%. All assays were performed in three independent experiments.

Clonogenic Survival Assay

TH0, TH1, TH17, and Treg cells were counted and plated in 12-well plates (3000 cells/well). After 24 h, the cells were treated with curcumin (10 μ M) for 7 d. Then, cells were fixed with methyl alcohol (200 μ L, -20°C) for 5 min at 4°C and stained with 0.1% crystal violet (200 μ L). The plates were observed under a stereomicroscope (Olympus SZX16; Tokyo, Japan). The numbers of colonies (more than 50 cells/colony) were counted in 10 different microscopic fields. The colony formation rate was calculated based on the following formula: Colony formation rate = (Colonies/Seeded cells) × 100%.

Flow Cytometric Analysis

The apoptosis of TH0, TH1, TH17, and Treg cells induced by curcumin was determined by flow cytometry using the Annexin V-FITC and propidium iodide (PI) staining method. In brief, cells were treated with curcumin (10 and 20 μM) for 24 h. The cells were trypsinized and washed with cold PBS. Then, cells were re-suspended in binding buffer containing Annexin V-FITC (5 μL) and PI (2.5 μL) or CD25-PE (5 μL) and CD44-FITC (5 μL). The cell suspension was cultured in the dark for 30 min. Finally, cells were analyzed using the FACSort flow cytometer (Becton Dickinson, San Diego, CA, USA).

Western Blotting

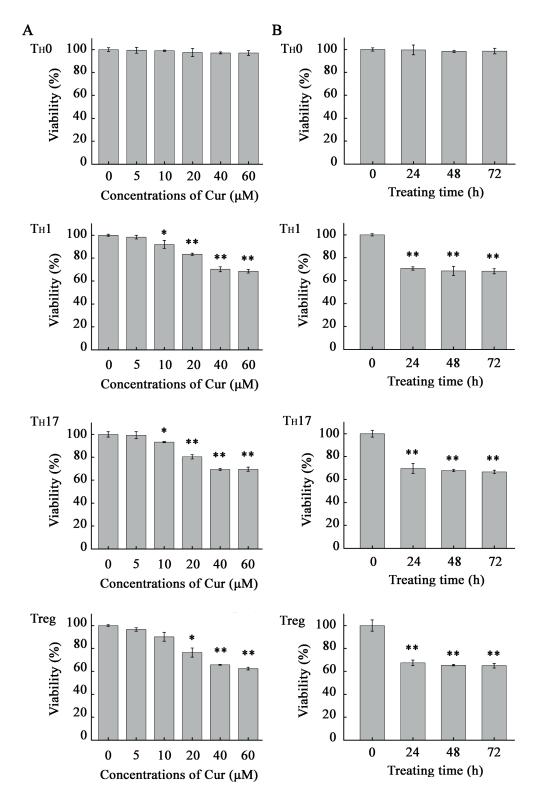
The treated cells were lysed with lysis buffer containing 1% phenylmethylsulphonyl fluoride for 10 min and centrifuged at 13000 rpm to precipitate the insoluble material at 4°C for 15 min. An equal amount of protein (60 µg) was separated on 12% sodium dodecyl sulphate-polyacrylamide gels and then transferred to polyvinylidene difluoride (PVDF) membranes (Roche, Basel, Switzerland). The membrane was blocked in Tris-Buff-

ered Saline (TBS) containing 5% milk and Tween 20 for 1 h. Then, the membrane was incubated with anti-Bcl-2 (1:500), anti-Bax (1:500), and anti-active caspase-3 (1:500) antibodies overnight at 4°C. Next, the membrane was washed three times in TBS and then incubated with secondary antibodies (1:1000) for 1 h. Finally, the protein band was detected by ECL.

Statistical Analysis

The results were analyzed by Statistical Product and Service Solutions (SPSS) 17.0 software (SPSS Inc., Chicago, IL, USA). All data were presented as the mean \pm standard deviation (SD) and analyzed by one-way analysis of variance (ANO-VA) with Tukey's multiple comparison tests. A p-value less than 0.05 (p<0.05) was considered statistically significant.

