The therapeutic potential of targeting ACE2 in COVID-19

R. ELMORSI

Faculty of Medicine, Mansoura University, Mansoura, Egypt

Abstract. – OBJECTIVE: ACE2 long served as the human gateway for multiple coronaviruses, including the currently pandemic SARS-CoV-2. This mini-review explores the potential of targeting ACE2 in blocking viral penetrance.

MATERIALS AND METHODS: PubMed search was conducted using the terms: "coronaviridae", "peptidyl-dipeptidase A", "ACE2", "SARS", and "SARS-CoV-2". References of relevant articles were further screened by the author.

RESULTS: Four main methods of blocking ACE2-mediated viral penetrance were identified: receptor blockage, receptor decoying, receptor shedding, and co-receptor inhibition.

CONCLUSIONS: Drugs that inhibit viral binding to ACE2 present a strong choice for the current, and if necessary, future outbreaks. Further research is needed to establish the clinical and pharmacological aspects of the identified candidate molecules.

Key Words:

Coronaviridae, ACE 2, Peptidyl-dipeptidase A, COVID-19.

Introduction

Human ACE2 (hACE2) is a single-pass-type-I membrane protein, with its enzymatically active extracellular domain acting as the binding site for the receptor binding domain (RBD) of the spike protein (SP), of both SARS-CoV and SARS-CoV-2¹. The rationale behind targeting ACE2 is as follows:

- 1. Host surface proteins are less likely to mutate.
- 2. Viral RBDs require considerably long periods to revolutionize, making therapeutic escape less of a concern.
- 3. Antivirals that hinder viral penetrance present a wise choice for the current and, if necessary, future outbreaks.

Potential Methods

Blocking the ACE2

Following the 2003 SARS epidemic, scientists attempted blocking ACE2-mediated cellular infection via SARS-CoV RBD-derived peptides (Table I and Figure 1). Perhaps the most promising of these trials is the hexapeptide demonstrated by Struck et al², which is at least one-third the size of any of the others. A similar approach with SARS-CoV-2 RBD is also plausible, especially since it binds hACE2 much stronger⁴. This can be attributed to the fact that the novel SARS-CoV-2 utilizes an RBD within the S1 domain of its spike protein compared to an S2 RBD in SARS-CoV. Nevertheless, this comes at the expense of a lower affinity to ACE2⁴.

Of potential interest, an Fc fragment attached to the recombinant RBD can prolong its half-life, as previously experimented with MERS⁶, but the immune response to such a modification is unpredictable.

Decoying the ACE2

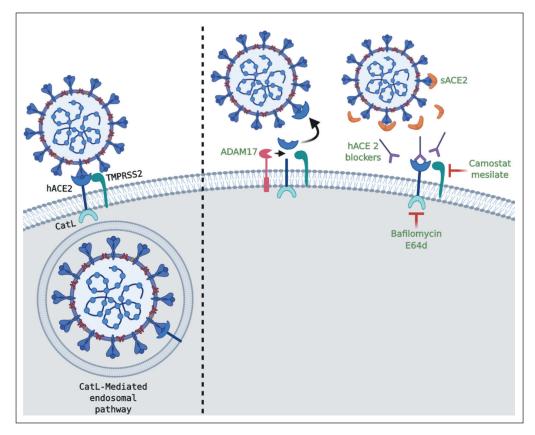
Decoy receptors are established in the management of multiple diseases. For example, the decoy of osteoprotegerin, Denosumab, is used to treat postmenopausal osteoporosis.

About a decade ago, Wysocki et al³ developed a soluble ACE2 (sACE2) from its complimentary DNA (cDNA) encoding sequence, for purposes of cardiovascular research. Nowadays, this decoy presents a strong candidate antiviral for ACE2-binding viruses, especially due to its minimal interaction with the physiological functions of membrane-bound ACE2, in addition to its potential as a passive vaccine (Figure 1). In fact, sACE2 was recently proven, *in vitro*, to prevent the formation of the RBD-hACE2 bond in both SARS-CoV and SARS-CoV-2, binding much stronger to the latter⁴.