Results


Curcumin Inhibits CD4+ T Cell Proliferation

Curcumin has been reported to exhibit anti-proliferative activity⁹. To detect the effect of curcumin on CD4⁺ T cell viability, TH0, TH1, TH17, and Treg cells were seeded in 96-well plates. Then, cells were treated with curcumin (5, 10, 20, 40, and 60 µM) for 24 h or 40 µM curcumin for 24, 48, and 72 h and stained with MTT solution. Absorbance was measured using a microplate reader. As indicated in Figure 1, curcumin treatment significantly inhibited CD4⁺ T cell viability. Furthermore, TH1, TH17, and Treg cells all showed a dose-dependent decrease in cell viability, and Treg cells were more insensitive to the indicated concentration. The effect of curcumin on CD4⁺ T cell viability was not time-dependent.

Meanwhile, the effect of curcumin on the ability of individual CD4⁺ T cells to aggregate into viable colony clusters was evaluated by clonogenic survival assay. TH0, TH1, TH17, and Treg cells were treated with curcumin (10 μM) for 7 d and then stained with crystal violet. The results showed that curcumin markedly decreased the colony formation ability of CD4⁺ T cells (Figure 2). These results demonstrate that curcumin decreases CD4⁺ T cell proliferation.

Curcumin Induces Apoptosis in CD4+ T Cells

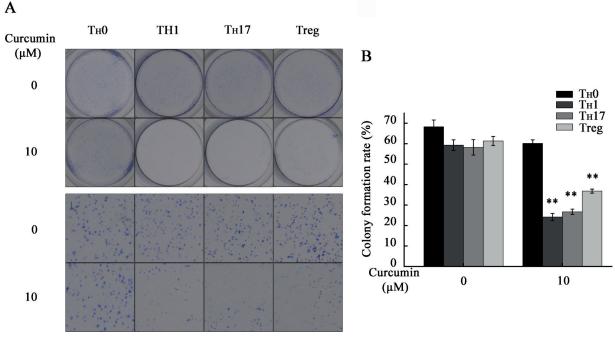
To detect whether the curcumin-induced inhibition of CD4⁺ T cell growth is related to apopto-

Figure 1. Curcumin inhibits CD4 $^+$ T cell viability. **A,** TH0, TH1, TH17, and Treg cells were seeded in 96-well plates at a density of 6000 cells per well. After 24 h, cells were treated with curcumin (5, 10, 20, 40, 60 μ M) for 24 h. The cell viability was determined by MTT assay. **B,** TH0, TH1, TH17, and Treg cells were plated in 96-well plates (6000 cells per well). After 24 h, cells were treated with curcumin (40 μ M) for 24, 48, and 72 h. The cell viability was determined by MTT assay. The above data are representative of at least three independent experiments with similar results. An asterisk (*) represents a significant difference from controls (*p<0.05 and **p<0.01).

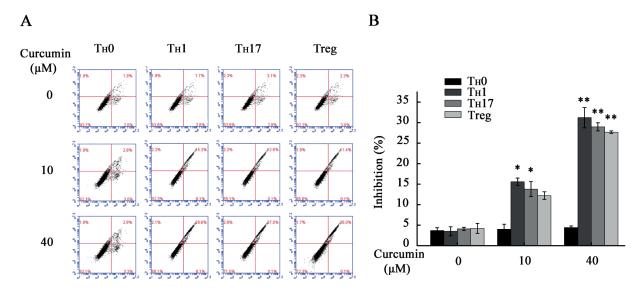
sis, TH0, TH1, TH17, and Treg cells were treated with curcumin (10 and 40 µM). Apoptosis was determined by flow cytometry using Annexin V/PI double staining. As shown in Figure 3, curcumin treatment induced remarkable apoptosis in TH1, TH17, and Treg cells. Hence, our results suggest that curcumin inhibits CD4⁺ T cell proliferation by inducing apoptosis in CD4⁺ T cells.

Curcumin Affects the Expression of Bcl-2, Bax, and Caspase-3

The Bcl-2 protein family plays an important role in the induction and control of apoptosis. Bcl-2 (an anti-apoptotic protein) and Bax (a pro-apoptotic protein) are the two important members¹⁴. Caspase-3 is a member of the caspase family that responds to pro-apoptotic signals and modulates the expression of some enzymes¹⁹. Therefore, TH0, TH1, TH17, and Treg cells were treated with curcumin (10 and 40 μ M). Then, the level of Bcl-2, Bax, and caspase-3 was determined by Western blotting. As showed in Figure 4, the expression of Bcl-2 was decreased, while that of Bax and active caspase-3 was increased in CD4+ T cells after treatment with curcumin. These results indicated that curcumin induces apoptosis by regulating the


expression of Bcl-2, Bax, and caspase-3 in CD4⁺ T cells.

Curcumin Suppresses CD4+ T Cell Activation


The activation molecule IL-2 receptor- α chain (CD25) and CD44 are important indicators of cell proliferation ¹⁸. To detect the relationship between the expression of these molecules and cell proliferation, TH0, TH1, TH17 and Treg cells were treated with curcumin (10 and 40 μ M) similarly. The expression of CD25 and CD44 was determined by flow cytometry. Results showed that the expression levels of both CD25 and CD44 were decreased in cells after treatment with curcumin compared to those in control cells (Figure 5). These data indicated that curcumin directly suppresses CD4+T cell activation.

Discussion

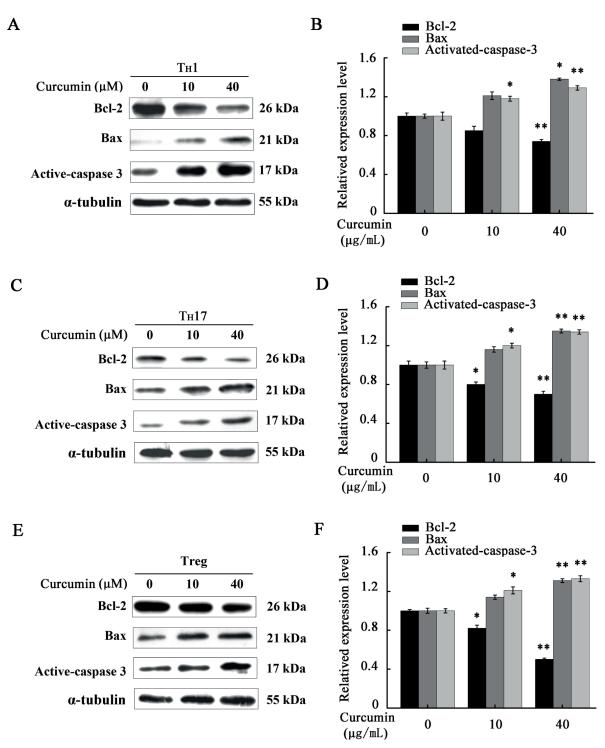
MS is a chronic disease characterized by the destruction of the CNS and often the underlying axons. Its pathology has the hallmarks of an autoimmune disorder, including inflammatory re-

Figure 2. Curcumin inhibits CD4⁺ T cell proliferation. **A,** TH0, TH1, TH17, and Treg cells were plated in 12-well plates (3000 cells per well). After 24 h, the cells were treated with curcumin (10 μ M) for 7 d. The ability of individual cells to aggregate into viable colony clusters was detected by clonogenic survival assay. **B,** The colony formation ability was evaluated. The above blots and data are representative of at least three independent experiments with similar results. An asterisk (*) represents a significant difference from controls (*p<0.05 and **p<0.01).