Table I. SARS-CoV RBD-derived hACE2 blockers.

Peptide	Sequence	Virus	References
RBD-11b	YKYRYL	SARS-CoV	3
P8	PSSKRFQPFQQFGRDVSFT	SARS-CoV	7
P9	CANLLLQYGSFCTQLNRALSGIA	SARS-CoV	7
SARSww-iii	GYHLMSFPQAAPHGVVFLHVTW	SARS-CoV	8
SARSww-iv	GVFVFNGTSWFITQRNSS	SARS-CoV	8

Shedding the ACE2


Cell surface proteins undergo cycles of proteolytic ectodomain release, known as shedding, as part of their regulation. hACE2 was shown to undergo this process by ADAM179, a protease of the ADAM (a disintegrin and metalloproteinase) family.

In theory, not only will cleaving the ectodomain of hACE2 decrease viral binding sites, but it will also create sACE2 to bind circulating viral loads (Figure 1). However, there are multiple downsides to this approach: firstly, ADAM17 is not specific to hACE2, and was implicated in the shedding of multiple other surface proteins¹⁰⁻¹³; secondly,

its activity is both constitutive and inducible, by phorbol esters for example, and dependant on factors like protein kinase C, intracellular Ca⁺⁺ levels, and membrane lipid composition¹³, making its pharmacokinetics rather vague; lastly, ADAM17 has been implicated in neoplastic pathophysiology¹¹, and efforts were made to inhibit its activity rather than induce it.

Transmembrane Protease Serine 2 (TMPRSS2) and Cathepsin L (CatL) Inhibition

Upon receptor binding, TMPRSS2 activates the S-protein of SARS-CoV to achieve cellular

Figure 1. Interruption of viral binding to ACE2.

entry. In the absence of TPMRSS2, SARS-CoV utilizes an alternative endosomal pathway, where CatL plays the pivotal role of activating spike protein fusogenicity¹⁴. Hoffmann et al¹⁵ proved that SARS-CoV-2 uses a similar mechanism. In their experiment, they achieved partial blockage of viral entry into lung cells by inhibiting TMPRSS2 alone, via camostat mesilate (CM). A complete block was only attained when E64d, a CatL blocker, was added to CM.

CM per se, is a protease inhibitor that is used to manage chronic pancreatitis in Japan, and although its mechanism is still uncertain, it proved efficacious in improving pancreatic fibrosis¹⁶.

One can speculate that CM alone would only decrease disease severity rather than achieve complete remission in COVID-19. Thereby, the utility of CatL inhibitors should be taken into concern (Figure 1). E64d for example, is an ester prodrug which specifically inhibits cysteine proteases. The downside to it is that it rapidly hydrolyses to E64c *in vivo*, which in turn undergoes significant hepatic uptake, leaving a therapeutically unacceptable systemic dose. Nonetheless, an inhaled formulation of E64d is a potential solution for this obstacle.

Bafilomycin is another CatL Cathepsins L inhibitor that is similarly efficacious¹⁴, it belongs to the macrolide family of antibiotics and exhibits broad biological activity including; antitumor, anti-proton pump, antiparasitic, and antifungal activity^{17,18}.

Conclusions

Taking into consideration the current wildlife reservoir of coronaviruses, humanity stands prone to future outbreaks by newer generations, which necessitates the search for a drug that can provide a relatively broad spectrum of action against this family.

The present article focused on methods of blocking the RBD-hACE2 bond, but further research is strongly needed to establish the clinical and pharmacological aspects of the identified molecules. Of these, the RBD-11b hexapeptide, sACE2, and CM/E64d combination seem to be the safest and most promising.

Financial support

No financial support was obtained for this article.

Conflict of Interests

The author declares no conflicts of interest.