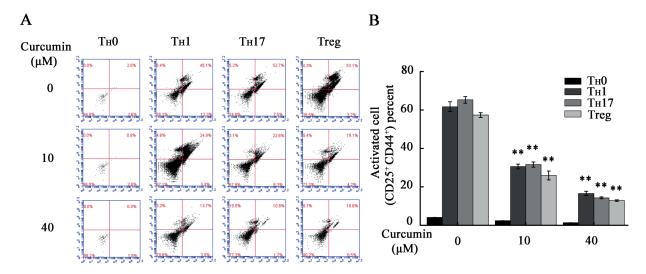
Figure 3. Curcumin induces apoptosis in CD4⁺ T cells. **A,** TH0, TH1, TH17, and Treg cells were treated with curcumin (10 and 40 μ M). The cells were trypsinised, washed, and re-suspended in binding buffer containing Annexin V-Fluorescein isothiocyanate (FITC) (5 μ L) and PI (2.5 μ L). The cells were analyzed using a FACSort flow cytometer. **B,** Apoptosis ratios were calculated. The above blots and data are representative of at least three independent experiments with similar results. An asterisk (*) represents a significant difference from controls (*p<0.05 and **p<0.01).

sponse accompanied by leukocyte infiltration into the nervous system^{2,20}. CD4⁺ T cells have been reported to be important in MS⁴. Therefore, it is necessary to identify effective and low toxicity agents for MS by inhibiting CD4⁺ T cells.

In the last decades, there has been a growing interest in curcumin. Curcumin has been reported to have various biological activities, including anti-inflammatory and antiseptic activity, as well as inhibition of cell proliferation^{21,22}. Previous reports10,23 have shown that curcumin inhibits proliferation by inducing apoptosis in malignant cells. Here, we explored whether curcumin could inhibit the proliferation of CD4⁺ T cells to prevent MS. The results indicated that curcumin markedly inhibited CD4⁺ T cell viability. Furthermore, TH1, TH17, and Treg all showed a dose-dependent but not time-dependent. Meanwhile, the effect of curcumin on the ability of individual CD4⁺ T cells to aggregate into viable colony clusters was evaluated by clonogenic survival assay. The findings revealed that curcumin remarkably decreased the colony formation ability of CD4⁺ T cells.


Apoptosis, a programmed cell death process, is very important in regulating cell proliferation^{13,24}. Next, we investigated whether the curcumin-induced inhibition of CD4⁺ T cell growth is related to apoptosis by flow cytometry. The results indicated that curcumin-induced remarkable apoptosis in TH1, TH17, and Treg cells. Bcl-2 is an

anti-apoptotic protein and Bax is a pro-apoptotic protein. Caspases are a family of cysteine proteases, which respond to pro-apoptotic signals, and caspase-3 is an important member of this family. Therefore, the expression of Bcl-2, Bax, and active caspase-3 was determined by Western blotting. The findings showed that curcumin decreased the expression of Bcl-2, but increased that of Bax and active caspase-3 in CD4⁺ T cells. These data indicated that curcumin inhibits CD4⁺ T cell proliferation by inducing apoptosis in CD4⁺ T cells.


The activation molecule IL-2 receptor-α chain (CD25) and CD44 have been reported to be involved in the upregulation of cell proliferation by T cells²⁵. The inhibition of cell division in the presence of curcumin was explored. Flow cytometry results also showed that curcumin decreased the expression of both CD25 and CD44. Compared with the control group, other groups showed significant suppression of cell activation in a dose-dependent manner after treatment with curcumin. These results showed that curcumin could directly inhibit CD4⁺ T cell activation.

Conclusions

Curcumin inhibits CD4⁺ T cell viability in a dose- and time-dependent manner by inducing

Figure 4. Curcumin affects the expression of Bcl-2, Bax, and caspase-3. TH0, TH1, TH17, and Treg cells were treated with curcumin (10 and 40 μ M). **A-C**, and **E**, Western blotting was performed to measure the protein levels of Bcl-2, Bax, and caspase-3. **B-D**, and **F**, The greyscale scans of left Western blot lines. The above blots and data are representative of at least three independent experiments with similar results. An asterisk (*) represents a significant difference from controls (*p<0.05 and **p<0.01).

Figure 5. Curcumin suppresses CD4⁺ T cell activation. **A,** TH0, TH1, TH17, and Treg cells were treated with curcumin (10 and 40 μ M). The cells were trypsinised, washed, and re-suspended in binding buffer containing CD25-PE (5 μ L) and CD44-FITC (5 μ L). The cells were analysed using a FACSort flow cytometer. **B,** Apoptosis ratios obtained from flow cytometry analysis are shown in the bar graph. The above blots and data are representative of at least three independent experiments with similar results. An asterisk (*) represents a significant difference from controls (*p<0.05 and **p<0.01).

apoptosis, and decreases the expression of CD25 and CD44, which are involved in cell proliferation. These results indicated that curcumin could prevent EAE by inhibiting cell proliferation and effector CD4⁺ T cell activation.

Conflicts of interest

The authors declare no conflicts of interest.

References

- NOCITI V, SANTORO M, QUARANTA D, LOSAVIO FA, DE FINO C, GIORDANO R, PALOMBA N, ROSSINI PM, GUERINI FR, CLERICI M, CAPUTO D, MIRABELLA M. BDNF rs6265 polymorphism methylation in multiple sclerosis: a possible marker of disease progression. PLoS One 2018; 13: e0206140.
- Tomescu-Baciu A, Vartdal F, Holmoy T, Vedeler CA, Lossius A. G1m1 predominance of intrathecal virus-specific antibodies in multiple sclerosis. Ann Clin Transl Neurol 2018; 5: 1303-1309.
- SHAHARABANI R, RAM-ON M, AVINERY R, AHARONI R, ARNON R, TALMON Y, BECK R. Structural transition in myelin membrane as initiator of multiple sclerosis. J Am Chem Soc 2016; 138: 12159-12165.
- 4) JELCIC I, AL NIMER F, WANG J, LENTSCH V, PLANAS R, JELCIC I, MADJOVSKI A, RUHRMANN S, FAIGLE W, FRAUENKNECHT K, PINILLA C, SANTOS R, HAMMER C, ORTIZ Y, OPITZ L, GRONLUND H, ROGLER G, BOYMAN O, REYNOLDS R, LUTTEROTTI A, KHADEMI M, OLSSON T, PIEHL F, SOSPEDRA

- M, MARTIN R. Memory B cells activate brain-homing, autoreactive CD4(+) T cells in multiple sclerosis. Cell 2018; 175: 85-100.
- LEE PW, SMITH AJ, YANG Y, SELHORST AJ, LIU Y, RACKE MK, LOVETT-RACKE AE. IL-23R-activated STAT3/ STAT4 is essential for Th1/Th17-mediated CNS autoimmunity. JCI Insight 2017; 2: 91663.
- 6) ZHANG X, KIAPOUR N, KAPOOR S, MERRILL JR, XIA Y, BAN W, COHEN SM, MIDKIFF BR, JEWELLS V, SHIH YI, MARKOVIC-PLESE S. IL-11 antagonist suppresses Th17 cell-mediated neuroinflammation and demyelination in a mouse model of relapsing-remitting multiple sclerosis. Clin Immunol 2018; 197: 45-53.
- SHI SJ, DING ML, WANG LJ, WU JH, HAN DH, ZHENG GX, GUO ZY, XI WJ, QIN WJ, YANG AG, WEN WH. CD4(+)T cell specific B7-H1 selectively inhibits proliferation of naive T cells and Th17 differentiation in experimental autoimmune encephalomyelitis. Oncotarget 2017; 8: 90028-90036.
- Wang X, Lang M, Zhao T, Feng X, Zheng C, Huang C, Hao J, Dong J, Luo L, Li X, Lan C, Yu W, Yu M, Yang S, Ren H. Cancer-FOXP3 directly activated CCL5 to recruit FOXP3(+)Treg cells in pancreatic ductal adenocarcinoma. Oncogene 2017; 36: 3048-3058.
- FETONI AR, PACIELLO F, MEZZOGORI D, ROLESI R, ERAMO SL, PALUDETTI G, TROIANI D. Molecular targets for anticancer redox chemotherapy and cisplatin-induced ototoxicity: the role of curcumin on pSTAT3 and Nrf-2 signalling. Br J Cancer 2015; 113: 1434-1444.
- 10) Su J, Zhou X, Wang L, Yin X, Wang Z. Curcumin inhibits cell growth and invasion and induces apoptosis through down-regulation of Skp2 in pancreatic cancer cells. Am J Cancer Res 2016; 6: 1949-1962.