References

- Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7: 226-236.
- STRUCK AW, AXMANN M, PFEFFERLE S, DROSTEN C, MEYER B. A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2. Antivir Res 2012; 94: 288-296.
- 3) Wysocki J, Ye M, Rodriguez E, González-Pacheco FR, Barrios C, Evora K, Schuster M, Loibner H, Brosnihan KB, Ferrario CM, Penninger JM. Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II—dependent hypertension. Hypertension 2010; 55: 90-98.
- 4) TAI W, HE L, ZHANG X, PU J, VORONIN D, JIANG S, ZHOU Y, Du L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol 2020; 17: 613-620.
- YAN R, ZHANG Y, LI Y, XIA L, GUO Y, ZHOU Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367: 1444-1448.
- 6) MUSTAFA S, BALKHY H, GABERE MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): a review. J Infect Public Heal 2018; 11: 9-17.
- Lu W, Wu XD, Shi MD, Yang RF, He YY, Bian C, Shi TL, Yang S, Zhu XL, Jiang WH, Li YX. Synthetic peptides derived from SARS coronavirus S protein with diagnostic and therapeutic potential. FEBS Lett 2005; 579: 2130-2136.
- 8) SAINZ JR B, MOSSEL EC, GALLAHER WR, WIMLEY WC, PETERS CJ, WILSON RB, GARRY RF. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Virus Res 2006; 120: 146-155.
- LAMBERT DW, YARSKI M, WARNER FJ, THORNHILL P, PARKIN ET, SMITH AI, HOOPER NM, TURNER AJ. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 2005; 280: 30113-30119.
- 10) GARTON KJ, GOUGH PJ, PHILALAY J, WILLE PT, BLOBEL CP, WHITEHEAD RH, DEMPSEY PJ, RAINES EW. Stimulated shedding of vascular cell adhesion mole-

- cule 1 (VCAM-1) is mediated by tumor necrosis factor-α-converting enzyme (ADAM 17). J Biol Chem 2003; 278: 37459-37464.
- 11) Wang X, He K, Gerhart M, Huang Y, Jiang J, Paxton RJ, Yang S, Lu C, Menon RK, Black RA, Baumann G. Metalloprotease-mediated GH Receptor Proteolysis and GHBP Shedding determination of extracellular domain stem region cleavage site. J Biol Chem 2002; 277: 50510-50519.
- 12) PESCHON JJ, SLACK JL, REDDY P, STOCKING KL, SUNNAR-BORG SW, LEE DC, RUSSELL WE, CASTNER BJ, JOHNSON RS, FITZNER JN, BOYCE RW. An essential role for ectodomain shedding in mammalian development. Science 1998; 282: 1281-1284.
- 13) SAFTIG P, REISS K. The "A Disintegrin And Metalloproteases" ADAM10 and ADAM17: novel drug targets with therapeutic potential?. Eur J Cell Biol 2011; 90: 527-535.
- 14) Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute

- respiratory syndrome coronavirus entry. J Virol 2012; 86: 6537-6545.
- 15) HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, KRÜGER N, HERRLER T, ERICHSEN S, SCHIERGENS TS, HERRLER G, Wu NH, NITSCHE A, MÜLLER MA. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271-280.
- 16) EMORI Y, MIZUSHIMA T, MATSUMURA N, OCHI K, TANIOKA H, SHIRAHIGE A, ICHIMURA M, SHINJI T, KOIDE N, TANIMOTO M. Camostat, an oral trypsin inhibitor, reduces pancreatic fibrosis induced by repeated administration of a superoxide dismutase inhibitor in rats. J Gastroenterol Hepatol 2005; 20: 895-899.
- 17) WHITTON B, OKAMOTO H, PACKHAM G, CRABB SJ. Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Med 2018; 7: 3800-3811.
- 18) Marchesini N, Vieira M, Luo S, Moreno SN, Docampo R. A malaria parasite-encoded vacuolar H+-AT-Pase is targeted to the host erythrocyte. J Biol Chem 2005; 280: 36841-36847.