- 11) YAO Q, KE ZQ, GUO S, YANG XS, ZHANG FX, LIU XF, CHEN X, CHEN HG, KE HY, LIU C. Curcumin protects against diabetic cardiomyopathy by promoting autophagy and alleviating apoptosis. J Mol Cell Cardiol 2018; 124: 26-34.
- 12) ZHENG L, SUN X, ZHU X, LV F, ZHONG Z, ZHANG F, GUO W, CAO W, YANG L, TIAN Y. Apoptosis of THP-1 derived macrophages induced by sonodynamic therapy using a new sonosensitizer hydroxyl acetylated curcumin. PLoS One 2014; 9: e93133.
- 13) DUAN Y, DONG X, NIE J, LI P, LU F, MA D, JI C. Wee1 kinase inhibitor MK-1775 induces apoptosis of acute lymphoblastic leukemia cells and enhances the efficacy of doxorubicin involving downregulation of Notch pathway. Oncol Lett 2018; 16: 5473-5481.
- 14) YAP JL, CHEN L, LANNING ME, FLETCHER S. Expanding the cancer arsenal with targeted therapies: disarmament of the antiapoptotic Bcl-2 proteins by small molecules. J Med Chem 2017; 60: 821-838.
- 15) FENG S, ZHU J, XIA K, YU W, WANG Y, WANG J, LI F, YANG Z, YANG X, LIU B, TAO H, LIANG C. Cantharidin inhibits anti-apoptotic Bcl-2 family proteins and induces apoptosis in human osteosarcoma cell lines MG-63 and MNNG/HOS via mitochondria-dependent pathway. Med Sci Monit 2018; 24: 6742-6749.
- 16) ZENG L, QIAN J, LUO X, ZHOU A, ZHANG Z, FANG Q. CHSY1 promoted proliferation and suppressed apoptosis in colorectal cancer through regulation of the NFkappaB and/or caspase-3/7 signaling pathway. Oncol Lett 2018; 16: 6140-6146.
- Song Y, Zhong M, Cai FC. Oxcarbazepine causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway

- mediated caspase 3 activation in neonatal rats. Eur Rev Med Pharmacol Sci 2018; 22: 250-261.
- GLENN JD, XUE P, WHARTENBY KA. Gemcitabine directly inhibits effector CD4 T cell activation and prevents experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 316: 7-16.
- Getachew B, Hudson T, Heinbockel T, Csoka AB, Tizabi Y. Protective effects of donepezil against alcohol-induced toxicity in cell culture: role of Caspase-3. Neurotox Res 2018; 34: 757-762.
- 20) Shoemaker SJ, Pozniak A, Hadden L. Assessing four quality indicators for multiple sclerosis management through patient-reported data. Int J MS Care 2016; 18: 202-209.
- PRASAD S, GUPTA SC, TYAGI AK, AGGARWAL BB. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv 2014; 32: 1053-1064.
- ARABLOU T, KOLAHDOUZ-MOHAMMADI R. Curcumin and endometriosis: review on potential roles and molecular mechanisms. Biomed Pharmacother 2018; 97: 91-97.
- 23) WANG JL, WANG JJ, CAI ZN, Xu CJ. The effect of curcumin on the differentiation, apoptosis and cell cycle of neural stem cells is mediated through inhibiting autophagy by the modulation of Atg7 and p62. Int J Mol Med 2018; 42: 2481-2488.
- 24) JAFARI SM, JOSHAGHANI HR, PANJEHPOUR M, AGHAEI M, ZARGAR BN. Apoptosis and cell cycle regulatory effects of adenosine by modulation of GLI-1 and ERK1/2 pathways in CD44(+) and CD24(-) breast cancer stem cells. Cell Prolif 2017; 50: 10.1111/cpr.12345.
- 25) Luo Z, Wang Y, Lou Y, Cao C, Hubbard R, Xu N, Huang X. Unfavorable clinical implications of peripheral blood CD44+ and CD54+ lymphocytes in patients with lung cancer undergoing chemotherapy. Int J Biol Markers 2018; 33: 208-214.